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Approximation for Conflicts as Geometric Graphs

In this chapter we con nue our study of conflicts in approxima on paradigm. Here we consider the
conflict graph to be an intersec on graph of some geometric objects.

We define some nota ons specific to this chapter before recalling the problems. Here, the universe
is represented by a set of points denoted as P = {p1, p2, . . . , pn}. We denote the set of geometric objects
as O = {O1,O2, . . . ,Om}. Most of geometric covering problems consider the intersec on graph on the
set of geometric objects. In the intersec on graph, set of objects represents ver ces and there is an edge
between two objects if and only if the two objects intersect. The intersec on graph of geometric objects O
is denoted asC OV (V,Ev) (henceV =O). We assume that the underlying representa on of the geometric
objects and points is given with C OV . Further let C G (U,Eu) represents the conflict graph whereU = O .
We call a set of geometric objects conflict free if they form an independent set in C G . Also, we define a
bijec ve func on f : U →V such that vi ∈V and ui ∈U denotes the vertex corresponding to same object
Oi ∈O for all 1≤ i≤m. For any subset of objects F ⊆V , let p(F) be the set of points covered by objects in
F . With slight abuse of nota on, for any subset of objects F ⊆U we also denote the set of points covered
by f (F) as p(F). Formally, p : 2U ∪2V → N is the func on such that

p(F)=

{
{x|x ∈ P and ∃Fi ∈ F such that x ∈ f (Fi)∩P} if F ∈ 2U

{x|x ∈ P and ∃Fi ∈ F such that x ∈ Fi∩P} if F ∈ 2V

Assume, OPT ⊆V represents the op mal solu on to the covering problem.

In our first problem, we consider the geometric objects to be unit intervals. Also, the conflict graph
is given as some other intersec on graph of set of m unit intervals. No ce that the intersec on graph in
covering and conflict are different graphs and need not be isomorphic. The maximiza on version of the
problem is defined as follows.

M U I CF-SC
Input: A set of points P on X-axis, a set of unit intervals O on X-axis, a unit interval graph as conflict
graph C G .
Ques on: Maximize the number of points covered using a set of conflict free unit intervals?

In our next problem, we are given a set of points P, that lies in R2 and the geometric objects are unit disks.
The conflict graph is given as some other intersec on graph on a set of m unit disks. The intersec on graph
in covering and conflict are different graphs and need not be isomorphic. We define the problem as follows,

M U D - U I CF-SC
Input: A set of points P in R2, a set of unit intervals O , a unit disk graph as conflict graphCG.
Ques on: Maximize the number of points covered using a set of conflict free unit intervals?

We assume that we are given a unit disk representa on graph in our above problem.

Now we men on results that we prove in this chapter.

Results in this Chapter We propose a general framework where if the geometric graphs C OV and C G
sa sfy some proper es, then G C F S C admits constant factor approxima on
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where the constant is based on those proper es. As an applica on to this, we give an 8-factor approxima on
algorithm for M U I CF-SC in sec on 6.2. Later in sec on 6.3, we prove the approxima on
hardness of the problem by showing that that the problem is APX-hard. Hence, we prove that M U
I CF-SC does not admit PTAS under standard computer theore c assump ons. We also present a
36-factor approxima on algorithm for M U D - U I CF-SC in sec on 6.2. We show that
this problem is also APX-hard in 6.2. We prove APX-hardness for more general case considered in Chapter
4 where conflict graph is tree or 1-arboricity graph (thus holds for higher arboricity graphs too) in point
interval covering. We also show problem is APX-hard when both C G and C OV are unit coin graphs.

6.1 A GENERAL FRAMEWORK
Here, we say an object O ∈ O covers a point p if p ∈ O. For any O ∈ O , we denote the points

covered by O by p(O). With slight abuse of nota on, for any subset of geometric objectsO ′ ⊆O we define
p(O ′) = ∪O∈O ′ p(O). We assume that vi ∈ C OV (V,Ev) and ui ∈ C G (U,Eu) denotes the same geometric
object Oi for all 1≤ i≤ m. The objec ve of this chapter is to present an efficient approxima on algorithm
for Geometric Conflict Free Covering problem when C OV and C G sa sfies certain condi ons.

We say aGeometric Conflict Free Covering follows the (α,β ,γ)-property if the following restric ons
hold.
The restric ons on C OV are as follows:

(i) The ver ces inV can be divided intoα many color classes {V1,V2, . . .Vα}where each geometric object
inV belongs to exactly one color class.

