Approximation for Conflict as Matching

In this chapter, we consider conflicts in approximation paradigm. We discuss the case when the conflict graph is a matching. For this, we take the problem Semi-discrete Fréchet Distance introduced in Chapter 1.

SEMI-DISCRETE FRÉCHET DISTANCE
Input: A set of points P and a line-segment ℓ in \mathbb{R}^{2}.
Question: Find $d^{F}(P, \ell)$.

We consider the approximation on the conflict version of Semi-discrete Fréchet Distance called Conflict-free Fréchet Distance. Let us recall the problem.

Conflict-free Fréchet Distance

Input: A set \mathscr{Q} of pairs of points, and a line-segment ℓ in \mathbb{R}^{2}.
Question: Find a conflict-free subset of points $P^{*} \subset \bigcup_{Q \in \mathscr{Q}} Q$ which minimizes $d^{F}\left(P^{*}, \ell\right)$

In this chapter we provide 3-factor approximation algorithm for optimization version of CONFLICT-FREE FRÉCHET DISTANCE where we are trying to minimize semi-discrete Fréchet distance.

5.1 APPROXIMATION ALGORITHM FOR CONFLICT-FREE FRÉCHET DISTANCE

In this section we present an approximation algorithm for CONFLICT-FREE FRÉCHET DISTANCE. Let us first define some terminology. As before, assume that the line-segment ℓ coincides with the X-axis and has end points $\left(x_{1}, 0\right)$ and $\left(x_{2}, 0\right)$. For any point set A, denote the semi-discrete Fréchet distance between A and line-segment ℓ by $d^{F}(A, \ell)$. Also let $\Gamma(A)$ be the lower envelope of the functions $f_{p_{i}}(x)=\sqrt{(x-a)^{2}+b^{2}}$ for all $p_{i}=(a, b) \in A$ where $x_{1} \leq x \leq x_{2}$. Now let us start our discussion with the following observation about the semi-discrete Fréchet distance.

Observation 5.1.1. For any sets of points A and B where $A \subseteq B, d^{F}(A, \ell) \geq d^{F}(B, \ell)$.

Proof. Let $C \subseteq A$ be the set of points that achieves $d^{F}(A, \ell)=d$. Since $A \subseteq B$, we have that $C \subset B$ and hence $d^{F}(B, \ell) \leq d$.

Let $\left(\mathscr{Q}=\left\{Q_{n}, Q_{2} \ldots Q_{n}\right\}, \ell\right)$ be the input instance of Conflict-free Fréchet Distance, where $Q_{i}=$ $\left\{q_{i}, \overline{q_{i}}\right\}$. Let $Q=\bigcup_{i=1}^{n} Q_{i}$. By Theorem 3.1.2, we can find $d^{F}(Q, \ell)$ in $\mathscr{O}(n \log n)$ time. Assume $P^{o p t}$ is a conflict-free subset of Q that minimizes the semi-discrete Fréchet distance and let $d^{o p t}=d^{F}\left(P^{o p t}, \ell\right)$ i.e. optimal conflict-free semi-discrete Fréchet distance. If $\Gamma(Q)$ contains at most one of $f_{q_{i}}$ or $f_{\overline{q_{i}}}$ for each $Q_{i}=\left\{q_{i}, \overline{q_{i}}\right\}$, then $d^{o p t}=d^{F}(Q, \ell)$. As $P^{o p t} \subseteq Q$, from Observation 5.1.1 we have the following lemma.

Observation 5.1.2. $d^{o p t} \geq d^{F}(Q, \ell)$.

Suppose the set of points for which the corresponding $f_{q_{i}}(x)$ are in $\Gamma(Q)$ be P^{\prime}. Observe that if P^{\prime} does not contain points from the same pair i.e. if it is already conflict-free, then $d^{F}\left(P^{\prime}, \ell\right)$ is the conflict-free semi-discrete Fréchet distance and we have $d^{o p t}=d^{F}(Q, \ell)=d^{F}\left(P^{\prime}, \ell\right)$. If not, then we want to choose a conflict-free subset $P^{\prime \prime}$ of P^{\prime} such that $d^{F}\left(P^{\prime \prime}, \ell\right) \leq 3 d^{F}\left(P^{\prime}, \ell\right)$.
Now let us construct the set $P^{\prime \prime}$. First, for all the points $q_{i} \in P^{\prime}$ such that $\overline{q_{i}} \notin P^{\prime}$, we include q_{i} in $P^{\prime \prime}$. For the rest of the points in P^{\prime}, let $P_{\text {pair }}=\left\{p_{1}, p_{2}, \ldots p_{2 k}\right\}$ be the sorted order of points along X-axis where each $p_{i}=q_{j}$ or $\overline{q_{j}}$ for some j. Now from $P_{\text {pair }}$, we create disjoint bags $B_{1}, B_{2}, \ldots, B_{k}$ each containing two points i.e. $B_{i}=\left\{p_{2 i-1}, p_{2 i}\right\}$. We construct a bipartite graph $G=(U, V, E)$ where $U=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ and V is the set of all k pairs $Q_{i}=\left\{q_{i}, \overline{q_{i}}\right\}$ such that both q_{i} and $\overline{q_{i}}$ are in $P_{\text {pair }}$. We add an edge $e_{i j}=\left(B_{i}, Q_{j}\right)$, if $B_{i} \cap Q_{j} \neq \emptyset$. For an example, see Figure 5.1.

