
4
Parameterized Complexity of Conflict as Bounded Arboricity

Graph

Nowwe consider the conflicts in graphs with more complex se ngs than amatching or a collec on
of vertex disjoint cliques. For this, we consider the no on of arboricity. Recall, the arboricity of an
undirected graph is the minimum number of forests into which its edges can be par oned. A graph G
is said to have arboricity d if the edges of G can be par oned into at most d forests. Let Gd denote the
family of graphs of arboricity d. We restrict the conflict graphs to be belonging to Gd in this chapter.

We study the following problems in “geometric se ngs” in the realm of Parameterized Complexity.

G C F S C (G CF-SC) Parameter: k
Input: A universeU of size n, a family F of size m of subsets ofU , a conflict graphCGF and a posi ve
integer k.
Ques on: Does there exist a set coverF ′ ⊆F of size at most k such thatCGF [F ′] is an independent
set?

Let (A ,B)-S C denote a restric on of S C , where every instance (U,F ,k) of S
C sa sfies the property that U ⊆ A and F ⊆ B. For example in this se ng, C P

I corresponds to (A ,B)-S C where A is the set of points on x-axis and B is the
set of intervals on x-axis. Given (A ,B)-S C , the corresponding G CF-SC corresponds to
(A ,B)-G CF-SC.

Results in this Chapter We start by introducing following theorem which we shall prove later in the
Sec on 4.1.

Theorem 1. Let (A ,B)-S C be tractable and let Gd be the family of graphs of arboricity d. Then,
the corresponding (A ,B)-G CF-SC is also tractable if CGF belongs to Gd . In par cular we obtain
following results whenCGF belongs to Gd :

• If (A ,B)-S C admits a FPT algorithm with running me τ(k) · nO(1), then (A ,B)-G
CF-SC admits a FPT algorithm with running me 2O(dk) · τ(k) ·nO(1).

• If (A ,B)-S C admits a factor α-approxima on running in me nO(1) then (A ,B)-G
CF-SC admits a factor α-FPT-approxima on algorithm running in me 2O(dk) ·nO(1).

The proof of Theorem 1 is essen ally a black-box reduc on to the non-conflict version of the
problem. Thus, Theorem 1 covers a number of conflict-free versions of many fundamental geometric
coverage problems as illustrated in Table 4.1. In light of Theorem 1, it is natural to ask whether or not,
these problems admit polynomial me approxima on algorithms. Unfortunately, we cannot expect these
problems to admit even a factor o(n)-approxima on algorithm. This is because for most of these problems
even deciding whether there exists a conflict free solu on, with no restric on on the size of the solu on,
is NP-complete (for example R C is NP-complete [3]). Thus, having an o(n)-approxima on

37

(R2,A)-SC Complexity of (R2,A)-SC Complexity of
(R2,A)-G
CF-SC

Disks/pseudo-disks PTAS [69] α-FPT approx., ∀α > 1
Fat triangles of same size O(1) [16] O(1)-FPT approx.
Fat objects in R2 O(log∗OPT) [6] O(log∗OPT)-FPT

approx.
O(1) density objects in R2 PTAS [43] α-FPT approx., ∀α > 1
Objects with polylog density QPTAS [43] 2O(k)nO(log∗ n) me

approx.,
∀α > 1

Objects with density O(1) in Rd PTAS [43] α-FPT approx., ∀α > 1

(A ,B)-S C where
every instance (U,F) has VC
dimension d

O(d log(dOPT)) [12] O(d log(dOPT))-FPT
approx.

P G A G O(logOPT) [11] O(logOPT)-FPT approx.
T G PTAS [57] α-FPT approx., ∀α > 1
(P,I)-S C Polynomial Time [27] 2O(dk) · nO(1)-FPT

algorithm

Table 4.1 : Corollaries of Theorem 1. Here (R2,A)-S C ((R2,A)-SC) is a geometric set cover
problem where R2 is a set of points in the plane and the covering objects are specified in
the first column. The conflict graph for all the problems is Gd , family of graphs of arboricity
d, for some constant d. The entries in the second column give the approximation ratio of the
(R2,A)-SC problem based on Theorem 1.

algorithm would imply a polynomial me algorithm for the decision version of the problem, which we do
not expect unless P=NP. Hence, the best we can expect for the (A ,B)-G CF-SC problems is an
FPT-approxima on algorithm, as for many of them we can neither have an FPT algorithm, nor a polynomial
me approxima on algorithm.

