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Introduction

The language of the universe isMathematics. Quantummechanics is a branch of theoretical
physics that describes the laws of the universe. Ideas from quantum physics play a significant
role in multiple facets of modern mathematics. For example, many parts of representation theory,
are motivated by quantum mechanics, such as, the quantum groups [Lusztig, 2010]. The Jones
polynomial in knot theory is another notable example [Atiyah, 1990]. Quantum information theory
[Nielsen and Chuang, 2002] is an application of quantummechanics to information theory. Graph
theory [West, 2001] is a well established branch of mathematics. This thesis is at the interface of
these two branches of knowledge.

1.1 THE INTERFACE OF GRAPH THEORY AND QUANTUMMECHANICS
Graph theory provides a backdrop for the exploration of scientific techniques in discrete

mathematics and combinatorics. It has utilizations in Physics, Chemistry, Biology, Engineering,
Operational Research, Neural network, Social Science, Finance, and Economics. Combinatorial
graphs provide a mathematical model for any system involving a binary relation. Mathematically,
a graph G = (V (G), E(G)) is a combinatorial object consists of a vertex set V (G) and an edge set
E(G) ⊂ V (G) × V (G). Combinatorial graphs performs a significant role in quantum information
theory. Below we discuss a number of ideas generated by this interface.

1.1.1 Quantum graph
The central idea of the quantum graph [Berkolaiko and Kuchment, 2013] is almost eighty

years old. It was first developed by Linus Pauling as a simple model to describe a number of or-
ganic molecules. It took two decades before the scheme was worked out [Ruedenberg and Scherr,
1953], and it was forgotten, later on. This lack of interest was strange because it has various attrac-
tive features. It gathers intuitions from a number of disciplines such as partial differential equation,
graph theory, combinatorics, spectral theory, and mathematical physics. From the eighth decade
of the last century it started growing up [Roth, 1984] due to its applications to the fabrication tech-
niques in solid state physics, to prepare structures of designed shapes in materiel and semicon-
ductor analysis etc. Quantum graph provides a very suitable model of electron’s movement in
microscopic “wires”.

The idea of quantum graph begins with metric graphs. A metric graph is a collection of
intervals joined together at their end-points. These intervals form the edges of a metric graph
whose vertices are the joints of these edges. Roughly speaking, a quantum graph is a metric graph
along with a differential operator (“Hamiltonian”) acting on functions defined on these intervals,
and with suitable boundary conditions at the vertices. From geometric perspective, a quantum
graph is an one dimensional complex along with a differential operator.

Quantum graphs [Berkolaiko, 2016] provide many non-trivial mathematical challenges.
Studying Schrödinger operators on metric graphs is a growing area of mathematical physics. It
is motivated by the applications of combinatorial graphs to physical phenomena. The utilization
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of graphs generates a simpler setting to study complex phenomena of quantummechanics, for ex-
ample scattering and resonances, Bose–Einstein condensation, Anderson localization, universality
of spectral statistics, nodal statistics, etc. The model of quantum chaos on graphs in another model
which utilize the idea of quantum graphs also.

1.1.2 Graph C* algebra
C* algebra [Arveson, 2012] is a subfield of functional analysis. C*-algebras were initially

considered for their applications in quantum mechanics to investigate the physical observables.
It began with Heisenberg’s matrix mechanics. Subsequently, Neumann attempted establishing a
general framework for these algebras. He wrote a series of papers on rings generated by oper-
ators. These papers are considered a special class of C*-algebras, also familiar as von Neumann
algebras. C*-algebras perform a crucial tool in the theory of unitary representations of locally com-
pact groups. It lies at the basis of quantum mechanics.

Graph C* algebra is a fascinating tool at the interface of graph theory and C* algebra. Here,
we use directed graphs. A directed graph is a graph consists of oriented edges joining pairs of
vertices. That is, there are edges (u, v) ∈ E(G) such that (v, u) /∈ E(G). These graphs are repre-
sented by operators on a Hilbert space H. Its vertices correspond to mutually orthogonal closed
subspaces of H. Also, the edges stand for the operators between the appropriate subspaces. The
graph algebra is the C*-algebra generated by these operators. For a highly connected graph with
finite vertices, the graph algebras coincide with a family of C* -algebras first studied by Cuntz and
Krieger in 1980 [Cuntz and Krieger, 1980].

