
3
Parameterized Complexity of Conflicts as Matching

In this chapter, we study the problems where the conflict graph is a matching. We start with
semi-discrete Fréchet distancewhich is based on the following intui on asmen oned in Chapter 1. Consider
a girl walking her dog on a leash. Given a con nuous curve S and a set of points P, semi-discrete Fréchet
distance is the minimum length of a leash that simultaneously allows the girl to walk on S con nuously and
the frog to have discrete jumps from one point to another in P without backtracking. Hence the leash is
allowed to switch discretely when frog jumps from one point to another. Here we consider the case when
S is a line segment. We denote it by ℓ. We take the cardinality of P to be n. More formally, let α is a
con nuous, non-decreasing, surjec on from [0,1] to ℓ. Also assume β be any func on from [0,1] to P such
that there exist disjoint subdivisions of [0,1] into a set of intervals λ1,λ2, ..λk for some k ∈ N,k ≤ n. We
have

∪k
i=1 λi = [0,1]. For any two points t1, t2 ∈ [0,1], β (t1) = β (t2) if and only if t1 and t2 belongs to same

interval. Let d(a,b) for two points a and b is Euclidean distance between a and b. Semi-discrete Fréchet
distance between ℓ and P is defined as:

dF(ℓ,P) = in f
α,β

max
t∈[0,1]

{d(α(t),β (t))}

We define the problem S - F D as follows.

S - F D
Input: A set of points P and a line-segment ℓ in R2.
Ques on: Find dF(P, ℓ).

Along with Fréchet distance, Hausdorff distance [44] is another popular measure for closeness of
two set of points A and B. Intui vely, two sets of points are close if every point in either set has a point
close to it in another set. In other words, it is the greatest of all the distances from a point in either set to
the closest point in the other set. Formally, Hausdorff distance between A and B can be defined as

H (A,B) =max{sup
a∈A

inf
b∈B

d(a,b),sup
b∈B

inf
a∈A

d(a,b)}

We define semi-discrete Hausdorff distance between a point set P = {p1, p2, . . . pn} and a
line-segment ℓ in R2 as

dH(P, ℓ) = min
P′⊆P,P′ ̸= /0

{H (ℓ,P
′
)}

Formally, we may define the problem S - H D as

S - H D
Input: A set of points P and a line-segment ℓ in R2.
Ques on: Find dH(P, ℓ).

25

On similar lines we define conflict-free semi-discrete Hausdorff distance between a set of pairs
of points Q and a line-segment ℓ to be minimum semi-discrete Hausdorff distance between ℓ and any
conflict-free choice of points from Q.

Now we have a simple observa on which follows from the defini ons of semi-discrete Fréchet
distance and semi-discrete Hausdorff distance.

Observa on 3.0.1. Semi-discrete Fréchet distance and semi-discrete Hausdorff distance are equal.

Proof. Consider a set of points P = {p1, p2, . . . , pn} and a line-segment ℓ, both lying in the Euclidean plane.
Let d = dF(P, ℓ). We need to show that dH(P, ℓ) = d.

Since d = dF(P, ℓ), there exist two points pi, p j ∈ P and lk ∈ ℓ such that d(pi, lk) = d(p j, lk) = d
and there does not exist any point p ∈ P with d(p, lk) < d. Thus inf

p j∈P
d(p j, lk) = d. Hence, dH(P, ℓ) ≥ d.

Let P′ = {p1, p2, . . . , pq} ⊆ P be the minimum cardinality set such that dF(P′, ℓ) = d. Hence, for all pi ∈
P′, inf

l′∈ℓ
d(pi, l′) ≤ d. Also, since d = dF(P′, ℓ), for all points l′ ∈ ℓ, there exist a point p′ ∈ P′ such that

d(l′, p′)≤ d. Thus, for all l′ ∈ ℓ, inf
p′∈P′

d(p′, l′)≤ d. Hence, H (P′, ℓ)≤ d. So, we have dH(P, ℓ) = d and thus

dH(P, ℓ) = dF(P, ℓ).

Thus all the results we present here for semi-discrete Fréchet distance also hold for semi-discrete
Hausdorff distance as both are equivalent measures of distance between a line and a set of points.

Now we recall the decision version and parameterized version of Semi-discrete Fréchet distance
problems in conflict se ngs,

C - F D (D V)
Input: A set Q of pairs of points, a line-segment ℓ in R2, and d ∈ R.
Ques on: Is there a conflict-free set of points P∗ ⊂

∪
Q∈Q Q such that dF(P∗, ℓ)≤ d.