(ii) Each color class Vi can be divided into disjoint subsets {Vi1,Vi2, . . .Via} where Vi = ∪1≤ j≤aVi j

(iii) The set of geometric objects corresponding to the ver ces in Vi j be Oi j. In any op mal solu on the
points p(Oi j) can be covered by at most β many objects.

We have the following restric on on C G :

(i) Ver ces inU can be divided into l many color classes {U1,U2 . . .Uγ} where each geometric object in
U belongs to exactly one color class.

(ii) Each color class Ui is a union of disjoint subsets {Ui1,Ui2, . . .Uic} where eachUi j forms a clique.

We denote such a Geometric Conflict Free Covering problem by (α,β ,γ)-GCFCOV. For example in Figure
6.1(above) the covering objects (intervals) are divided into two classes, V1 and V2 (dashed). Each of the
color classes is a collec on of two cliques. in Figure 6.1(below) C G is divided into two classes, U1 and U2
(doted).

Lemma 6.1.1. (1,1,1)-GCFCOV can be solved in polynomial me.

Proof. From the defini on of GCFCOV, ver ces V of C OV can be divided into disjoint subsets
{V11,V12, . . .V1a} where V = ∪1≤ j≤aV1 j. Also, p(O1 j) can be covered by at most one object. Thus
from each subset V1 j selec ng one object into the op mal solu on suffices. From the restric on on C G ,
ver ces U of C G can be par oned into disjoint clique {U11,U12, . . .U1c}. Therefore op mal solu on (or
any feasible solu on) can contain at most one object from eachU1i.

In order to show that the problem is polynomial me solvable, consider the following weighted
bipar te graph Gb(Vb,Eb) whereVb = {V11,V12, . . .V1a}∪{U11,U12, . . .U1c}. There is an edge betweenV1i

andU1 j if and only if there is at least one object Ok such that vk ∈V1i and uk ∈U1 j. The weight of the edge
(V1i,U1 j) is equals to maxOk |p(Ok)| where the maximum is taken over all objects Ok such that vk ∈V1i and
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Figure 6.1 : Special Geometric covering

uk ∈U1 j. Thus each edge in Gb represents an object. Any matching in Gb is a collec on of objects, OM. Let
M∗ denotes the maximum weighted matching in Gb. We have the following claim.

Claim 6.1.1. OM∗ is an op mal solu on to (1,1,1)-GCFCOV.

Proof. By defini on any solu on to (1,1,1)-GCFCOV is a matching in Gb. Observe that the points covered
by the objects represented by the edges in the matching is disjoint because each subsetV1i is disjoint from
any other. Hence the total points covered by all the objects in a matching is the summa on of the edge
weights in the matching, i.e. cost of matching. Thus the claim holds.

As the matching in bipar te graph can be solved in polynomial me so is (1,1,1)-GCFCOV.

Theorem 6.1.1. There is an α ∗β ∗ γ factor approxima on algorithm for (α,β ,γ)-GCFCOV.

Proof. Consider an instance (P,O,C G ) of (α,β ,γ)-GCFCOV. Let OPT be any op mal solu on. The vertex
corresponding to any object O ∈ O belongs to one of the α color classes of C OV and one of the β color
classes of C G . Thus each object has one of the α ∗ β colors associated with it. For any (i, j) : 1 ≤ i ≤
α,1 ≤ j ≤ β , let OPT i j denotes the objects in OPT with color (i, j). Similarly the objects in O can also be
divided into color classes and we denote it by Oi j. By the op mal solu on of the color class OPT (Oi j)
denote the maximum points in P that can be covered by any conflict free subset of objects from Oi j.
Observe OPT (Oi j)≥ OPT i j. By pigeonhole principle maxi j OPT i j ≥ OPT

α∗β . Thus by compu ng the op mal
solu on to each color class and choosing the maximum, we have a α ∗ β factor approximate solu on to
(α,β ,γ)-GCFCOV. From now onwards we assume that we are interested in finding an op mal solu on for
the color class (i, j).

