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Approximation for Conflict as Matching

In this chapter, we consider conflicts in approxima on paradigm. We discuss the case when the
conflict graph is a matching. For this, we take the problem S - F D introduced in
Chapter 1.

S - F D
Input: A set of points P and a line-segment ℓ in R2.
Ques on: Find dF(P, ℓ).

We consider the approxima on on the conflict version of S - F D called
C - F D . Let us recall the problem.

C - F D
Input: A set Q of pairs of points, and a line-segment ℓ in R2.
Ques on: Find a conflict-free subset of points P∗ ⊂

∪
Q∈Q Q which minimizes dF(P∗, ℓ)

In this chapter we provide 3-factor approxima on algorithm for op miza on version of
C - F D where we are trying to minimize semi-discrete Fréchet distance.

5.1 APPROXIMATION ALGORITHM FOR CONFLICT-FREE FRÉCHET DISTANCE
In this sec on we present an approxima on algorithm for C - F D . Let us

first define some terminology. As before, assume that the line-segment ℓ coincides with the X-axis and has
end points (x1,0) and (x2,0). For any point set A, denote the semi-discrete Fréchet distance between A and
line-segment ℓ by dF(A, ℓ). Also let Γ(A) be the lower envelope of the func ons fpi(x) =

√
(x−a)2 +b2

for all pi = (a,b) ∈ A where x1 ≤ x ≤ x2. Now let us start our discussion with the following observa on
about the semi-discrete Fréchet distance.

Observa on 5.1.1. For any sets of points A and B where A⊆ B, dF(A, ℓ)≥ dF(B, ℓ).

Proof. Let C ⊆ A be the set of points that achieves dF(A, ℓ) = d. Since A ⊆ B, we have that C ⊂ B and
hence dF(B, ℓ)≤ d.

Let (Q = {Q1,Q2 . . .Qn}, ℓ) be the input instance of C - F D , where Qi =

{qi,qi}. Let Q =
n∪

i=1
Qi. By Theorem 3.1.2, we can find dF(Q, ℓ) in O(n logn) me. Assume Popt is a

conflict-free subset of Q that minimizes the semi-discrete Fréchet distance and let dopt = dF(Popt , ℓ) i.e.
op mal conflict-free semi-discrete Fréchet distance. If Γ(Q) contains at most one of fqi or fqi for each
Qi = {qi,qi}, then dopt = dF(Q, ℓ). As Popt ⊆ Q, from Observa on 5.1.1 we have the following lemma.

Observa on 5.1.2. dopt ≥ dF(Q, ℓ).
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Suppose the set of points for which the corresponding fqi(x) are in Γ(Q) be P
′
. Observe that if P

′

does not contain points from the same pair i.e. if it is already conflict-free, then dF(P
′
, ℓ) is the conflict-free

semi-discrete Fréchet distance and we have dopt = dF(Q, ℓ) = dF(P
′
, ℓ). If not, then we want to choose a

conflict-free subset P
′′
of P

′
such that dF(P

′′
, ℓ)≤ 3dF(P

′
, ℓ).

Now let us construct the set P
′′
. First, for all the points qi ∈ P

′
such that qi /∈ P

′
, we include qi in P

′′
. For

the rest of the points in P
′
, let Ppair = {p1, p2, . . . p2k} be the sorted order of points along X-axis where each

pi = q j or q j for some j. Now from Ppair , we create disjoint bags B1,B2, . . . ,Bk each containing two points
i.e. Bi = {p2i−1, p2i}. We construct a bipar te graph G = (U,V,E) where U = {B1,B2, . . . ,Bk} and V is
the set of all k pairs Qi = {qi,qi} such that both qi and qi are in Ppair. We add an edge ei j = (Bi,Q j), if
Bi∩Q j ̸= /0. For an example, see Figure 5.1.
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Figure 5.1 : Creating the bipartite graph from the lower envelope

Now we have the following lemma.

Lemma 5.1.1. G = (U,V,E) contains a perfect matching M.

Proof. Each vertex inU andV has degree at least 1 and atmost 2. Also if vertexBi inU has degree one, then
the vertex Q j to which it is connected in V also has degree one (as it implies that both Bi = Q j = {qi,qi}).
Similarly degree two ver ces in U are connected to degree two ver ces in V . Thus, we note that every
connected component is either an even cycle or an edge. Every subset W of U has a set of neighbours
NG(W ) such that |W | ≤ |NG(W )| (here the neighbours of W is the set of ver ces in V to which ver ces in
W are connected). Hence by Hall’s marriage theorem [40], G has a perfect matching M.

Let M be a perfect matching in G. Now for each edge (Bi,Q j) selected in the matching M, if |Bi∩
Q j|= 1 then include Bi∩Q j in P

′′
, else if |Bi∩Q j|= 2 then we include one arbitrary point of Bi∩Q j in P

′′
.

Observe that from each pair of points in Ppair, only one point is selected. Thus P
′′
is conflict-free. Now we

have following lemma.

Lemma 5.1.2. dF(P
′′
, ℓ)≤ 3dF(Q, ℓ).

Proof. Since dF(Q, ℓ) = dF(P
′
, ℓ), it is enough to show that dF(P

′′
, ℓ) ≤ 3dF(P

′
, ℓ). Let π be the sorted

order of points in P
′
along X-axis. We first prove the following claim.

Claim 5.1.1. For any point s ∈ P
′
, at least one among s, its predecessor in π and its successor in π , is in P′′.

Proof. We claim that (i) no three consecu ve points from π can be in P′ \P′′. For any three consecu ve
points q1,q2,q3, either one of them does not belong to Ppair and thus belongs to P′′ or one among {q1,q2}
and {q2,q3} belongs to Ppair. From the construc on of P′′, we have one point from every pair in Ppair. Thus
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we include one among q1,q2,q3, in P′′. Now we claim that (ii) at least one among the first two points in
π is in P′′. Let s1 and s2 be the first two points in π . If {s1,s2} ̸⊆ Ppair, then P′′ ∩{s1,s2} ̸= /0. Otherwise
B1 = {s1,s2} and by the construc on of P′′, we have that P′′∩{s1,s2} ̸= /0. Similarly we can prove that (iii)
at least one among the last two points in π is in P′′.

The claim follows from the statements (i),(ii) and (iii).

Let d = dF(P
′
, ℓ). Nowwe prove that dF(P

′′
, ℓ)≤ 3d. Towards that it is enough to prove that for any

point on ℓ, there is a point in P
′′
, which is at a distance at most 3d. Let z be a point in ℓ. Since d = dF(P

′
, ℓ),

there is a point s inP
′
such that d(z,s)≤ d. Nowwe show that there is a point s′ ∈ P′′ such that d(z,s′)≤ 3d.

If s ∈ P′′, then we set s′ = s. Otherwise, by Claim 5.1.1, either its successor or its predecessor in π belongs
to P′′. Let s′ be a point in P′′ which is either successor of s or predecessor of s. Since d = dF(P

′
, ℓ), there

is a point t on ℓ such that d(t,s)≤ d and d(t,s′)≤ d. Now we have d(z,s)≤ d, d(s, t)≤ d and d(t,s′)≤ d.
Hence by triangular inequality, we get d(z,s′)≤ 3d. This completes the proof of the lemma.

Hence we have the following theorem.

Theorem 5.1.3. There is a 3-approxima on algorithm for C - F D .
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