Theorem 1 captures those families of conflict graphs that are “everywhere sparse”. However, the
(A ,B)-G CF-SC problem is also tractable if the conflict graphs belong to the family of cliques.
When the conflict graph belongs to a “dense family” of graphs, we design a general theorem using matroid
machinery as follows.

Let (U,F ,k) be an instance of S C . In the matroidal model of represen ng conflicts, we are
given a matroid M = (E,J), where the ground set E = F , and J is a family of subsets of F sa sfying
all the three proper es of a matroid. In this paper we assume that M = (E,J) is a linear or representable
matroid, and the corresponding linear representa on is given as part of the input. See Sec on 4.1.2 for the
defini on of matroid and related concepts. In the R C problem, let Q denote the family of
conflict free subsets of intervals in I . One can define a par on matroid on F such that J = Q. Thus,
the ques on of finding a conflict free subset of intervals covering all the points in P becomes a problem of
finding an independent set in J that covers all the points in P. The M C F S C
problem (M CF-SC, in short) is defined similar to G CF-SC. In par cular, the input consists
of a linear matroid M = (F ,J) over the ground set F such that the set cover F ′ ∈J .

Theorem 2. (P,I)-M CF-SC is FPT for all representable matroids M = (I ,J) defined over I .
In fact, given a linear representa on, the algorithm runs in me 2ωk · (n+m)O(1). Here, ω is the exponent
in the running me of matrix mul plica on.

38

A graph is called a cluster graph, if all its connected components are cliques. Since cluster graphs
can be captured by par on matroids, Theorem 2 implies that (P,I)-M CF-SC is FPT if CGF

belongs to the family of cluster graphs. We prove the above Theorem in Sec on 4.1.

We complement our algorithmic findings by a hardness reduc on. Let G denote a family of graphs.
Let G -I S be the problem where the input is a graph G ∈ G and a posi ve integer k, where
the objec ve is to decide whether there exists a set S of size at least k such that G[S] is an independent set.
We first start with Theorem 1.

Theorem 3. Let G denote a family of graphs such that G -I S isW[1]-hard. IfCGI belongs to
G , then (P,I)-G CF-SC does not admit an FPT algorithm, unless FPT =W[1].

The proof of Theorem 3 is a Turing reduc on based on (n,k)-perfect hash families [70] that
takes me 2O(k) · nO(1). In fact, for any fixed A and B, one should be able to follow this proof and
show W[1]-hardness for (A ,B)-G CF-SC, where CGF belongs to a graph family G for which
G -I S is W[1]-hard. We describe the proof of the Theorem in Sec on 4.2.

4.1 FIXED PARAMETER ALGORITHMS: PROOFS OF THEOREMS 1 AND 2
In this sec onwe prove Theorems 1 and 2. Proof of Theorem 1 is based on a randomiza on scheme

while the proof of Theorem 2 uses the idea of efficient computa on of representa ve families [33].

4.1.1 FPT Algorithms for G CF-SC
Our algorithm for Theorem 1 is essen ally a randomized reduc on from (A ,B)-G CF-SC

to (A ,B)-S C , when the conflict graph has bounded arboricity. Towards, this we start with a forest
decomposi on of graphs of bounded arboracity and then apply a randomized process to obtain an instance
of (A ,B)-S C . However, to design a determinis c algorithm we use the construc on of universal
sets. Towards that we will exploit the following defini on and theorem.

Defini on 4.1.1 ([70]). An (n, t)-universal set F is a set of func ons from {1, . . . ,n} to {0,1}, such that for
every subset S ⊆ {1, . . . ,n}, |S| = t, the set F |S = { f |S | f ∈F} is equal to the set 2S of all the func ons
from S to {0,1}.

Theorem 4.1.1 ([70]). There is a determinis c algorithm with running me O(2ttO(log t)n logn) that
constructs an (n, t)-universal set F such that |F |= 2ttO(log t) logn.

Nowweare ready to give the proof of Theorem1. For an ease of presenta onwe restate Theorem1.