Recall each color classVi can be divided into disjoint subsets {Vk1,Vk2, . . .Vka} andOPT (Oi j)∩Vkl ≤
γ . For each subsetVkl let λkl denotes the object inOPT (Oi j)∩Vkl which covers themaximumpoints among

the objects in OPT (Oi j)∩Vkl . Let Λ be the collec on of all such objects. Observe |p(Λ)≥ OPT (Oi j)
γ |. Hence

if we can solve the problem with added restric on that from each subsetVkl only one object can be chosen
then it is a γ approxima on. This problem is same as solving (1,1,1)-GCFCOV. From Lemma 6.1.1 we know
(1,1,1)-GCFCOV is polynomial me solvable. Thus the result holds.
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We have following corollary to the above theorem.

Corollary 6.1.1. We have following results to G C F S C for different restric ons
on C G and C OV as men oned below.

1. If C OV is α colorable and C G is γ colorable, then we have α ∗ γ factor approxima on algorithm for
G C F S C .

2. If C G is γ colorable and covering problem C OV (without C G ) is polynomial me solvable then we
have γ factor approxima on algorithm for G C F S C .

In the next sec onweprovided several geometric graph classeswhich supports the (α,β ,γ)-GCFCOV
proper es.

6.2 DIFFERENT GEOMETRIC GRAPH CLASSES THAT FITS THE RESTRICTIONS
Now let’s recall M U I CF-SC.

M U I CF-SC
Input: A set of points P on X-axis, a set of unit intervals O on X-axis, a unit interval graph as conflict
graph C G .
Ques on: Maximize the number of points covered using a set of conflict free unit intervals?

We make the following claim.

Theorem 6.2.1. M U I CF-SC is equivalent to (2,2,2)-GCFCOV and thus admits 8-factor
approxima on algorithm.

Proof. Without loss of generality assume that all the intervals in C OV lies between 0 and q on X-axis and
all the intervals in C G lies between 0 and r where q,r ∈N. Also, let every point p ∈ P is covered by at least
one interval in C OV .

We define the set of points Co = {(x,0)|x is odd integer}, Ce = {(x,0)|x and is even integer}.
Without loss of generality, we can assume that none of the unit intervals in C OV and C G has end points
inCo orCe. Nowwe divide the intervals inC G into two disjoint color classes whereU1 contains intervals in
{O ∈U |O∩Co ̸= /0} and U2 contains intervals in {O ∈U |O∩Ce ̸= /0}. Similarly, we divide the intervals in
C OV into two disjoint color classes V1 contains intervals in {O ∈V |O∩Co ̸= /0} and V2 contains intervals
in {O ∈V |O∩Ce ̸= /0}.

We no ce that the intervals in Vi forms disjoint cliques for i∈ {1,2}. We denote the set of intervals
in each such clique as Vi j for i ∈ {1,2},0 ≤ j ≤ ⌈q

2⌉. Similarly, the intervals in color classes in C G can be
further par oned into disjoint sets Ui j for i ∈ {1,2},0≤ j ≤ ⌈ r

2⌉ where set of intervals in each Ui j forms
a clique in C G .

We make the following claim.

Claim 6.2.1. It suffices for any op mal solu on toM U I CF-SC to contain at most two intervals
from anyVi j where i ∈ {1,2},0≤ j ≤ ⌈ q

2⌉.

Proof. Suppose not. Assume we need three intervals O1 = [a1,a1+1],O2 = [a2,a2+1],O3 = [a3,a3+1] ∈

54



Vi j. Without loss of generality, assume a1 < a2 < a3. Then p(O1)∪ p(O2)∪ p(O3) = p(O1)∪ p(O3) as
O1,O2,O3 are unit intervals forming a clique. Hence, we can remove O2 from the solu on.

Now, we can see that M U I CF-SC follows (α,β ,γ) property where α = β = γ = 2.
Hence the theorem is proved.

Algorithm 2 is 8-factor approxima on algorithm for M U I CF-SC.

Algorithm 2: Approxima on algorithm for M U I CF-SC

1 Divide intervals in C G into two disjoint color classes where U1 contains intervals in
{O ∈U |O∩Co ̸= /0} and U2 contains intervals in {O ∈U |O∩Ce ̸= /0}.

2 Further par on the intervals in each color class Ui into disjoint setsUi j for i ∈ {1,2},0≤ j ≤ ⌈ r
2⌉

where intervals in eachUi j form a clique. Let U ∗
j = {U j1,U j2, . . .U⌈ r

2 ⌉} where j ∈ {1,2}.
3 Similarly, we divide the intervals in C OV into two disjoint color classes where V1 contains intervals in
{O ∈V |O∩Co ̸= /0} and V2 contains intervals in {O ∈V |O∩Ce ̸= /0}.