P C - F D Parameter: k
Input: A set Q of pairs of points, a line-segment ℓ in R2, d ∈ R, and k ∈ N.
Ques on: Is there a conflict-free subset of points P∗ of cardinality at most k such that dF(P∗, ℓ)≤ d.

We also consider parameterized version of “minimum maxGap” problem. Recall that here, given a
set of points x1, . . . ,xn on a line, maxGap is the largest gap between consecu ve points in the sorted order.
The “gap” refers to Euclidean distance between two points. The problem is as follows.

P M G Parameter: k
Input: A set Q of pairs of points on a line L, two points ps and pe on L, d ∈ R, and k ∈ N∪{0}.
Ques on: Is there a conflict-free subset of points P∗ of cardinality at most k between ps and pe such
that the minimum maxGap of P∗∪{ps, pe} is at most d.

Results in this Chapter We first give polynomial me algorithm for S - F D in
3.1. Next, in sec on 3.2 we prove that C - F D (D V) isNP-Complete.
Later in sec on 3.3, we use two approaches to give FPT algorithm for these problems. Finally in Sec on 3.4
we show that the problem is unlikely to have a polynomial sized kernel using OR-composi on.

26

3.1 POLYNOMIAL TIME ALGORITHM FOR SEMI-DISCRETE FRÉCHET DISTANCE
In this sec on we prove that S - F D problem is solvable in O(n logn) me.

Without loss of generality, assume that the line segment ℓ coincideswith theX -axis and has end points (x1,0)
and (x2,0). Take any point pi ∈ P where pi = (ai,bi) and let x be a variable depic ng the posi on of a point
on line segment ℓwith x1 ≤ x≤ x2. Then the func on fi(x) represen ng the distance between the point pi

and x is fpi(x) =
√

(x−ai)2 +bi
2.

For each point pi ∈ P we can find out the func on fi(x), where each such func on represents one
sided hyperbola lying above the X -axis and in interval between x1 and x2. Let the lower envelope of such
func ons defined in the domain [x1,x2] be Γ(P). Let d∗ be the maximum perpendicular distance between
Γ(P) and ℓ. Then we can see that,

Observa on 3.1.1. d∗ is the minimum Fréchet distance between ℓ and P.

Note that two hyperbolas will intersect at at most one point. To see this, note that while solving the

two equa ons fpi(x) =
√

(x−ai)2 +bi
2 and fp j(x) =

√
(x−a j)2 +b j

2 , the terms (x−ai)
2,b2

i ,(x−a j)
2,b2

j
are all posi ve and thus using distance property, gives only one solu on. Thus each hyperbola can appear
in the lower envelope at most once.

Before proceeding further let us have a look at Davenport–Schinzel sequence. Davenport–Schinzel
sequences were introduced by H. Davenport and A. Schinzel in the 1960s.

Defini on 3.1.1. For two posi ve integers n and s, a finite sequenceU =< u1,u2,u3, . . . ,um > is said to be a
Davenport–Schinzel sequence of order s (denoted asDS(n,s)-sequence) if it sa sfies the following proper es:

1. 1≤ ui ≤ n for each i≤ m.

2. ui ̸= ui+1for each i < m.

3. If x and y are two dis nct values in the sequence U , then U does not contain a subsequence
. . .x . . .y . . .x . . .y . . . consis ng of s+2 values alterna ng between x and y.

Theorem 3.1.2 ([45] [7] [1]). The lower envelope of a set F of n con nuous, totally defined, univariate
func ons, each pair of whose graphs intersects in at most s points, can be constructed in an appropriate
model of computa on, in O(λs(n) logn) me where λs(n) is the Davenport–Schinzel sequence of order s
including n dis nct values.

Since λ1(n) = n, by subs tu ng s = 1 in Theorem 3.1.2, we get,

Theorem 3.1.3. S - F D problem can be solved in O(n logn) me.

3.2 HARDNESS OF CONFLICT-FREE FRÉCHET DISTANCE PROBLEM
In this sec on we show that C - F D (D V) is NP-complete by

giving a reduc on from Rainbow covering problem men oned in [3].

Let us begin our discussion by defining Rainbow covering problem. Suppose that we are given a
set P = {P1,P2, . . . ,Pn} where each Pi contains a pair of intervals {Ii, Ii} such that each interval is a finite
con nuous subset of the X-axis. A set of intervals Q⊆

∪n
i=1 Pi is a rainbow, if it is a conflict-free choice. An

interval [a,b] is said to cover a point c if c ∈ [a,b]. The formal defini on of the Rainbow covering problem is
as follows.