▶ Theorem 1.11 Let (A ,B)-S C be tractable and let Gd be the family of graphs of arboricity d. Then,
the corresponding (A ,B)-G CF-SC is also tractable if CGF belongs to Gd . In par cular we obtain
following results whenCGF belongs to Gd :

• If (A ,B)-S C admits a FPT algorithm with running me τ(k) · nO(1), then (A ,B)-G
CF-SC admits a FPT algorithm with running me 2O(dk) · τ(k) ·nO(1).

• If (A ,B)-S C admits a factor α-approxima on (or PTAS) running in me nO(1) (or n f (ε)) then
(A ,B)-G CF-SC admits a factor α FPT approxima on algorithm (or FPT PTAS) running in
me 2O(dk) ·nO(1) (or 2O(dk) ·n f (ε)).

Proof. Let (U,F ,CGF ,k) be an instance of (A ,B)-G CF-SC, where CGF , belongs to Gd . Our
algorithm has the following phases.
1The idea used in the proof of Theorem 1 is inspired by a proof used in [61].

39

Decomposing CGF into Forests. We apply the known polynomial me algorithm [36] to decompose the
graphCGF intoT1, . . . ,Td whereTi is a forest inCGF and

∪d
i=1 E(Ti)=E(CGF). Let vroot be a special vertex

such that vroot does not belong toV (CGF) = F . Now for every Ti, and for every connected component of
Ti, we pick an arbitrary vertex and connect it to vroot. Now if we look at the tree induced onV (Ti)∪{vroot}
then it is connected. We denote this tree by T ′i . Furthermore, we will treat each T ′i as a tree rooted at
vroot. This automa cally defines parent-child rela onship among the ver ces of T ′i . This completes the
par oning of the edge set ofCGF into forests.

Step 1: Randomized event and probability of success. Independently color the ver ces of CGF into blue
and green uniformly at random. That is, we color the ver ces of CGF blue and green with probability 1

2 .
Furthermore, we color {vroot} to blue. Let F ′ be a solu on to the instance (U,F ,CGF ,k). That is, F ′ is
a conflict free set cover of size at most k. We say the following event to be good.

Every vertex in F ′ is colored green and every parent of every vertex in F ′ in every tree T ′i is
colored blue.

Let Sparent denote the set of parents of every vertex in F ′ in every tree T ′i . Since, we have at most d trees
and the size of F ′ is upper bounded by k we have that |Sparent| ≤ kd. We say that F ′ (Sparent) is green
(blue) to mean that every vertex in F ′ (Sparent) is colored green (blue). Thus,

Pr[good event happens] = Pr[F ′ is green ∧Sparent is blue]

= Pr[F ′ is green]×Pr[Sparent is blue]

≥ 1
2k(d+1) .

The second equality follows from the following fact. The setF ′ is an independent set inCGF and Sparent ⊆
NCGF (F

′)∪{vroot}. Thus, these sets are pairwise disjoint and hence the events in F ′ are colored green
and Sparent is colored blue are independent.

Step 2: A cleaning process. Let p = 1
2kd . Nowwe apply a cleaning procedure so that we get a set Z such that

CGF [Z] is an independent set inCGF and it contains F ′. Let B denote the set of ver ces that have been
colored blue. We start by dele ng every vertex inB. Now for every edge (f1, f2) inCGF [V (CGF)\B], we
do as follows. We know that (f1, f2) belongs to some tree T ′i and thus either f1 is a child of f2 or vice-versa.
If f1 is a child of f2 then we delete f1, otherwise we delete f2. Let the resul ng set of ver ces be Z. By
construc on Z is an independent set in CGF . Next we show that F ′ ⊆ Z with probability p/2k. Clearly,
with probability 1

2k we know that no vertex of F ′ is colored blue and thus with probability 1
2k we know that

F ′ ⊆V (CGF)\B. Observe that with probability p, we have that all the parents of F ′ in any tree T ′i have
been colored blue. Thus, a vertex x ∈ V (CGF) \B, colored green, can not belong to F ′, if it is a child
of some vertex in some tree T ′i a er dele ng the ver ces of B. This is the reason that when we delete a
vertex from an edge (f1, f2), we delete the one which is a child in some tree T ′i . Thus, by dele ng a vertex
that is a child in an edge (f1, f2), we do not delete any vertex from F ′. This implies that with probability

1
2k(d+1) , we have that F ′ ⊆ Z. This completes the proof.