4 Again par on the intervals in each color class Vi into disjoint setsVi j for i ∈ {1,2},0≤ j ≤ ⌈q
2⌉ where

intervals in eachVi j form a clique. Let V ∗i = {Vi1,Vi2, . . .V⌈ q
2 ⌉} where i ∈ {1,2}.

5 APPROX ← /0
6 p(APPROX)← /0.
7 ForallVb = {V ∗1 ,V ∗2 } andUb ∈ {U ∗

1 ,U
∗

2 }
8 {
9 Construct the weighted bipar te graph Gb(Vb,Ub,Eb).

10 There is an edge (Vi j,Ul p) ∈ Gb if and only if there exists Ok ∈ O such that vk ∈Vi j

11 and uk ∈Ul p.
12 The weight of the edge (Vi j,Ul p) is equal to maxOk |p(Ok)| where the maximum is taken over
13 all intervals Ok such that vk ∈Vi j and uk ∈Ul p. Thus each edge in Gb represents an unit
14 interval.
15 Let M∗ denote the maximum weighted matching in Gb and OM∗ be corresponding collec on of
16 unit intervals.
17 If(p(APPROX)< p(OM∗))
18 {
19 APPROX ← OM∗

20 p(APPROX)← p(OM∗)
21 }
22 }

Now let us recall M U D - U I CF-SC.

M U D - U I CF-SC
Input: A set of points P in R2, a set of unit intervals O , a unit disk graph as conflict graphCG.
Ques on: Maximize the number of points covered using a set of conflict free unit intervals?

Here we assume for each Oi ∈ O , that we have a corresponding vertex vi ∈ C OV (V,Ev). Also, let
us denote the set of unit disks corresponding to ver ces inC G (U,Eu) again byO . For each vi ∈V , we have
corresponding vertex ui ∈U . Hence, Oi ∈ O represents a unit interval vi if we talk about C OV and unit
disk ui if we talk about C G . Assume all the disks in C G are lying in XY-plane inside the square with ver ces
{(0,0),(0, p),(p,0),(p, p)} where p ∈ N. Divide the square further into p2 unit (1× 1) squares. Now we
assign numbers between 0 to 9 to each square. It is done by repea ng the grid of 3× 3 horizontally and
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ver cally star ng from (p,0). The 3×3 grid to be repeated is shown in the Figure 6.2. Label the squares as
per grid labelling.
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Figure 6.2 : Division of XY plane in C G

Let the set of squares with label i where 1 ≤ i ≤ 9 is denoted by SCGi . Also, let SCG =
∪9

i=1 SCGi .
Without loss of generality, we can assume that each unit disk in C G has its centre strictly lying inside the
square s ∈ SCG. We denote the coordinates of centre of disk O by cen(O). Let Ui contains the disks in
{O|O ∈ C G and cen(D) ∈ s where s ∈ SCGi} for all 1≤ i≤ 9. We can further par on each Ui into setsUi j

where eachUi j correspond to disks with centre in sk for 1≤ i≤ 9,1≤ j ≤ ⌈ p2

2 ⌉,sk ∈ SCGi .

We define the set of points Co = {(x,0)|x is odd integer}, Ce = {(x,0)|x and is even integer}.
Without loss of generality, we can assume that none of the unit intervals in C OV has end points in Co

or Ce. Now we divide the intervals in C OV into two disjoint color classes where V1 contains intervals in
{O ∈V |O∩Co ̸= /0} and V2 contains intervals in {O ∈V |O∩Ce ̸= /0}. Again par on the intervals in each
color class Vi into disjoint setsVi j for i ∈ {1,2},0≤ j ≤ ⌈q

2⌉ where intervals in eachVi j form a clique.

We have the following theorem.

Theorem 6.2.2. M U D - U I CF-SC is equivalent to (2,9,2)-GCFCOV and thus admits a
36-factor approxima on algorithm.

Proof. Using the claim in Theorem 6.2.1, we no ce that it suffices for any op mal solu on toM U D
- U I CF-SC to contain at most two intervals from anyVi j where i ∈ {1,2},0≤ j≤ ⌈ q

2⌉. Thus with
above par on of C G and C OV , M U D - U I CF-SC follows (α,β ,γ) property where
α = γ = 2 and β = 9. Hence by Theorem 6.1.1, M U D - U I CF-SC admits 36-factor
approxima on algorithm.