The graph C* algebras are recognised for providing a rich supply of examples in operator
theory. It also provides a number of unexpectedmathematical situations. It is also utilised in com-
mutative algebras, non-commutative geometry, and as models for the classification of C* algebras.
Graph algebras are attractive due to its structure theory involving the algebraic properties related
to combinatorial paths in the underlined directed graph. This area is full of challenging mathe-
matical problems, but like many other branches of mathematics its applications in other fields of
science and technology is not clear yet.

1.1.3 Quantumwalk and state transfer
The quantum walk and state transfer on graphs [Konno, 2008] has significant applications

in quantum information and computation. In quantum information theory, quantum walk is cru-
cial as it generates high speed up in the quantum mechanical analogue of a number of classical
algorithms. From mathematical perspective, it is fascinating due to a number of mathematical
challenges involving the applications of spectral graph theory and special functions on graphs. In
spectral graph theory, we investigate characteristics of combinatorial graphs in terms of the eigen-
values of a number of matrices related to it. The Ihara zeta function [Terras, 2010] of graph has an
interesting connection to the discrete time quantum walk on graphs.

Quantum walk is the quantum mechanical analogue of classical random walk on graphs.
There are two types of quantumwalks: continuous timequantumwalk, anddiscrete time quantum
walk. A relationship with the Ihara Zeta function and discrete time quantum walk is studied via
the relationship of edge transition matrix and Grover unitary matrix [Konno and Sato, 2012]. The
quantum state transfer is a continuous time quantum walk on graph G [Coutinho, 2014]. There
are two models of perfect state transfer: XY model and XYZ model. Let A(G), and L(G) be an
adjacency matrix, and Laplacian matrix, respectively, of a graph G, defined later. Then the XY
model is governed by a Hamiltonian operator exp(itA(G)), with t ∈ R+. The graph G admits a
perfect state transfer from the vertex u to v if there is a time τ such that | exp(iτA(G))uv| = 1. In
the XYZ model, we consider the Laplacian matrix instead of adjacency matrix A(G). Therefore,
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the graph G admits a perfect state transfer from vertex u to vertex v if there is a time τ such that
| exp(iτL(G))uv| = 1.

Research on quantum walk and state transfer has attracted by Mathematicians, Physicists,
Computer scientists and Engineers. It is one of the rapidly growing topics at the interface of graph
theory and quantum.

1.1.4 Graph theory in quantum error correcting codes
Analysing quantum error correcting codes is a crucial task in quantum information and

communication. One may consider it as a quantum mechanical counterpart of error correcting
codes [Huffman and Pless, 2010] in classical information theory. A classical linear code is a sub-
space of a vector space which is represented by a generator matrix or a parity check matrix. The
standard forms of these matrices provide a scope to use matrices related to graphs in it. [Tonchev,
2002]. For instance, the binary matrix [I|A(G)] can be considered as a generator matrix of some
code, where A(G) is the adjacency matrix of a graph G.

The idea of quantum CSS code utilises the classical error correcting codes. Let C1 and C2 be
two classical error correcting codes such that {0} ⊂ C1 ⊂ C2. Then, the quantum CSS code with
codewords |0 L and |1 L which are defined by,

|0 L =
1$
|C1|

 

v∈C2

|u+ v where u ∈ C1, and

|1 L =
1$
|C1|

 

v∈C2

|u + v where u ∈ C2 − C1.
(1.1)

Graphs influence the CSS code when the underlined classical codes are related to graphs
[MacKay et al., 2004; Schlingemann andWerner, 2001]. Studying quantum codes in terms of graphs
is also an interesting topic at the interface of quantum information and graph theory that has at-
tracted mathematicians, physicists, and computer scientists.

1.1.5 Graph states
Graph states [Hein et al., 2004; Anders and Briegel, 2006] are multipartite entangled states.

They are defined on graphs where the vertices represent quantum spin systems and edges take
the role of their interactions. They are particularly important in quantum computation within the
framework of the one-way quantum computer associated with the quantum Fourier transform.
For graph states we investigate properties of quantum states in terms of graph theoretical terms.
Graph states are utilised in quantum error correction schemas, such as the concatenated CSS code,
and the stabilizer code. Graph states are interesting in quantum information and computation as
graphs generate an easier interface to describe very large multipartite quantum states.

