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Graph Theory and Quantum Information

There are many popular applications of graph theory in quantummechanics and informa-
tion theory. A Google search with “quantum mechanics and graph theory” received 6, 89, 000 results
0.49 seconds. The properties of mixed quantum states derived from the graph Laplacian matrices
is the fundamental concern of this thesis, which has its roots in a work in 2006 [Braunstein et al.,
2006b]. In this chapter, we present a brief introduction to quantum information and graph theory,
which will be of use in the later part of this work frequently. We assume a basic idea of linear
algebra and matrix analysis [Horn and Johnson, 2012] as a prerequisite for this work.

2.1 AN INTRODUCTION TO QUANTUM INFORMATION THEORY
The characteristics of quantum states are essential ingredients in quantum information and

computation. A quantum state is represented by a column vector belonging to a projective Hilbert
spaceH(N) of dimensionN . For brevity, we may leave out the word “projective”. Thus, from now
on, Hilbert space will imply a projective Hilbert space. Following the standard nomenclature of
quantum mechanics, we use Dirac’s notation |ψ to designate the state vector ψ. The conjugate
transpose of |ψ is denoted by ψ|. Standard inner product of two state vectors |ψ and |φ is
denoted by ψ|φ ∈ C. Also, |ψ φ| is the outer product between |ψ and |φ , which is a complex
square matrix.

In classical information and coding theory a binary digit or a bit is the basic unit of informa-
tion. A bit has one of the two values either 0 or 1. The quantum information theoretic counterpart
of a bit is the qubit. A quantum state inH(2) is called a qubit. The standard basis ofH2 is given by,

|0 , |1 : |0 =
1
0

, |1 =
0
1

, (2.1)

that is also called the computational basis. Thus, a qubit is represented by,

|ψ = α |0 + β |1 , where |α|2 + |β|2 = 1, and α, β ∈ C. (2.2)

A qudit is a quantum state in higher dimension. In general, the computational basis of H(N) is
given by,

{|di : |di = (0, 0, . . . 1(i-th position), 0, . . . 0)†}. (2.3)

Here, we use ‘†’ to indicate conjugate transpose. In general, a qudit is given by,

|ψ =
i

αi |di where
i

|αi|2 = 1, and αi ∈ C. (2.4)

Definition 2.1. Pure and mixed state: A quantum system is in a pure state if it can be represented with
a single state vector |ψ . If a quantum system has different states |ψi with probability pi, then we call the
state a mixed state. We may represent a mixed quantum system as an ensemble of pure state {pi, |ψi }.
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An alternative representation of quantum state uses the idea of density matrix. Mathemati-
cally the idea of state vector and the density matrix is equivalent. But, the density matrix approach
is more convenient for dealing with mixed states and we use throughout the thesis. In general we
utilize this idea throughout the thesis. An ensemble {pi, |ψi } can be used to represent a density
matrix as,

ρ =
i

pi |ψi ψi| , where pi > 0 and
i

pi = 1. (2.5)

The general definition of a density matrix is given below:

Definition 2.2. Density matrix: A density matrix ρ is a positive semi-definite Hermitian matrix with unit
trace.

In terms of density matrix, we can classify pure and mixed quantum states. A quantum
system represented by a density matrix ρ is in a pure state if there is a state vector |ψ such that
ρ = |ψ ψ|. Otherwise, the state is a mixed state that is a convex combination of pure states, as
represented in the above equation.

Different characteristics of pure andmixed states are discussed in literature [Barnett, 2009].
Recall that, given any state vector |ψ , the outer product |ψ ψ| is a rank one Hermitian positive
semi-definite matrix. Also, the convex combination of positive semi-definite Hermitian matrices
is again a positive semi-definite Hermitian matrix. Using this property we may identify density
matrices of pure and mixed states. In brief, we may write:

Lemma 2.1. A density matrix ρ represents a pure state if and only if rank of ρ = 1.