Solving the problem. LetQ be a parameterized algorithm for (A ,B)-S C running in me τ(k) ·nO(1).
Recall that (U,F ,CGF ,k) is an instance of (A ,B)-G CF-SC. Now to test whether there exists a
conflict free set cover F ′ of size at most k, we run Q on (U,Z,k). If the algorithm returns Yes, we return
the same for (A ,B)-G CF-SC. Else, we repeat the process by randomly finding another Z∗ by
following Steps 1 and 2 and then running the algorithm Q on the instance (U,Z∗,k) and returning the
answer accordingly. We repeat the process 2k(d+1) me. If we fail to detect whether (U,F ,k,CGF) is a
Yes instance of (A ,B)-G CF-SC in 2k(d+1) rounds, then we return that the given instance is a No
instance. Thus, if (U,F ,k,CGF) is No instance of (A ,B)-G CF-SC, then we always return No.

40

However, if (U,F ,k,CGF) is a Yes instance of (A ,B)-G CF-SC then there exists a set F ′, that
is a conflict free set cover of size at most k. The probability that we will not find a set Z containing F ′ in
q = 2k(d+1) rounds is upper bounded by(

1− 1
q

)q

≤ 1
e
.

Thus, the probability that we will find a set Z containing F ′ in q rounds is at least 1− 1
e ≥

1
2 . Thus, if the

given instance is a Yes instance then the algorithm succeeds with probability at least 1
2 . The running me

of the algorithm is upper bounded by τ(k) ·2k(d+1) ·nO(1).

Derandomizing the algorithm. Now to design our determinis c algorithm all wewill need to do is to replace
the randomized coloring func on with a determinis c coloring func on that colors the ver ces in F ′ to
green and all the ver ces in Sparent to green. To design such a coloring func on we set t = k(d + 1), and
use Theorem 4.1.1 to construct an (n, t)-universal set F such that |F | = 2ttO(log(t)) logn. The algorithm
to construct F takes O(2ttO(log(t))n logn). Finally, to derandomize our algorithm, rather than randomly
coloring ver ces with {blue,green}, we go through each func on f in the family F and view the ver ces
that have been assigned 0 as blue and others as green. By the proper es of (n, t)-universal set we know
that there exists a func on f that correctly colors the ver ces in F ′ with 1 and every vertex in Sparent with
0. Thus, the set Z f that we will obtain by applying Step 2, will contain the setF ′. A er this, the correctness
of the algorithm follows from the correctness of the algorithm Q. Thus, the running me of the algorithm
is upper bounded by τ(k) · |F | ·nO(1) = τ(k) ·2k(d+1)+o(kd) ·nO(1). This completes the proof of the first part.

LetS be a factorα-approxima on algorithm for (A ,B)-S C running in me nO(1). To obtain
the desired FPT approxima on algorithm with factor α , we do as follows. We only give the determinis c
version of the algorithm based on the uses of universal sets. As before, let (U,F ,CGF ,k) be an instance
of (A ,B)-G CF-SC, whereCGF , belongs to Gd . We again set t = k(d+1), and use Theorem 4.1.1
to construct an (n, t)-universal set F such that |F |= 2ttO(log(t)) logn. The algorithm to construct F takes
O(2ttO(log(t))n logn). We go through each func on f in the family F and view the ver ces that have been
assigned 0 as blue and others as green. If there exists a conflict set cover F ′ of size at most k, then by the
proper es of (n, t)-universal set we know that there exists a func on f that correctly colors the ver ces
in F ′ with 1 and every vertex in Sparent with 0. Thus, the set Z f we will obtain by applying the Step 2,
will contain the set F ′. Thus, to design the approxima on algorithm, for every f ∈F , we first construct
Z f . And for each such Z f we run S on (U,Z f ,k). This could either return that there is No solu on, or
returns a solu on F ′ which is a factor α-approxima on to the instance (U,Z f ,k). If for some f ∈F , S
returns F ′ of size at most αk when run on (U,Z f ,k) then the algorithm returns F ′. In all other cases the
algorithm returns that the given instance is a No instance. In other words, our algorithm returns No if the
following happens: For every f , S either returns that (U,Z f ,k) is a No instance or the size of the solu on,
F ′, returned by S when run on (U,Z f ,k), is more than αk. The correctness of the algorithm follows from
the proper es of universal sets and the correctness of the algorithm S . The running me of the algorithm
is upper bounded by: |F | × Running me of S = 2k(d+1)+o(kd) · nO(1). This completes the proof of the
theorem.