1.1.6 Tensor network
Tensor network provides a scope of practical application of mathematical category theory

in quantum information and computation [Biamonte et al., 2011]. Graph theory is heavily used in
its foundation. Apart form its beautiful mathematical constructions, it has significant applications
in geometrization of biological systems. This geometrization furnish meaningful explanation of
functions of brain, and analysis of DNA structure. Also in Physics, it is utilised in the geometriza-
tion of gravitation, which was a major achievement in general relativity.

Tensor Network methods [Orús, 2014] have become very popular in recent years because
of their capability in simulating strongly correlated systems. Roughly, a tensor is a higher dimen-
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sional generalization of a matrix. Intuitively, the interconnection between two tensors is generated
by entanglement in quantum states represented by tensors. From another perspective, the tensor is
the DNA of the wave-function. The whole wave-function of the system can be reconstructed from
this fundamental piece. In this way, Tensor Network offers an efficient description of quantum
many-body states. This description is based on the entanglement contained in the wave functions.
Mathematically, the quantity and structure of entanglement is a consequence of the given pattern
of network or graph, and the number of parameters in the tensor. The density matrix renormal-
ization group [White, 1992], is one of the famous-most example of a tensor network.

We have briefly discussed a number of bridges between quantum mechanics, and graph
theory. There are many other such connections not listed above. In fact, new developments, par-
ticularly in tensor network, are developing at a very fast pace. Quantum probability has deep
connection with spectra of graphs [Hora and Obata, 2007]. Combinatorics plays a significant role
in addressing a number of unsolved problems in quantum unitary symmetry [Louck, 2008]. It is
our hope that the above collection of topics helps the reader to realise the importance of growing
research interest in the intersection of quantum mechanics and graph theory.

1.2 A BRIEF OVERVIEW ON OUR CONTRIBUTIONS
The present work could be said to have its roots in Braunstein et al. [2006b]. Given any

graph there are a number of positive semidefinite Hermitian matrices, for example, the Laplacian
matrix, and the signless Laplacian matrix. IfK(G) is a Laplacian matrix of the graphG, then there
is a density matrix defined by, ρ(G) = 1

trace(K(G))K(G). A density matrix represents a quantum
state. Therefore, properties of the quantum state can be investigated in terms of the corresponding
graph. In later years, a sequence of papers explored this field [Braunstein et al., 2006a; Wu, 2006a;
Hildebrand et al., 2008; Wang and Wang, 2007; Wu, 2010, 2009; Hassan and Joag, 2007, 2008; Xie
et al., 2013; Rahiminia and Amini, 2008; Hassan and Joag, 2008; Hui and Jiao, 2013; Li et al., 2015;
Adhikari et al., 2017; Lockhart and Severini, 2016; Belhaj et al., 2016; Zhao et al., 2017; Simmons
et al., 2017].

This thesis is distributed into seven chapters. The essence this work include both graph
theory and quantum information theory. Most mathematicians are already familiar with combi-
natorial graphs. For non-mathematicians we introduce nomenclatures of graph theory whenever
we need them for an application. Also, for mathematicians we discuss terminologies of quan-
tum information theory where they are particularly involved. In Chapter 2, we have minimally
introduced graph theory and quantum information which are mandatory for understanding the
remaining thesis. Constructions in this chapter will be recalled whenever required. We have in-
cluded a number of well-known quantum states whose density matrices are represented by the
Laplacian matrices of graphs. Chapter 3 contains graph theoretic interpretation of quantum gates
and a number of local unitary operations. Bell states are very useful in quantum information. We
have illustrated a graph theoretic procedure for generating Bell states. This opens up the use of
graph theory in quantum computation in future. We have discussed quantum entanglement in
Chapter 4. Quantum entanglement is a class of quantum correlation used as a resource in quan-
tum information theory. The idea of entanglement comes from the separability problem. We have
found out a class of graphs which corresponds to separable quantum states in higher dimensions.
Another class of quantum correlation is quantum discord, discussed in chapter 5. We have found
out conditions for zero and non-zero discord states. A graph theoreticmeasure of quantumdiscord
is also proposed. Constructing non-isomorphic cospectral graphs is one of the oldest problems in
spectral graph theory. Here, we have employed tools of quantum information theory in generating
non-isomorphic cospectral graphs. It is developed in chapter 6. We draw conclusions in chapter
7. At the end of every chapter, there is a list of open problems.
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