27

R C
Input: A set of pairs of intervals P and a set of points S on X-axis.
Ques on: Does there exist a rainbow Q such that each point in S is covered by at least one interval in
Q.

R C is known to be NP-complete [3]. We introduce an intermediate problem called
R L C and show that it is NP-complete using a polynomial me many to one reduc on from
R C . Then we give a polynomial me many to one reduc on from R L C to
C - F D (D V).

R L C

Input: SetP ′ = {P′1,P′2, . . . ,P′m}where each P′i contains a pair of intervals {Iin
j , I j

in} and a line-segment
on X-axis, ℓin = [x1,x2].
Ques on: Is there a rainbow Qin such that it covers line-segment ℓin.

Lemma 3.2.1. R L C is NP-hard.

Proof. The proof is by a polynomial me reduc on from R C . Let (P,S) be an instance of
R C and let S = {s1, . . . ,sn}. Without loss of generality, let s1,s2, . . . ,sn be the arrangement
of points from S in increasing order on X-axis according to their x-coordinates and each interval from P
covers at least one point in S. Also, all the intervals are pruned to lie between s1 and sn. We create an
instance (P ′, ℓin) of R L C as follows.

For each interval present in P , we create an interval in P ′ and the pairs in the new set P ′

corresponds to the respec ve pairs in P . For convenience we assume that s0 = s1 and sn+1 = sn. For an
interval I, we construct another interval I′ as follows. Let {si, . . . ,s j} ⊆ S be the set of points in S covered
by I. Then we set I′ = [si−| si−si−1

2 |,s j + |
s j+1−s j

2 |]. Now suppose s1 = (a1,0) and sn = (an,0), then ℓin is the
line-segment on X-axis is [a1,an]. Clearly the construc on of (P ′, ℓin) takes polynomial me. Towards the
correctness we prove the following claim.

Claim 3.2.1. There exists a rainbow from P of size d, covering S, if and only if there exists a rainbow from
P ′ of size d covering ℓin.

Proof. Let Q⊆
∪n

i=1 Pi be a rainbow covering S. Observe that corresponding to each interval in P , there is
an interval in P ′. Let the set of intervals corresponding to Q in P ′ be Qin. Since Q is a rainbow, Qin is also
a rainbow. Now it suffices to show that every point q ∈ ℓin is covered by intervals in Qin.

For any point s ∈ S, we also use s to denote the x-coordinate of the point s (note that the
y-coordinate is 0). By construc on, if a point si ∈ S is covered by an interval I ∈ Q, then si is covered by
I′ ∈ Qin. As Q covers all the points in S, Qin covers S. Now we show that every point in ℓin which is not in
S is also covered by Qin. By the construc on of ℓin, for point z in ℓin \ S, there exists sk,sk+1 ∈ S such that
z ∈ [sk,sk+1]. Suppose that there is an interval I ∈ Q which covers sk and sk+1. Then the corresponding
interval I′ covers all the points in [sk,sk+1] and I′ ∈ Qin. Suppose there is no interval in Q, which covers
both sk and sk+1. Also, since Q covers S, there are intervals I1 and I2 in Q such that I1 covers sk, but not
sk+1 and, I2 covers sk+1, but not sk. By construc on I′1 = [a,sk + | sk+1−sk

2 |] and I′2 = [sk+1− | sk+1−sk
2 |,b] for

some a≤ sk and some b≥ sk+1. This implies that I′1 and I′2 together cover [sk,sk+1]. Moreover I′1, I
′
2 ∈ Qin.

Thus Qin covers [sk,sk+1].

Similarly if there is a rainbow Qin covering ℓin then there exists a rainbow Q such that it covers S.
Here Q will be the set of intervals that were used to construct intervals in Qin. Since Qin is a rainbow, Q is

28

also a rainbow. For any interval I and the corresponding interval I′, I∩S = I′∩S, by our construc on. Thus,
since Qin covers S, Q also covers S.

This concludes the proof of the lemma.

Now we have the following theorem.

Theorem 3.2.1. C - F D (D V) is NP-complete.

Proof. Given a sorted sequence of pointsQ= {q′1,q′2, . . .q′j} aswitness, we can check in linear mewhether
the points in the sequence are conflict-free. To check whether Fréchet distance is at most d given Q, we use
the Theorem 3.1.3 (in Sec on 3.1) which takes O(n logn) me. Thus the problem is in NP.

To prove NP-hardness we give a polynomial me reduc on from R L C . Let (P ′, ℓ)
be an instance of R L C , where |P ′| = n and ℓ = [x1,x2]. From P ′ we create a set of pairs
of points Q such that for each interval pair {I, I} = P ∈P we construct a corresponding pair of points
{q,q}= Q ∈Q.