The Kronecker product is the best natural notation of a product for states living in differ-
ent spaces. We have mentioned that the space associated to quantum states is a Hilbert space H.
Quantum states are rays in H. In quantum mechanics, we want every action of an operator on
the individual state to define an action on the combined or product state. The Kronecker product
is exactly that. Given two Hilbert spaces H1 and H2 and linear map Ti : Hi → H3, the product
space, we have a bilinear map (T1, T2) : H1 ×H2 → H3. Corresponding to this bilinear map there
is a unique linear map, T1 ⊗ T2 : H1 ⊗H2 → H3 which is the Kronecker product. We define it as
follows.

Definition 2.3. Kronecker product: The Kronecker product [Van Loan, 2000] of two matrices A =
(aij)m×m and B = (bij)n×m is denoted by A⊗B and defined by A⊗B = (aijB)mn×mn.

Similarly, given two vectors |φ = (φ1, φ2, . . . φm) ∈ H(m) and |ψ = (ψ1, ψ2, . . . ψn) ∈ H(n) we
define the Kronecker product |φ ⊗ |ψ = (φ1 |ψ , φ2 |ψ , . . . φm |ψ ). In short, we denote it as |φψ .
Also the product Hilbert spaceH(m) ⊗H(n) is defined by,

H(m) ⊗H(n) = |ψ ⊗ |φ : |ψ ∈ H(m), |φ ∈ H(n) . (2.6)

Similarly, the product of k spacesH(ni), i = 1, 2, . . . k as follows:

k

i=1

H(ni) = |ψ1 ⊗ |ψ2 ⊗ . . . |ψk : |ψi ∈ H(ni) . (2.7)

It is easy to check that given vectors spaces, H(ni) : i = 1, 2, . . . k, the product space ⊗iH(ni) is also
a Hilbert space.
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Figure 2.1 : Examples of simple and weighted digraphs

A quantum state belongs toH(m)⊗H(n) is called a bipartite quantum state. A multipartite
quantum state belongs to k

i=1H(ni). We have mentioned earlier that a state in H(2) is called a
qubit. In a similar fashion, we call a states in H(2) ⊗ H(2) two qubit state. In general, a state in

k
i=1H

(2)
i is called a k-qubit state.

This provide the minimal terminology on quantum information theory needed for the the-
sis. More information will be discussed as and when required.

2.2 FROM GRAPH THEORY TO QUANTUM INFORMATION
Here, we clarify the connection between combinatorial graphs [West, 2001] and the density

matrices of the quantum state, in which we are interested. We begin with a brief introduction to
graph theory needed for this thesis. Then, we introduce Graph Laplacian states.

2.2.1 Essential terminologies of graph theory
A graph G = (V (G), E(G)) consists of a vertex set V (G) and an edge set E(G) ⊂ V (G) ×

V (G). Order of a graph is given by the number of its vertices. The directed edge ê = (u, v) is called
an outgoing edge from the vertex u and an incoming edge to the vertex v. A loop (u, u) is an edge
which starts and ends at the vertex u. A graph with directed edges is called digraph. The edge
weight function of G is a mapping wG : V (G)× V (G)→ C defined by,

wG(u, v) =
wu,v if (u, v) ∈ E(G),
0 if (u, v) /∈ E(G).

(2.8)

If edge weight is not specified we assume it one. A graph with multiple weighted directed edges
between two vertices is called a weighted multi-digraph. A weighted multi-digraph is shown in
the figure 2.1b. We call a graph as empty graph if it has an empty edge set.

A simple graph is a special case of weighted multi-digraph which consists of undirected
edges. An undirected edge e = (u, v) is a combination of two oppositely oriented directed edges
ê1 = (u, v) and ê2 = (v, u). Thus, if (u, v) ∈ E(G) then (v, u) ∈ E(G). Also, a simple graph has no
loop. Edge weight of its edges are 1. A simple graph is shown in figure 2.1a.

Definition 2.4. Subgraph: A graph H is said to be a subgraph of a graph G, if V (H) ⊂ V (G) and
E(H) ⊂ E(G). Also the weight function wH is a restriction of wG on E(H).

Definition 2.5. Induced subgraph: A subgraph H is an induced subgraph of the graph G provided given
u, v ∈ V (H) and (u, v) ∈ E(G) indicates (u, v) ∈ E(H).
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Figure 2.2 : A subgraph and an induced subgraph of a graph
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(c) Graph non-isomorphic toG

Figure 2.3 : Isomorphic and non-isomorphic copy of a graph

A subgraph is a part of a graph, widely used in graph theoretical applications. In the figure
2.2 we depict an examples of a subgraph and an induced subgraph.