Algorithm 3 is 36-factor approxima on algorithm for M U D - U I CF-SC.

On similar lines, we now state few more results based on Corollary 6.1.1.
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Algorithm 3: Approxima on algorithm for M U D - U I CF-SC

1 Divide disks in C G into nine disjoint color classes where Ui contains the disks in
{O|O ∈ C G and cen(D) ∈ s where s ∈ SCGi} for all 1≤ i≤ 9.

2 Further par on each Ui into setsUi j where eachUi j corresponds to disks with centre in sk for

1≤ i≤ 9,1≤ j ≤ ⌈ p2

2 ⌉,sk ∈ SCGi . Let U ∗
j = {U j1,U j2, . . .U⌈ p2

9 ⌉
} where j ∈ {1,2 . . .9}.

3 Similarly, we divide the intervals in C OV into two disjoint color classes where V1 contains intervals in
{O ∈V |O∩Co ̸= /0} and V2 contains intervals in {O ∈V |O∩Ce ̸= /0}.

4 Again par on the intervals in each color class Vi into disjoint setsVi j for i ∈ {1,2},0≤ j ≤ ⌈q
2⌉ where

intervals in eachVi j form a clique. Let V ∗i = {Vi1,Vi2, . . .V⌈ q
2 ⌉} where i ∈ {1,2}.

5 APPROX ← /0
6 p(APPROX)← /0.
7 For allVb = {V ∗1 ,V ∗2 } andUb ∈ {U ∗

1 ,U
∗

2 , . . .U
∗

9 } {
8 Construct the weighted bipar te graph Gb(Vb,Ub,Eb).
9 There is an edge (Vi j,Ul p) ∈ Gb if and only if there exists Ok ∈ O such that vk ∈Vi j

10 and uk ∈Ul p.
11 The weight of the edge (Vi j,Ul p) is equal to maxOk |p(Ok)| where the maximum is taken over
12 all intervals Ok such that vk ∈Vi j and uk ∈Ul p. Thus each edge in Gb represents an interval.
13 Let M∗ denotes the maximum weighted matching in Gb and OM∗ to be corresponding collec on
14 of unit intervals.
15 If(p(APPROX)< p(OM∗))
16 {
17 APPROX ← OM∗

18 p(APPROX)← p(OM∗)
19 }
20 }

Theorem 6.2.3. We have following results to G C F S C for different restric ons
on C G and C OV as men oned below.

1. If C G is d-arboricity graph and C OV is also d-arboricity graph, then we have (d + 1)2 factor
approxima on to G C F S C .

2. If C G is d-arboricity graph and C OV is interval graph, then we have (d + 1) factor approxima on
to G C F S C .

Above theorem is based on the fact that d-arboricity graph is (d+1) colorable in polynomial me.

6.3 APPROXIMATION HARDNESS
Next, we consider another problem 2-P I CF-SC and show that it is APX-hard using

reduc on from M 2-SAT 3. This further helps in proving APX-hardness for many graph classes. Let two
length path denotes a tree on three ver ces. We define 2-P I CF-SC as follows.

2-P I CF-SC
Input: A universe P of n points, a set of m unit intervals I on X-axis, a conflict graph C G which is
a disjoint union of connected components where connected components are either isolated ver ces,
single edges or 2 length paths.
Ques on: Find the assignment to n variables so as maximum number of clauses can be sa sfied.
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We call a graph that is disjoint union of isolated ver ces, single edges and 2 length paths as a 2-path graph.
Again intersec on graph C OV (V,E) and conflict graph C G (U,E ′) both on set of intervals I are different
graphs and need not be isomorphic. The func ons f and p are defined as used previously.

The problem M 2-SAT 3 is defined as follows.

M 2-SAT 3
Input: A 2 CNF formula Π with set of n variables X = {x1,x2, . . . ,xm} and m clausesC = {c1,c2, . . . ,cn}
such that each variable occurs in at most 3 clauses.
Ques on: Find the assignment to n variables so as maximum number of clauses can be sa sfied.

This problem has been proved to be APX-hard by Ausiello and et. al. in [8],[9].