To do this, for interval I = [a,b] if a < x1, then prune the interval such that a = x1. Similarly if b > x2
then make b = x2. Let the length of any interval Ii = [ai,bi] be lenIi = bi−ai and d = { max

I j∈
∪n

i=1{Ii,Ii}
lenI j}+1.

Now for interval I = [a,b], draw two circles C(a) and C(b) with centre at a and b, respec vely, of
radius d each. LetC(a)∩C(b)= {(x,y1),(x,y2)}. Take q=(x,y)where y≥ 0 and y∈{y1,y2}. See Figure 3.1
for an illustra on. Let q′ be the point constructed for I. Add {q,q′} to Q. Now, (Q, ℓ) is the output of the
reduc on. Clearly, the reduc on takes polynomial me. The correctness of the reduc on is proved in the
following claim.

`

q = (x, y1)

(x, y2)

(a, 0) (b, 0)

d

Figure 3.1 : Reduction from R

Claim 3.2.2. There is a rainbow covering for (P ′, ℓ) if and only if the conflict-free Fréchet distance between
Q and ℓ is at most d.

29

Proof. Consider a rainbow covering R for (P ′, ℓ). Now consider the set S constructed from intervals in the
rainbow R. Since R is a rainbow, S is conflict-free. Consider any point z in ℓ and let I ∈ R be the interval
covering z. Let q be the point created for I. Then d(q,z) ≤ d (see Figure 3.1). Also as the intervals were
covering ℓ, each point on ℓ has a point in S which is at maximum distance of d. Hence the Fréchet distance
between Q and ℓ is at most d.

For the reverse direc on, assume that the conflict-free Fréchet distance between Q and ℓ is
d. Hence, there exists a rainbow T = {q1,q2, . . . ,qk} ⊂

∪n
1=1 Qi where Qi ∈ Q such that dF(T, ℓ) ≤ d.

Corresponding to each q ∈ T , there is an interval Iq in some pair in P ′. For each point q, the set of points
in ℓ which are at a distance at most d are in the interval Iq. Moreover each point in Iq is at a distance at
most d from q (see Figure 3.1). This implies that I = {Iq | q ∈ T} covers ℓ, because dF(T, ℓ)≤ d. Since T
is conflict-free, R is a rainbow. Therefore, I is a rainbow covering for ℓ.

This concludes the proof of the theorem.

3.3 FIXED PARAMETER TRACTABLE ALGORITHMS
Here, we give two FPT algorithms for P C - F P . Our

first FPT algorithm is based on randomiza on and the second is based on branching.

3.3.1 Randomized algorithm
We give a randomized FPT algorithm which succeeds with a constant success probability. It uses

the following problem for which there is a simple greedy algorithm running in meO(n logn); the algorithm
is very similar to that of I P C [27].

I L C
Input: A line-segment ℓ and a set Q of n intervals on ℓ.
Ques on: Find a minimum cardinality subset Q′ ⊆ Q such that the intervals in Q′ cover all the points
in the line-segment ℓ.

Theorem 3.3.1. There is a randomized algorithm for P C - F D
running in me O(2kn logn) which outputs N for all N -instances and outputs Y for all Y -instances
with constant probability.

Proof. Let |Q| = n. The algorithm works as follows. It creates a set S of n points through the following
random process. For each {qi,qi} ∈Q, uniformly at random it picks one point from {qi,qi} and adds to the
set S. Then for each point p ∈ S, the algorithm then computes an interval on ℓ as follows. Draw a circleCp

of radius d with p as the centre. The interval [ap,bp] on ℓ is the interval on ℓ covered by the circleCp. Now
run the O(n logn) algorithm for I L C on the instance (ℓ,{[ap,bp] | p ∈ S}). If this algorithm
returns a solu on of size at most k, then our algorithm outputs Y .

Now we show that if the input instance is an Y instance, then our algorithm outputs Y with
probability 1

2k . Let P∗ be a conflict-free subset of points of cardinality k such that dF(P∗, ℓ)≤ d. No ce that
for each pi ∈ P∗, there is point pi /∈ P∗ such that {pi, pi} ∈Q and with probability 1/2 we have added pi to
S. This implies that Pr(S = P∗) = 1

2k . Since each point on ℓ is at a distance at most d to some point P∗, when
S = P∗, the algorithm of I L C outputs Y . Since Pr(S = P∗) = 1

2k our algorithm output Y
with probability at least 1

2k . Suppose input is a N -instance. Then for each conflict-free point set P∗ of size
at most k, dF(P∗, ℓ)> d. Also note that the set S we constructed is a conflict-free set. Since dF(P∗, ℓ)> d,
we need more than k intervals from {[ap,bp] | p ∈ S} to cover ℓ. This implies that the algorithm of I
L C will return a set of size more than k, and so our algorithm will output N .