Graph isomorphism problem is an important problem in graph theory and network anal-
ysis and is defined as follows:

Definition 2.6. Graph Isomorphism: Two graphs G and H are isomorphic if there is a bijective func-
tion f : V (G) → V (H) such that (u, v) ∈ E(G) ⇔ (f(u), f(v)) ∈ E(H), as well as, wG(u, v) =
wH(f(u), f(v)).

For simple graphs, weights of every edge is one and we neglect condition on edge weight.
Two isomorphic graphs have equal number of vertices and edges. Also, they have same strectural
properties such as chromatic number, spectral values, degree sequence etc. In this thesis, we call
two graphs G and H are equal if they are isomorphic with the identity mapping i acting as the
graph isomorphism.

Example 2.1. Consider the graph G in the figure 2.3(a) and H 2.3(b). This graph isomorphism is lead by
the bijective mapping f : V (G) → V (H) where f(v11) = v21, f(v12) = v22, f(v21) = v12, f(v22) = v11.
But the graph in the figure 2.3(c) is not isomorphic to 2.3(a) as it has an additional edge.

2.2.2 Basic assumptions on graphs
Graph theory and quantum mechanics are two different branches of science. The aim of

this thesis is to illuminate the interface of these two distinct subjects. The interaction between them
depends on a number of assumptions. For the development of the combinatorial visualization of
quantum states we need the following hypothesis on all the graphs used in this thesis.
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Assumption 2.1. Basic assumptions:

1. Given any directed edge ê = (u, v) ∈ E(G) there is an edge of opposite orientation (v, u) ∈ E(G).

2. The edge weight function satisfies the property w(u, v) = w(v, u), where w(v, u) is the complex
conjugate of w(v, u).

3. For any vertex u there may be at most one loop with non-negative real weight ru.

Existence of an undirected edge (u,v) indicates two directed edges of opposite orientations
(u, v) and (v, u) in E(G). If weight of all the undirected edges is 1 then w(u, v) = w(v, u) = 1.
Therefore, a simple graph follows the basic assumptions. Fromnowonwe shall consider only those
graphs which satisfies these assumptions. The first assumption states existence of two oppositely
oriented edges (u, v) and (v, u). Therefore for simplicity, instead of drawing two directed edges
(u, v) and (v, u) we shall draw one undirected edge (u, v).

2.2.3 Matrices related to graphs
Spectral graph theory is an interesting branch of graph theory. Graph spectra revels fun-

damental properties of graphs. It links the discrete mathematics to the continuous one through
algebraic, geometric and analytic techniques. In spectral graph theory, we study a number of ma-
trices corresponding to a given graph. Foundation of this thesis needs the definitions of adjacency
matrix, Laplacian and the signless Laplacianmatrices related to weighted digraphs which we shall
discuss now [Adhikari et al., 2017].

A graph consists of vertices and edges. Two vertices are adjacent if they are connected by
an edge. This adjacency relation between vertices is represented by amatrix, which is the adjacency
matrix, defined below for weighted graph:

Definition 2.7. Adjacency matrix: The adjacency matrix A(G) = (auv) associated to G is defined as

auv =






wuv, if (u, v) ∈ E;
wuv, if (v, u) ∈ E;
ru, if (u, u) ∈ E;

0, otherwise.

Degree of a vertex represents connectivity, and importance of a vertex in a graph. Vertex
degree and degree matrix is defined as follows:

Definition 2.8. Degree of a vertex: The weighted degree du of a vertex u ∈ V is given by du = n
v=1 |auv|.

Definition 2.9. Degree matrix: The degree matrix of a graph is a diagonal matrixD(G) = diag{du : u ∈
V (G)}.

Definition 2.10. Degree of a graph: Also degree of a graph d(G) is the sum of all the vertex degrees. In
short, d(G) = trace(D(G)).