Figure 5.1: Creating the bipartite graph from the lower envelope

Now we have the following lemma.
Lemma 5.1.1. $G=(U, V, E)$ contains a perfect matching M.

Proof. Each vertex in U and V has degree at least 1 and at most 2. Also if vertex B_{i} in U has degree one, then the vertex Q_{j} to which it is connected in V also has degree one (as it implies that both $B_{i}=Q_{j}=\left\{q_{i}, \overline{q_{i}}\right\}$). Similarly degree two vertices in U are connected to degree two vertices in V. Thus, we note that every connected component is either an even cycle or an edge. Every subset W of U has a set of neighbours $N_{G}(W)$ such that $|W| \leq\left|N_{G}(W)\right|$ (here the neighbours of W is the set of vertices in V to which vertices in W are connected). Hence by Hall's marriage theorem [40], G has a perfect matching M.

Let M be a perfect matching in G. Now for each edge $\left(B_{i}, Q_{j}\right)$ selected in the matching M, if $\mid B_{i} \cap$ $Q_{j} \mid=1$ then include $B_{i} \cap Q_{j}$ in $P^{\prime \prime}$, else if $\left|B_{i} \cap Q_{j}\right|=2$ then we include one arbitrary point of $B_{i} \cap Q_{j}$ in $P^{\prime \prime}$. Observe that from each pair of points in $P_{\text {pair }}$, only one point is selected. Thus $P^{\prime \prime}$ is conflict-free. Now we have following lemma.

Lemma 5.1.2. $d^{F}\left(P^{\prime \prime}, \ell\right) \leq 3 d^{F}(Q, \ell)$.

Proof. Since $d^{F}(Q, \ell)=d^{F}\left(P^{\prime}, \ell\right)$, it is enough to show that $d^{F}\left(P^{\prime \prime}, \ell\right) \leq 3 d^{F}\left(P^{\prime}, \ell\right)$. Let π be the sorted order of points in P^{\prime} along X -axis. We first prove the following claim.
Claim 5.1.1. For any point $s \in P^{\prime}$, at least one among s, its predecessor in π and its successor in π, is in $P^{\prime \prime}$.

Proof. We claim that (i) no three consecutive points from π can be in $P^{\prime} \backslash P^{\prime \prime}$. For any three consecutive points q_{1}, q_{2}, q_{3}, either one of them does not belong to $P_{p a i r}$ and thus belongs to $P^{\prime \prime}$ or one among $\left\{q_{1}, q_{2}\right\}$ and $\left\{q_{2}, q_{3}\right\}$ belongs to $P_{\text {pair }}$. From the construction of $P^{\prime \prime}$, we have one point from every pair in $P_{\text {pair }}$. Thus
we include one among q_{1}, q_{2}, q_{3}, in $P^{\prime \prime}$. Now we claim that (ii) at least one among the first two points in π is in $P^{\prime \prime}$. Let s_{1} and s_{2} be the first two points in π. If $\left\{s_{1}, s_{2}\right\} \nsubseteq P_{\text {pair }}$, then $P^{\prime \prime} \cap\left\{s_{1}, s_{2}\right\} \neq \emptyset$. Otherwise $B_{1}=\left\{s_{1}, s_{2}\right\}$ and by the construction of $P^{\prime \prime}$, we have that $P^{\prime \prime} \cap\left\{s_{1}, s_{2}\right\} \neq \emptyset$. Similarly we can prove that (iii) at least one among the last two points in π is in $P^{\prime \prime}$.

The claim follows from the statements $(i),(i i)$ and (iii).

Let $d=d^{F}\left(P^{\prime}, \ell\right)$. Now we prove that $d^{F}\left(P^{\prime \prime}, \ell\right) \leq 3 d$. Towards that it is enough to prove that for any point on ℓ, there is a point in $P^{\prime \prime}$, which is at a distance at most $3 d$. Let z be a point in ℓ. Since $d=d^{F}\left(P^{\prime}, \ell\right)$, there is a point s in P^{\prime} such that $d(z, s) \leq d$. Now we show that there is a point $s^{\prime} \in P^{\prime \prime}$ such that $d\left(z, s^{\prime}\right) \leq 3 d$. If $s \in P^{\prime \prime}$, then we set $s^{\prime}=s$. Otherwise, by Claim 5.1.1, either its successor or its predecessor in π belongs to $P^{\prime \prime}$. Let s^{\prime} be a point in $P^{\prime \prime}$ which is either successor of s or predecessor of s. Since $d=d^{F}\left(P^{\prime}, \ell\right)$, there is a point t on ℓ such that $d(t, s) \leq d$ and $d\left(t, s^{\prime}\right) \leq d$. Now we have $d(z, s) \leq d, d(s, t) \leq d$ and $d\left(t, s^{\prime}\right) \leq d$. Hence by triangular inequality, we get $d\left(z, s^{\prime}\right) \leq 3 d$. This completes the proof of the lemma.

Hence we have the following theorem.
Theorem 5.1.3. There is a 3-approximation algorithm for CONFLICT-FREE FRÉCHET DISTANCE.