30

We can boost the success probability to a constant by running our algorithm 2k mes. For an Y
instance the algorithm will fail in all 2k run is at most (1− 1

2k)
2k ≤ 1

e . Since we are running the algorithm of
I L C 2k me, the running me men oned in the theorem follows.

Derandomization
Here, we define matching universal sets. Then we give a derandomiza on of algorithm for the

problem. First we define some nota ons. For n ∈ N, let [n] = {1, . . . ,n}. For a set U ,
(U

k

)
denotes the

family of subsets ofU , where each subset is of size exactly k.

Matching universal sets for a family of disjoint pairs
Here we define a restricted version of universal sets (defined below) which we call matching

universal sets and it is defined for a family of disjoint pairs. We give an efficient construc on of these
objects by reducing to universal sets. We use it to derandomize our algorithm given in the sec on. We
believe that these objects will add to the list of tools used to derandomize algorithms and will be of
independent interest.

Defini on 3.3.1 ((n,k)-universal sets [70]). LetU be a set of size n. A family of subsets F of A is called the
(n,k)-universal sets forU , if for any A,B⊆U such that A∩B = /0, |A∪B|= k, there is a set F ∈F such that
A⊆ F and F ∩B = /0

Lemma 3.3.1 ([70]). There is a determinis c algorithm which constructs an (n,k)-universal family of sets of
cardinality 2kkO(logk) logn in me 2kkO(logk)n logn.

Defini on 3.3.2. LetU = {ai,bi | i ∈ [n]} be a 2n sized set and S = {{ai,bi} | i ∈ [n]}. A family of subsets
F of U is called an (n,k)-matching universal family for S , if for each I ∈

([n]
k

)
, and S ∈

(U
k

)
such that

|S∩{a j,b j}|= 1 for all j ∈ I, we have a set F ∈F such that S⊆ F and F ∩ ({a j,b j | j ∈ I}\S) = /0.

Now we use Lemma 3.3.1, to get an efficient construc on of (n,k)-matching universal sets.

Theorem 3.3.2. Given a 2n sized set U = {ai,bi | i ∈ [n]} and the family S = {{ai,bi} | i ∈ [n]}, there is
a determinis c algorithm which constructs an (n,k)-matching universal family of cardinality 2kkO(logk) logn
in me 2kkO(logk)n logn.

Proof. LetU ′ = {e1, . . . ,en} be a set of size n, where each ei represents the set {ai,bi}. Next our algorithm
first constructs an (n,k)-universal familyF ′ for the setU ′ using Lemma 3.3.1. Now the algorithm constructs
an (n,k)-matching universal sets F for S from the family F ′ as follows. For each set F ′ ∈F ′, it creates a
set F ⊆U of size n and adds toF : for each ei ∈U ′, if ei ∈ F ′, then it adds ai to F , otherwise it adds bi to F .

No ce that |F | = |F ′|, and hence the cardinality of (n,k)-matching universal family men oned
in the theorem follows. Since the algorithm men oned in Lemma 3.3.1 takes me 2kkO(logk)n logn and
construc on of F from F ′ takes me O(n), and the running me of our algorithm is 2kkO(logk)n logn.

Now we show that F is indeed an (n,k)-matching universal family for S . Consider a set I ∈
([n]

k

)
and S ∈

(U
k

)
such that |S∩{a j,b j}| = 1 for all j ∈ I. Let A′ = S∩{a j | j ∈ I}, B′ = {a j | j ∈ I} \A′ and

C = {b j | a j ∈ B′}. No ce that S = A′ ∪C, A′ ∩B′ = /0 and since |I| = k, we have that |A′ ∪B′| = k. Let
A = {e j | a j ∈ A′} and B = {e j | a j ∈ B′}. Since A′ ∩ B′ = /0 and |A′ ∪ B′| = k we have that A∩ B = /0
and |A∪B| = k. By the defini on of (n,k)-universal family, we know that there is a set F ′ ∈F ′ such that
A⊆ F ′ and F ′∩B = /0. Now consider the set F created corresponding to F ′. Since for each e j ∈ A, e j ∈ F ′,
we have that a j ∈ F . Since for each e j′ ∈ B, e j′ /∈ F ′, we have that b j′ ∈ F . This implies that A′ ⊆ F
and C ⊆ F , and hence A∪C = S ⊆ F . Since |F ∩ {ai,b j}| = 1 for all i ∈ [n] and S ⊆ F , we have that
F ∩ ({a j,b j | j ∈ I}\S) = /0. This completes the proof of the lemma.