4.1.2 FPT Algorithm for (P,I)-M CF-SC
In this sec on we will design an FPT algorithm proving Theorem 2. We start with resta ng the

statement.

Theorem 2. (P,I)-M CF-SC is FPT for all representable matroids M = (I ,J) defined over I .
In fact, given a linear representa on, the algorithm runs in me 2ωk · (n+m)O(1). Here, ω is the exponent
in the running me of matrix mul plica on.

Towards that we need to define some basic no ons related to representa ve families and results
regarding their fast and efficient computa on.

41

Matroids and Representative Families
In this subsec on we give defini ons related tomatroids and representa ve families. For a broader

overview on matroids we refer to[72], see also [21, Chapter 12].

Defini on 4.1.2. A pair M = (E,J), where E is a ground set and J is a family of subsets (called
independent sets) of E, is amatroid if it sa sfies the following condi ons:

(I1) /0 ∈J .

(I2) If A′ ⊆ A and A ∈J then A′ ∈J .

(I3) If A,B ∈J and |A|< |B|, then there is e ∈ (B\A) such that A∪{e} ∈J .

An inclusion wise maximal set of J is called a basis of the matroid. Using axiom (I3) it is easy to
show that all the bases of a matroid have the same size. This size is called the rank of the matroid M, and
is denoted by rank(M).

LinearMatroids. Let A be a matrix over an arbitrary field F and let E be the set of columns of A. For A,
we definematroid M = (E,J) as follows. A set X ⊆ E is independent (that is X ∈J) if the corresponding
columns are linearly independent over F. The matroids that can be defined by such a construc on are
called linear matroids, and if a matroid can be defined by a matrix A over a field F, then we say that the
matroid is representable over F. That is, a matroid M = (E,J) of rank d is representable over a field F
if there exist vectors in Fd corresponding to the elements such that linearly independent sets of vectors
correspond to independent sets of the matroid. A matroid M = (E,J) is called representable or linear if
it is representable over some field F.

Partition matroids. A par on matroid M = (E,J) is defined by a ground set E being par oned
into (disjoint) sets E1, . . . ,Eℓ and by ℓ non-nega ve integers k1, . . . ,kℓ. A set X ⊆ E is independent if and
only if |X ∩Ei| ≤ ki for all i ∈ {1, . . . , ℓ}.

Proposi on 4.1.1 ([65]). A representa on over a field of size O(|E|) of a par on matroid can be
constructed in polynomial me.

Representative Families. Now we define the no on of q-representa ve family and state the results
about its efficient computa on.

Defini on 4.1.3 (q-Representa ve Family [65]). Given a matroid M = (E,J) and a family S of subsets
of E, we say that a subfamily Ŝ ⊆S is q-representa ve for S if the following holds: for every set Y ⊆ E
of size at most q, if there is a set X ∈S disjoint from Y with X ∪Y ∈J , then there is a set X̂ ∈ Ŝ disjoint
from Y with X̂ ∪Y ∈J . If Ŝ ⊆S is q-representa ve for S we write Ŝ ⊆q

rep S .

In other words if some independent set inS can be extended to a larger independent set by adding
q new elements, then there is a set in Ŝ that can be extended by the same q elements.

Lemma 4.1.1 ([33]). Let M = (E,J) be a matroid and S be a family of subsets of E. If S ′ ⊆q
rep S and

Ŝ ⊆q
rep S ′, then Ŝ ⊆q

rep S .

Theorem 4.1.2 ([33]). LetM = (E,J) be a linear matroid of rank p+q = k,S = {S1, . . . ,St} be a p-family
of independent sets. Given a representa on AM of M over a field F, we can find Ŝ ⊆q

rep S of size at most(p+q
p

)
in O

((p+q
p

)
t pω + t

(p+q
q

)ω−1
)

opera ons over F.