A regular graph has equal degree for all the vertices. Let G be a regular graph of order
n. The degree of its vertices is r. Then the degree matrix is D(G) = rIn, where In is the identity
matrix of order n. A complete graph has all possible edges. In a simple graph of order n, an
individual vertex may be connected to maximum (n − 1) other vertices. Therefore, in a complete
simple graph degree of every vertices is (n − 1). Hence, complete graph is a regular graph such
that D(G) = (n− 1)In.
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The idea of Laplacian operator originally belongs to partial differential equations where it
is useful for studying, for example, energy flow in a system. In spectral graph theory, the Laplacian
matrix is its discrete counterpart. It can be used for investigating energy flow in a network. In our
work we use it to generate quantum density matrices corresponding to a graph.

Definition 2.11. Laplacian and the signless Laplacianmatrices: The Laplacian and the signless Lapla-
cian matrices are defined by L(G) = D(G)−A(G) and Q(G) = D(G) +A(G), respectively.

Every vertex of the graph represents a row and a column of the above matrices. Thus,
order of these matrices is the number of vertices in the graph. For simple graphs the above defini-
tions take a more simplified form under the assumption, wuv = wvu = 1 and ru,v = 0. Thus, the
adjacency matrix A(G) = (aij) for a simple graph G is given by,

auv =
1 if (u, v) ∈ E;
0, otherwise.

(2.9)

Also, degree of a vertex u becomes the number of edges adjacent to it. Degree matrix contains
vertex degrees in the diagonal. If L = (luv) and Q = (quv) be Laplacian and signless Laplacian
matrices of a graph, then

luv =






−1 if (u, v) ∈ E and u = v;

du if u = v;

0, otherwise;
, and quv =






1 if (u, v) ∈ E and u = v;

du if u = v;

0, otherwise;
. (2.10)

Algebraic properties of adjacency, Laplacian and signless Laplacian matrices are reviewed
in [Bapat, 2010; Merris, 1998; Cvetković and Simić, 2009, 2010a,b]. Below we mention a number of
useful properties of these matrices under the basic assumptions 2.1 on graphs:

1. The matrices A(G),D(G), L(G), and Q(G) are Hermitian matrices. Recall that a matrixM is
Hermitian ifM † =M .

2. The Laplacian matrices L(G) and Q(G) are positive semi-definite matrices. A matrix M is
positive semi-definite if its eigenvalues are non-negative.

3. If the graphs G andH be isomorphic then there is a permutation matrix P such thatA(H) =
PA(G)P †, L(H) = PL(G)P †, and Q(H) = PQ(G)P † holds simultaneously.

The above properties are essential in this thesis. Property 1 and 2 will be applicable for
defining density matrices. The point 3 has bidirectional significance in our work. It assures that
the adjacency matrix and the Laplacian matrices of two isomorphic graphs have equal spectra.
But, the converse is not true. Therefore, an interesting task in graph theory is to collect classes of
non-isomorphic graphs of equal spectra. We have provided amethod for constructing such graphs
in Chapter 6. In Chapter 4, we have utilized graph isomorphism as a global unitary operator to
generate entanglement using mixed quantum states.

2.2.4 Graph Laplacian quantum states and their properties
Now we are in position to discuss the connection between graphs and density matrices

representing quantum states. Recall that density matrix of a quantum state is a positive semi-
definite Hermitian matrix with unit trace.
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Figure 2.4 : Qubits |0 and |1 as graphs.

Definition 2.12. Graph Laplacian quantum states: A graph Laplacian quantum state is represented by
a density matrix of the form,

ρl(G) =
L(G)

trace(L(G))
or ρq(G) =

Q(G)

trace(Q(G))
,

whereL(G) andQ(G) are Laplacian and signless Laplacianmatrix of the graph, respectively. If no confusion
occurs we may denote ρl(G) and ρq(G) together with ρ(G).

Note that, trace(L(G)) = trace(Q(G)) = trace(D(G)) = d, degree of the graph. The above defini-
tion indicates, if ρ(G) = (ρuv) then

ρuv =






swuv
d if u = v and (u, v) ∈ E(G),

0 if u = v and (u, v) /∈ E(G),
du
d if u = v.