31

Now, in the proof of Theorem 3.3.1, instead of crea ng the set S by the random process, we use the
sets in a (n,k)-matching universal family F for Q to get a determinis c algorithm. That is for each S ∈F
obtained using Theorem 3.3.2, we run the algorithm for I L C on the input created using ℓ
and S as above. We output Y , if at least once the algorithm for I L C returns a solu on
of size at most k. The correctness of the algorithm follows from the defini on of (n,k)-matching universal
family. By Theorem 3.3.2, the running me to construct F is 2kkO(logk)n logn and |F | = 2kkO(logk) logn.
Hence our determinis c algorithm will run in me 2kkO(logk)n log2 n. This gives us the following theorem.

Theorem 3.3.3. There exists a determinis c algorithm for P C - F D
running in me 2kkO(logk)n log2 n.

Note: This technique is especially interes ng because the same technique can be used to provide
FPT algorithms for similar class of problems. Consider a generalized mul ple choice problem P(Q,c)
wherewe are given a setQ with n color classes where each color class contains c objects. The objec ve is to
select minimum number of objects taken at most one from each color class to sa sfy certain condi ons. If
there exists a polynomial me algorithm forP(Q,1) then the same technique gives a randomizedO(ckny)
algorithm where y is a constant.

3.3.2 Branching algorithm
For this algorithm, we will consider the more general problem which is the parameterized version

of R C .

P R C Parameter: k
Input: A set of n pairs of intervals P , a set of points S on X-axis, and k ∈ N∪{0}.
Ques on: Is there a rainbow Q of cardinality at most k such that each point in S is covered by at least
one interval in Q?

Recall that a subsetC⊂
∪

P∈P P is called a rainbow if and only if it is a conflict-free set. We now give
an algorithm based on branching for this problem. The algorithm can be modified to solve P
C - F D . In order to solve P C - F D , we
reduce P C - F D to P R C in linear me.
For each point pi ∈

∪n
i=1 Qi where Qi ∈Q, draw a disk D(pi) of radius d. Now, Ii = ℓ∩D(pi) represents the

interval corresponding to point pi. Thus, we have a pair of intervals corresponding to each pair of points
given in Q. This set of pair of intervals corresponds to P in P R C . Let, the
union of all the intervals in P covers ℓ. If not, return N . For an interval I = [a,b], we call the points
(a,0),(b,0) as end-points of I. The set of end-points of all intervals in

∪n
i=1 Pi where Pi ∈P represents S

in P R C . Now, a solu on to P C - F D
is also a solu on to P R C .

Let S = {s1,s2, . . . ,sn}. Without loss of generality, assume that s1,s2, . . . ,sn are sorted in ascending
order of their x-coordinates. Now for each interval Ii ∈ Pi where Pi ∈P , assume that the interval is star ng
not before s1 and ending not beyond sn. If not, trim such intervals such that they sa sfy above criteria. Also
ini alize an integer variable k′ = k.

In the first step, consider the intervals covering s1. Let the sorted order of these intervals according
to their length in descending order be Ic1 = (I1, I2, . . . , Iq) (here the length of interval I = [a,b] is calculated
as b−a where we have b > a). Let si ∈ S be the first point right to I1. If q = 1, then choose I1 in solu on,
delete I1,Ī1 ,s1 and all points covered by I1. Else if q > 1 then we have the following lemma.

Lemma 3.3.2. If the given instance has a solu on of size at most k, then there exists an op mal solu on
containing either I1 or Ī1.

32

Proof. Suppose the lemma is false. Then we have some other I j covering s1. But I j ⊆ I1 and also Ī1 is not
in solu on. So we can choose I1 and delete I j in our new op mal solu on.

Thus we can either choose I1 in op mal solu on or we may choose Ī1 in it. If I1 is chosen, then
delete I1, Ī1, s1, I2, . . . , Iq and all points covered by I1, and all intervals contained in I1. If I1 is not chosen,
then place Ī1 in solu on, and delete I1,Ī1, all intervals Ii such that Ii ⊆ Ī1 and all points covered by Ī1. At the
end of the first step, put k′ = k′− 1. For the second step, start with si if I1 is chosen in the previous step.
Else consider s1 again with branching on I2. Repeat the same procedure ll either all points are covered or
k′ = 0. Now if at least one branch of these O(2k) choices covers all the points then accept, else reject. The
me complexity of this algorithm will be O(2kn logn). Hence we have the following theorem.