42

Theorem4.1.3 ([59]). LetM =(E,J) be a linearmatroid of rank n and letS = {S1, . . . ,St} be a p-family of
independent sets. LetA be a n×|E|matrix represen ngM over a fieldF, whereF=Fpℓ orF isQ. Then there

is a determinis c algorithm compu ng Ŝ ⊆q
rep S of size np

(p+q
p

)
inO

((p+q
p

)
t p3n2 + t

(p+q
q

)ω−1
(pn)ω−1

)
+

(n+ |E|)O(1) opera ons over F.

Algorithm for (P,I)-M CF-SC
Nowwe have gathered all the tools required to prove Theorem 2. Let (P,I ,k,M = (I ,J)) be an

instance of (P,I)-M CF-SC, where P is a set of points on the x-axis, I = {I1, . . . , Im} is a set of
intervals on the x-axis and M = (I ,J) is a matroid over the ground set I . The objec ve is to find a set
cover S ⊆I of size at most k such that S ∈J .

To design our algorithm for (P,I)-M CF-SC, we will use efficient computa on of
representa ve families applied on a dynamic programming algorithm. Let P = {p1, . . . , pn} denote the set
of points sorted from le to right. Next we introduce the no on of family of par al solu ons. Let

P i =
{

X
∣∣∣ X ⊆I ,X ∈J , |X | ≤ k, X covers p1, . . . , pi

}
denote the family of subset of intervals of size at most k that covers first i points and are independent in the
matroid M = (I ,J). Furthermore, for every 1 ≤ j ≤ k, by P i j, we denote the subset of P i containing
sets of size exactly j. Thus,

P i =
k⊎

j=1

P i j.

In this subsec on whenever we talk about independent sets, these are independent sets of the matroid
M = (I ,J). Furthermore, we assume that we are given, AM, the linear representa on of M. Without
loss of generality we can assume that AM is a n′×|I |matrix, where n′ ≤ |I |.

Observe that (P,I ,k,M = (I ,J)) is a Yes instance of (P,I)-M CF-SC if and only if
Pn is non-empty. This implies that Pn is non-empty if and only if P̂n ⊆0

rep Pn is non-empty. We capture
this into the following lemma.

Lemma 4.1.2. Let (P,I ,k,M = (I ,J)) be an instance of (P,I)-M CF-SC. Then, (P,I ,k,M =

(I ,J)) is a Yes instance of (P,I)-M CF-SC if and only ifPn is non-empty if and only if P̂n ⊆0
rep

Pn is non-empty.

For an ease of presenta on by P0, we denote the set { /0}. The next lemma provides an efficient
computa on of the family P̂ i ⊆1···k

rep P i. In par cular, for every 1≤ i≤ n, we compute

P̂ i =
k∪

j=1

(
P̂ i j ⊆k− j

rep P i j
)
.

Lemma 4.1.3. Let (P,I ,k,M = (I ,J)) be an instance of (P,I)-M CF-SC. Then for every 1 ≤
i≤ n, a collec on of families P̂ i ⊆1···k

rep P i, of size at most 2k · |I | ·k can be found in me 2ωk ·(n+ |I |)O(1).

Proof. We describe a dynamic programming based algorithm. Let P = {p1, . . . , pn} denote the set of points
sorted from le to right and D be a n+ 1-sized array indexed with {0, . . . ,n}. The entry D [i] will store a
family P̂ i⊆1···k

rep P i. We fill the entries in thematrixD in the increasing order of index. For i= 0,D [i] = { /0}.
Let i∈ {0,1, . . . ,n} and assume that we have filled all the entries un l the row i (i.e,D [i]will contain a family
P̂ i ⊆1···k

rep P i). For any interval I ∈I , let ℓI be the lowest index in [n] such that pℓI is covered by I. LetZi+1

43

denote the set of intervals I ∈I that covers the point pi+1. Now we compute

N i+1 =
∪

I∈Zi+1

(D [ℓI−1]•{I})∩J (4.1)

No ce that in the Equa on 4.1, the union is taken over I ∈Zi+1. Since for any I ∈Zi+1, I covers pi+1, the
value ℓI−1 is strictly less than i+1 and hence Equa on 4.1 is well defined. Let N (i+1) j denote the subset
of N i+1 containing subsets of size exactly j.