(2.11)

Here s = 1 for ρ(G) = ρq(G) and s = −1 for ρ(G) = ρl(G). If G be a simple graph, then wuv = 1 in
the above equation.

Note that, L(G) andQ(G) depend on the vertex labelling of the graph. Hence, two isomor-
phic copies of a graph represent two different quantum states. Properties of these two quantum
states differ significantly. Moreover, there is a graph Laplacian quantum state corresponding to
every graph but the converse is not true. In theorem 2.1, we present a necessary and sufficient
condition for a quantum state to be a graph Laplacian quantum state. Before that we present an
example and a counter example.

Example 2.2. Consider ρ0 = |0 0| = 1 0
0 0

and ρ1 = |1 1| = 0 0
0 1

. Graphs corresponding to ρ0

and ρ1 are shown in the figure 2.4. These graphs do not have any edge but have a loop of weight 1
2 .

Example 2.3. Consider the quantum state

ρ =
1

5
|0 0|+ 2

5
|0 1|+ 2

5
|1 0|+ 4

5
|1 1| = 1

5

1 2
2 4

.

We claim that this quantum state is not graphical, which will be justified in theorem 2.1. Note that, in this
case, ρ11 ≤ ρ12.

We need the definition of diagonally dominant matrix [Horn and Johnson, 2012] before stating
theorem 2.1. These matrices have a number of interesting properties which are useful in our work.
A Hermitian diagonally dominant matrix, whose diagonal entries are non-negative real number,
is always positive semidefinite.

Definition 2.13. Diagonally dominant matrix: A matrix A = (aij)N×N is said to be diagonally domi-
nant if |aii| ≥ N

j=1,j=i |aij| for all i = 1, 2, . . . N .
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Theorem 2.1. A quantum state ρ is a graph Laplacian state if and only if it is a diagonally dominant matrix.

Proof. Let order of the matrix ρ be N . If ρ has a graph representation, the weighted digraph G has
N vertices. When i = j and ρij = 0 there is a directed edge (i, j) with edge weight w(i, j) = ρij .
As ρ is a positive semi-definite Hermitian matrix, ρji = ρij . Thus (i, j) and (j, i) exists togther with
w(j, i) = w(i, j). Also as ρ is a positive semi-definite Hermitian matrix, all the diagonal entries ρii
is a non-negative real number. Besides, ρii = di + saii. Here s = −1 for ρl(G) and s = 1 for ρq(G).
Now,

ρii =di + saii =

N

j=1

|w(i, j)|+ sw(i, i) =
j=i

|w(i, j)|+ |w(i, i)|+ sw(i, i)

=
j=i

|ρij |+ |w(i, i)|+ sw(i, i).

(2.12)

As ρii is real, w(i, i)must be real in the above expression. Two cases arise.

• Case-I: Let w(i, i) = 0 or |w(i, i)| = −sw(i, i). In any case, ρii = j=i |ρi,j |.

• Case-II: Let w(i, i) = 0 and |w(i, i)|+ sw(i, i) = 2|w(i, i)|. Then, from the above equation,

|w(i, i)| =
ρii − i=j |ρij |

2
≥ 0. (2.13)

In this case, ρii ≥ i=j |ρij|.

Combining them we come to the conclusion.

2.2.5 Revisit pure and mixed states
Nowwe like to recall the definition 2.1 of pure andmixed states. Pure states is represented

by a state vector. A mixed quantum state, on the other hand, requires an ensemble of pure states
or a density matrix with rank > 1. In practice a mixed quantum state is much more likely to
occur as interaction with the ambient environment causes a pure state to becomes mixed. Various
types of noises occur when we try to transmit a pure quantum state via a channel. Thus, studying
properties ofmixed quantum states is crucial in quantummechanics and information. Before going
to thedetailed studyofGraph Laplacian quantum stateswe should state some conditions to classify
pure and mixed states.

A vertex is an isolated vertex in a graph if it is not connected to any other vertex with an
edge. Thus degree of an isolated vertex is zero. Also the row and the column corresponding to
an isolated vertex consists of zeros only. Thus, existence of isolated vertex reduce the rank of the
densitymatrix in a graph. Recall that, a densitymatrix of a pure state is a rank onematrix. Another
characteristics of rank of a squarematrix follows from number of its non-zero eigenvalues. Rank of
thematrix is equal to the number of non-zero eigenvalues of thematrix. Rank one densitymatrices
corresponding to a few classes of graphs. The following result holds for simple graphs.