We use the following reduc on for 2-P I CF-SC. For each clause ci ∈ C, take a point
pi = (i+ .5i). These points cons tute the set P. Consider the variable x j ∈ ci. Let it is yth occurrence of the
variable x j in Π. Construct an unit interval v jw covering point pi only. Assume the variable x j ∈ cl and it is
wth occurrence of x j inΠ. Construct a unit interval v jy covering point pi only. Do it for all variables inΠ. Such
a set of intervals cons tute V ∈ C OV . Now we need to construct C G . Assume the variable xi ∈ X has j
many occurrences Xi = {xi1,xi2, . . . ,xi j} and xi ∈ X has ℓmany occurrences Xi = {xi1,xi2, . . . ,xiℓ}. Then we
construct a complete bipar te graph I = {Xi,Xi,E}. Do it for all the variables in X . We take C G =

∪n
i=1 Xi.

No ce that as a variable can occur at most thrice in Π, thus C G consists of union of disjoint sub-graphs
from Figure 6.3,(a). Hence CG is 2-path graph. The reduc on is illustrated through an example in Figure
6.3(b).

Π = (x1 ∨ x2) ∧ (x3 ∨ x1) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2)

c1 c2 c3

p1 p2 p3

x11
x21

x31
x11 x22x31

x12x21

COV

x11

x12
x11

x21

x22
x21

x31

x31

CG

(a)

(b)

c4

p4

Figure 6.3 : Reduction toM U I CF-SC fromM 2-SAT 3

Claim 6.3.1. Suppose op mal solu on of an instance of M 2-SAT 3 sa sfies m′ clauses. Then op mal
solu on to corresponding instance ofM U I CF-SC also covers m′ points and vice versa.

Proof. Consider the first case whereOPT is the set ofm′ clauses sa sfied in op mal solu on to the instance
of M 2-SAT 3. For each clause ci that is sa sfied in OPT , at least one of the literal should be true. Hence,
there exists a variable x ∈ ci such that either x is true or x is true. Without loss of generality let the literal be
x. Take all the unit intervals corresponding to x and their occurrences in Π into solu on MY SOL. These unit
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intervals will cover the point pi corresponding to ci and other points corresponding to the clauses which
x sa sfies. Hence, MY SOL covers at least m′ points. Consider the clause c j such that c j is not sa sfied in
OPT . Hence all the literals are false in c j. Without loss of generality, let y ∈ c j such that y is false. Hence, y
is true. Thus, we have already picked unit intervals corresponding to y in MY SOL. These are in conflict with
the intervals corresponding to y in C G and thus intervals corresponding to y can not be picked in MY SOL.
Hence, MY SOL covers at least m′ points. Thus if OPT sa sfies m′ clauses of Π then MYSOL covers at least
m′ points.

Now considerOPT to be the set of unit intervals in the op mal solu on to the instance ofM U
I CF-SC that covers m′ points. Let interval I ∈ OPT covers point pi. Without loss of generality let x
be the literal corresponding to I in Π. Put the value of x true in Π and include ci in MY SOL. Also include
all other clauses sa sfied by x into MY SOL. Due to construc on of C G , the assignment to the variables is
valid. So it for all the intervals inOPT . Thus, |MY SOL| ≥m′. Now let us consider the point p j that is covered
by two intervals I1 and I2. Assume I1, I2 /∈ OPT . Then I1 and I2 are in OPT . If not then we can include one
of I1 or I2 in OPT without losing validity of solu on which in turns increases the number of points covered
and thus contradic ng op mality of OPT . So, we can not make either of literals corresponding to I1 and I2
true and thus can not sa sfy clause c j. Hence, the number of clauses sa sfied is at most m′. Thus, if OPT
covers m′ points then MY SOL has m′ sa sfied clauses.

This proves the claim.

Using the above claim, we can prove APX-hardness of 2-P I CF-SC using strict reduc on.
This in turn proves the following theorem.

Theorem 6.3.1. The G C F S C is APX-hard for the following classes of conflict
graph C G an intersec on graph C OV .

1. C G is a tree and C OV is an intersec on graph on intervals lying on a line.

2. C G is a d arboricity graph for d ≥ 1 ∈ N and C OV is an intersec on graph on intervals lying on a
line.

3. C G is a unit interval graph and C OV is an intersec on graph on unit intervals lying on a line. Thus
it holds for general case of interval graphs too.

4. C G is a unit disc graph and C OV is an intersec on graph on unit disks lying in R2. Thus it holds for
general case of disks graphs too.

5. C G is a unit interval graph and C OV is an intersec on graph on unit coins lying in R2. Thus it holds
for general case of coins graphs too.

59