Theorem 3.3.4. There exists a branching algorithm for P R C running in me
O(2kn logn). Similarly, there is a branching algorithm for P C - F D
with run me O(2kn logn).

We also consider parameterized version of “minimum maxGap” problem given as follows.

P M G Parameter: k
Input: A set Q of pairs of points on a line L, two points ps and pe on L, d ∈ R, and k ∈ N∪{0}.
Ques on: Is there a conflict-free subset of points P∗ of cardinality at most k between ps and pe such
that the minimum maxGap of P∗∪{ps, pe} is at most d.

We observe that the branching algorithm can be used to obtain FPT algorithm for the
P M G . Thus we have the following theorem.

Theorem 3.3.5. There is branching algorithm for P M G running in me
O(2kn logn).

Proof. Let k′ = k+1. Start from the first point ps. Take the farthest point from ps having distance less than
d. Let the point chosen be pi. We make the following claim.

Claim 3.3.1. If the given instance has a solu on of size at most k, then there exists an op mal solu on
containing either pi or p̄i.

Proof. Suppose the claim is not true. Thenwehave someother point p j in our solu on such that d(ps, p j)<
d(ps, pi). Hence, we can remove p j from our solu on and add pi to our new op mal solu on which is a
contradic on.

Now branch on pi and reduce k′ by 1. If pi is in solu on, then we delete p̄i. We again start from
pi and choose the point that is farthest from pi and has distance less than d. If p̄i is in solu on, then we
delete pi. We again start from ps and choose the point that is farthest from ps and has distance less than d.
We con nue with the branching ll either we reach pe or k′ = 0. So, if at least one branch of these O(2k)
reaches pe then accept, else reject. The me complexity of this algorithm is O(2kn logn). This completes
the proof of the theorem.

33

3.4 KERNEL LOWER BOUND
We recall that a parameterized problem is a language Π ⊆ Σ∗×N where Σ is an alphabet over

which the language is defined and the natural number associated is called parameter. We say Π admits a
polynomial kernel if any instance (I,k) can be reduced to an equivalent instance (I′,k′), in polynomial me
with respect to |I| and k, such that |I′|+ k′ is bounded by a polynomial func on in k. In this subsec on we
show that P R C does not admit a polynomial kernel unless co-NP⊆NP/poly.
Towards that we first explain one of the tools to prove such a lower bound, called composi on.

Defini on 3.4.1 (Composi on [10]). A composi on algorithm (also called OR-composi on algorithm) for a
parameterized problem Π ⊆ Σ∗×N is an algorithm that receives as input a sequence ((x1,k), . . . ,(xt ,k)),
with (xi,k) ∈ Σ∗×N for each 1 ≤ i ≤ t, uses me polynomial in ∑t

i=1 |xi|+ k, and outputs (y,k′) ∈ Σ∗×N
with (a) (y,k′)∈Π⇐⇒ (xi,k)∈Π for some 1≤ i≤ t and (b) k′ is polynomial in k. A parameterized problem
is composi onal (or OR-composi onal) if there is a composi on algorithm for it.

It isunlikely that anNP-complete problemhas both a composi on algorithmand apolynomial kernel
as suggested by the following theorem (as it is considered unlikely that co-NP⊆ NP/poly.

Theorem 3.4.1 ([10, 34]). LetΠ be a composi onal parameterized problemwhose unparameterized version
Π̃ is NP-complete. If Π has a polynomial kernel then co-NP⊆ NP/poly.

Towards ge ng a composi on for P R C , we first show how we can
compose two instances and then we use this to get a composi on algorithm. Next we have the following
lemma.

Lemma 3.4.1. There is a polynomial me algorithm which takes two instances ((P1,S1),k) and
((P2,S2),k) of P R C as input and outputs an instance ((P,S),k + 1) such
that ((P,S),k+1) is an Y -instance of P R C if and only if at least one among
((P1,S1),k) and ((P2,S2),k) is a Y -instance of P R C .