Theorem 2.2. The densitymatrix of a simple graphG is pure if and only ifG = K2 orG = K2 v1 v2 . . . vl,
for some isolated vertices v1, v2, . . . , vl. [Braunstein et al., 2006b]

HereK2 is the complete graph consistingof twovertices and an edge joining them. Thus,G consists
of only one edge and all disjoint vertices. This result was generalized in [Adhikari et al., 2017] for
directed graphs with loops. Let O1 represents a graph with only one vertex having a weighted
loop. Adding some additional isolated vertices with it we get a new graph Ô1 = O2 v1 v2 . . . vl.
Several examples of well known pure states are shown in the next section.
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Figure 2.5 : A star graph which corresponds to a state inH(2) ⊗H(3).

Theorem 2.3. Let G be a weighted digraph with loops having non-negative weights and is isomorphic to
Ô1. Then ρq(G) defined by the signless Laplacian of G represents a pure state [Adhikari et al., 2017].

These above two results show that the class of graphs representing pure quantum states is very
limited. In general, a graph consists of more than one loop or edge. Thus, graph Laplacian quan-
tum states are mixed, in general. Therefore, they provide a platform for studying properties of a
broad class of mixed quantum states, where we utilize well established graph theoretic techniques.
Consider the following example.

Example 2.4. Let us consider a star graph of order 6 depicted in the figure 2.5. The density matrices corre-
sponding to Laplacian and signless Laplaocian matrices are given by,

ρl(G) =
1

10





1 0 0 0 −1 0
0 1 0 0 −1 0
0 0 1 0 −1 0
0 0 0 1 −1 0
1 −1 −1 −1 5 −1
0 0 0 0 1 −1




, and ρq(G) =

1

10





1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 1 0
1 1 1 1 5 1
0 0 0 0 1 1




.

One may easily check that the above density matrices represents mixed quantum states. Quantum states
related to star graphs have many important properties, studied in literature. All of them are entangled
irrespective of vertex labellings due to their particular combinatorial structure [Braunstein et al., 2006b].

2.2.6 Relation between clustering on the vertex set and Hilbert spaces
In the last subsection, we have defined the Graph Laplacian quantum states and stated

conditions for a quantum state to be in this class. Recall that, a density matrix acts on a Hilbert
space, which may have a tensor product structure. For example a density matrix ρ of order 4may
represent a state inH(4) orH(2)⊗H(2). Whenwe deal with densitymatrices, the underlinedHilbert
space should be clarified from the graph.

Let a graph Laplacian quantum state inH(m)⊗H(n) be represented by the density matrix ρ
corresponding to the graph G with N vertices. Then, N = m× n. We partition the vertex set into
m disjoint clusters each containing n vertices as follows.

V = C1 ∪ C2 ∪ · · · ∪Cm;

Cµ ∩ Cν = ∅ for µ = ν and µ, ν = 1, 2, . . .m;

Cµ = {vµ1, vµ2, . . . vµn}.
(2.14)

For any vertex vµi, the Roman index i represents the position of a vertex in µ-th cluster which is
indexed by a Greek index. The clustering arrange the graphs as a two dimensional grid graph
as depicted in the figure 2.6. Also it partitions all corresponding matrices into blocks. Below we
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Figure 2.6 : Grid structure of the vertex set after clustering.

constitute the adjacency matrix as a block matrix.

A(G) =





A11 A12 . . . A1m

A21 A22 . . . A2m
...

... . . . ...
Am1 Am2 . . . Amm





N×N

, (2.15)

where Aµν are blocks of order n× n [Dutta et al., 2016b]. As A(G) is a Hermitian matrix, we have
A†

µµ = Aµµ and A†
µν = Aνµ, for µ = ν. The induced subgraph generated by Cµ is denoted by Cµ .