Claim 4.1.1. N i+1 ⊆1···k
rep P i+1.

Proof. Let S ∈P(i+1) j and Y be a set of size k− j (which is essen ally an independent set of M) such that
S∩Y = /0 and S∪Y ∈J . Wewill show that there exists a set Ŝ∈N (i+1) such that Ŝ∩Y = /0 and Ŝ∪Y ∈J .
This will imply the desired result.

Since S covers {p1, . . . , pi+1}, there is an interval J in S which covers pi+1. Since S covers
{p1, . . . , pi+1} and J covers pi+1, the set of intervals S′ = S\{J} covers {p1, . . . , pi+1}\{pℓJ , . . . , pi+1} and
J covers {pℓJ , . . . pi+1}. Let Y ′ = Y ∪{J}. No ce that S′ ∪Y ′ = S∪Y ∈J , |S′| = j− 1, |Y ′| = k− j + 1
and S′ covers {p1, . . . , pi+1} \ {pℓJ , . . . , pi+1}. This implies that S′ ∈P(ℓJ−1)(j−1) and by our assump on
that D [ℓJ − 1] contain P̂(ℓJ−1)(j−1) ⊆k− j+1

rep P(ℓJ−1)(j−1), we have that there exists S∗ ∈ D [ℓJ − 1] such
that S∗∩Y ′ = /0 and S∗∪Y ′ ∈J . By Equa on 4.1, S∗∪{J} in N i+1, because S∗∪{J} ∈J . Now we set
Ŝ = S∗∪{J}. Observe that Ŝ∩Y = /0 and Ŝ∪Y ∈J . This completes the proof of the claim.

We fill the entry for D [i+1] as follows.

D [i+1] =
k∪

j=1

(
N̂ (i+1) j ⊆k− j

rep N (i+1) j
)

(4.2)

In Equa on 4.2, for every 1 ≤ j ≤ k, N (i+1) j denotes the subset of N (i+1) containing sets of size exactly
j and N̂ (i+1) j can be computed using either Theorem 4.1.2 or Theorem 4.1.3 based on the dimension
of AM. Theorem 4.1.2 can be applied when the given matrix AM has at most k rows and Theorem 4.1.3
can be applied even when the number of rows in AM is not upper bounded by k. So, in Equa on 4.2,
we use Theorem 4.1.3 to compute the representa ve families. Lemma 4.1.1 and Claim 4.1.1 implies that
D [i+1]⊆1···k

rep P i+1.

Now we analyse the running me of the algorithm. Consider the me to compute D [i+ 1]. We
already have computed the family corresponding to D [r] for all r ∈ [i]. By Theorem 4.1.3, for any r ∈ [i]
and j ∈ [k], the subset of D [r] containing sets of size exactly j is upper bounded by |I | · k ·

(k
j

)
. Hence,

the cardinality of N (i+1) j is upper bounded by |I |2 · n · k ·
(k

j

)
. Thus, by Theorem 4.1.3, the me to

compute N̂ (i+1) j ⊆k− j
rep N (i+1) j is bounded by

((k
j

)2
+
(k

j

)ω)
(n+ |I |)O(1) =

(k
j

)ω · (n+ |I |)O(1) number

of opera on over the field in which AM is given and |N̂ (i+1) j| ≤ |I | · k ·
(k

j

)
. Hence the total running me

to compute D [i+1] for any i+1 ∈ [n] is

k

∑
j=1

(
k
j

)ω
· (n+ |I |)O(1)) = 2ωk · (n+ |I |)O(1).

44

By Theorem 4.1.3, the cardinality of D [i+1] is bounded by,

|D [i+1]|=
k

∑
j=1
|N̂ (i+1) j| ≤

k

∑
j=1
|I | · k ·

(
k
j

)
= 2k|I | · k.

This completes the proof.