Proof. Let S1 = {s1, . . . ,sn}, and S2 = {s′1, . . . ,s′n}. Without loss of generality assume that s1 < s2 < .. . < sn

and s′1 < s′2 < .. . < s′n. Without loss of generality we can assume that for any interval J which is part
of any pair in P1 and for any interval J′ which is part of any pair in P2, J is contained in [s1,sn] and J′

is contained in [s′1,s
′
n]. Now we create a set of points S′ = {sn + 1+ s′i | i ∈ [n]}, and a pair of intervals

(I, I) = ([s1,sn], [sn +1+ s′1,sn +1+ s′n]). Now we shi each interval of the instance ((P2,S2),k) by sn +1.
For any interval J = [a,b] and c ∈ R we use c+ J to denote the interval [c+ a,c+ b]. Let S = S1 ∪ S′ and
P = P1∪{(sn +1+ J,sn +1+ J) | (J,J) ∈P2}∪{(I, I)}. Our algorithm will output ((P,S),k+1).

Now we need to show the correctness of the algorithm. Suppose ((P,S),k+ 1) is a Y -instance
of P R C and let I be a solu on of size k+1. We know that at most one of I
and I can belong to I . Hence, if I /∈ I , then I \ {I} covers all the points in S1. From the construc on
of P , we have that all the intervals which intersects [s1,sn] are from {J,J | (J,J) ∈P1}. This implies that
I ∩{J,J | (J,J)∈P1} covers all the points in S1 andI ∩{J,J | (J,J)∈P1} is a set of conflict-free intervals
fromP1. This implies that ((P1,S1),k) is a Y -instance of P R C . When I /∈I ,
by similar arguments we can show that ((P2,S2),k) is a Y -instance of P R C .

Suppose one among ((P1,S1),k) and ((P2,S2),k) is a Y -instance of P R
C . Assume ((P1,S1),k) is a Y -instance and let I be a solu on of size k for it. Then I ∪{I}
is a set of conflict-free intervals and these intervals cover all the points in S. The case when ((P2,S2),k) is
a Y -instance can be proved by similar arguments.

Lemma 3.4.2. P R C is composi onal.

34

Proof. Let ((P1,S1),k), . . . ,(Pt ,St),k) be the input of the composi on algorithm. If t > 2k, then the
composi on algorithm solves each instance separately using Theorem 3.3.4 and outputs a trivial Y
instance if at least one of the given instances is a Y instance and outputs a trivial N instance otherwise.
In this case the running me of the algorithm is bounded by t2nO(1) and hence it is a polynomial me
algorithm.

So now we can assume that t ≤ 2k. Without loss of generality assume that t = 2ℓ, where ℓ≤ k. If t
is not a power of 2, we can add dummy N instances to make the total number of instances a power of 2.
Nowwe design a recursive algorithm to get a desired output. The pseudocode is men oned in Algorithm 1.

Algorithm 1: Composi on algorithm with inputs ((P1,S1),k), . . . ,((P2ℓ ,S2ℓ),k)

1 if ℓ= 1 then
2 Run the algorithm men oned in Lemma 3.4.1 and return the result

3 ((P ′
1,S
′
1),k

′) := Algorithm 1(((P1,S1),k), . . . ,((P2ℓ−1 ,S2ℓ−1),k))
4 ((P ′

2,S
′
2),k

′) := Algorithm 1((P2ℓ−1+1,S2ℓ−1+1),k), . . . ,((P2ℓ ,S2ℓ),k))
5 Run algorithm men oned in Lemma 3.4.1 on ((P ′

1,S
′
1),k

′) and ((P ′
1,S
′
1),k

′), and return the result

By induc on on ℓwe show that the parameter in the output instance is k+ℓ. The base case is when
ℓ = 1, and the statement is true by Lemma 3.4.1. Now consider the induc on step. For the two instances
created by recursively calling Algorithm 1 on 2ℓ−1 instances, the parameters are k+ℓ−1 each, by induc on
hypothesis. Hence, in Step 5, by Lemma 3.4.1, the parameter in the output instance is k+ ℓ. This implies
that the parameter in the output instance is k+ ℓ≤ 2k.

Again by induc on on ℓ, we can show that the output instance of Algorithm 1 is a Y instance if
and only if at least one of the input instances is a Y instance. For the base case when ℓ= 1, the statement
is true by Lemma 3.4.1. Now consider the induc on step. Suppose that there is a Y instance in the input.
Then by induc on hypothesis, at least one the instances created in Step 3 or Step 4 is a Y instance. Then,
by Lemma 3.4.1, in Step 5, Algorithm 1 will output a Y instance. Now suppose Algorithm 1 output a Y
instance. Then, by Lemma 3.4.1, one of the instances created in Step 3 or Step 4 is a Y instance. Hence,
by induc on hypothesis, at least one of the input instances is a Y instance.

By Theorem 3.4.1 and Lemma 3.4.2, we get the following theorem.

Theorem 3.4.2. P R C does not admit a polynomial kernel unless co-NP ⊆
NP/poly.

35