Theorem 2 follows from Lemma 4.1.2 and 4.1.3. Now we explain an applica on of Theorem 2.
Consider the problem (P,I)-G CF-SC, where CGI is a cluster graph. Let (P,I ,CGI ,k) be an
instance of (P,I)-G CF-SC. Let C1, . . .Ct be the connected components of CGI , where each Ci

is a clique for all i ∈ [t]. In any solu on we are allowed to pick at most one vertex (an interval) from Ci for
any i ∈ [t]. This informa on can be encoded using a par on matroid M = (I =V (C1)⊎ . . .⊎V (Ct),J)
where any subset I ′ ⊆I is independent in M if and only if |I ′∩V (Ci)| ≤ 1 for any i ∈ [t]. As a result, by
applying Theorem 2 along with Proposi on 4.1.1, we get the following corollary.

Corollary 4.1.1. (P,I)-G CF-SC, when CGI is a cluster graph, can be solved in me 2ωk · (n+
|I |)O(1).

4.2 HARDNESS
In this sec on we prove the following theorem.

Theorem 3. Let G denote a family of graphs such that G -I S isW[1]-hard. IfCGI belongs to
G , then (P,I)-G CF-SC does not admit an FPT algorithm, unless FPT =W[1].

Towards proving Theorem3,wegive a Turing reduc on fromG -I S to (P,I)-G
CF-SC whereCGI belongs to G . To give such a reduc onwe need the no on of (n,k)-perfect hash families.
Towards that, we first define (n,k)-perfect hash family and state a theorem about efficient computa on of
these objects.

Defini on 4.2.1 ([70]). An (n,k)-perfect hash family F is a set of func ons from {1, . . . ,n} to {1, . . . ,k},
such that for every subset S⊆ {1, . . . ,n}, |S|= k, there is a func on f ∈F such that f |S is injec ve.

Theorem 4.2.1 ([70]). There is a determinis c algorithm with running me ekkO(logk)n logn that constructs
an (n,k)-perfect hash family F of cardinality at most ekkO(logk) logn.

Proof of Theorem 3. We give a Turing reduc on from G -I S . Let (G,k) be an instance of
G -I S and n = |V (G)|. We first apply Theorem 4.2.1 and construct a (n,k)-perfect hash family
F . Then, we construct |F | many instances of (P,I)-G CF-SC such that the parameter value
in each instance is k and (G,k) is a Yes instance of G -I S if and only if at least one instance
constructed is a Yes instance of (P,I)-G CF-SC. More over the running me of our reduc on will
be ekkO(logk)n logn.

Now we give details about the reduc on. As men oned earlier let (G,k) be the given instance of
G -I S and n = |V (G)|. For each f ∈F we create an instance (P,I ,G,k). No ce that in our
reduc on the conflict graph is G itself. Now we create a set of points P = {p1 = (1,0), p2 = (2,0), . . . , pk =
(k,0)}. We can think of f as a coloring func on on V (G), where each vertex in v gets a color from [k]. For
each vertex v ∈ V (G) we create an interval Iv = [f (v)− 0.5, f (v)+ 0.5]. No ce that any interval Iv covers
only the point p f (v). See Fig. 4.1 for an illustra on.

45

Vi

v1
v2

v3
v4

Vi

v1
v2

v3
v4

Vj

v5
v7

v6

Pi Pj

I4

I3

I2

I1 I5

I6

I7

Figure 4.1 : HereVi andVj are the set of vertices in G which are colored by i and j, respectively.

Now we prove that (G,k) is a Yes instance of G -I S if and only if at least one
instance constructed is a Yes instance of (P,I)-G CF-SC. Suppose (G,k) is a Yes instance of
G -I S and S is an independent set of size k in G. By the property of (n,k)-perfect hash family,
there is a func on f such that f |S is injec ve. Now consider the instance (P,I ,G,k) created for f . The
set of intervals {Iv : v ∈ S} covering P and S is independent in G. Hence (P,I ,G,k) is a Yes instance.
Now suppose there is an instance (P,I ,G,k) created for a func on f ∈F , such that (P,I ,G,k) is a Yes
instance. This implies that there is a k sized independent set in G and hence (G,k) is a Yes instance of
G -I S .

Because of Theorem 4.2.1, the running me of our reduc on is ekkO(logk)n logn. This completes
the proof of the theorem.

46