Note that, the adjacency matrix of the subgraph Cµ is given by the block Aµµ. For µ = ν, the
subgraph generated by the vertex setCµ ∪Cν and all the edges {(u, v) : u ∈ Cµ, v ∈ Cν} is denoted
by Cµ ∪ Cν . The block Aµν gives the adjacency relations in the graph Cµ ∪ Cν . The adjacency
matrix of Cµ ∪ Cν is

A( Cµ ∪ Cν ) =
0 Aµν

A†
µν 0

. (2.16)

Similarly, the Laplacian and signless Laplacian matrix and their corresponding density matrices
are also partitioned into blocks.

Let the computational basis ofH(m) andH(n) be {|µa } and {|µb }, respectively. AlsoEµν =
|µa νa|, and Bµ,ν = tracea[(|µa νa| ⊗ Ib)ρ], where Ib is the identity matrix acting on H(n). A
bipartite quantum state ρ acting onH(m) ⊗H(n) can be represented as,

ρ =
µ,ν

Eµν ⊗Bµν . (2.17)

If we partition the density matrix ρmn×mn intom2 blocks of order n then Bµν would be the blocks
of ρ. Now considering the graph representation of ρ we may construct the following relations
between Bµν and Aµ,ν

Bµν =
s
Aµν

d if µ = ν
Dµ+sAµµ

d if µ = ν,
(2.18)

where s = 1 for ρq(G) and s = −1 for ρl(G).

For simplicity, a multipartite systemmay also be represented by a number of bipartite sys-
tems. Some specifications help us to assume them as a bipartite system, which fulfil our needs.
As an example, consider n-qubit quantum states, which belongs to the Hilbert space C(2) ⊗C(2) ⊗
· · ·⊗C(2)(n-times). It may be considered as a bipartite systemHA⊗HB, whereHA = C(2)⊗C(2)⊗
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· · · ⊗ C(2)(n − 1) times) and HB = C(2). An n-qubit quantum state is given by a density matrix of
order 2n. Hence, the density matrix ρ(G) corresponding to a graph G with 2n vertices represents
an n-qubit quantum state. we consider a partitions of the vertex set

V (G) = ∪2n−1

µ=1 Cµ, (2.19)

where Cµ = {vµ,1, vµ,2}. Then from the equation (2.15) we write,

Aµ,µ =
w(vµ,1, vµ,1) w(vµ,1, vµ,2)
w(vµ,2, vµ,1) w(vµ,2, vµ,2) 2×2

=
w(vµ,1, vµ,1) w(vµ,1, vµ,2)
w(vµ,1, vµ,2) w(vµ,2, vµ,2) 2×2

and Aµ,ν =
w(vµ,1, vν,1) w(vµ,1, vν,2)
w(vν,2, vµ,1) w(vµ,2, vν,2) 2×2

=
w(vµ,1, vν,1) w(vµ,1, vν,2)
w(vµ,1, vν,2) w(vµ,2, vν,2) 2×2

.

(2.20)

The above equations will come into use when we shall consider n qubit systems.

2.3 GRAPH STRUCTURE OF SOME QUANTUM STATES
In this section, we provide weighted digraphs whose density matrices represent a graph

Laplacian quantum state having potential applications in quantum information and computation.
Facets of quantum correlations such as entanglement, discord are useful resources. For the time
being we consider them as properties of quantum states. Their formal definitions will be stated in
later chapters.

2.3.1 Two qubit entangled states and Bell States
We have mentioned earlier that the simplest quantum state used in quantum information

theory is a qubit. The minimal bipartite system consists of two qubits. A two qubit entangled
quantum state is represented by,

|ψ = a |00 + b |11 , (2.21)

where a, b ∈ C \ {0}, and |a|2 + |b|2 = 1. Their density matrices are given by,

|ψ ψ| = 1

2





|a|2 0 0 ab
0 0 0 0
0 0 0 0
ab 0 0 |b|2



 . (2.22)

The density matrix associated with G is given by any of ρl(G) or ρq(G). Consider the graph in
Figure 2.7a. The graph has two loop of weight |a|2−|ab|, and |b|2− |ab| on the vertices v11, and v22,
respectively, as well as an edge of weight w(v11, v22) = ab.

Bell states [Einstein et al., 1935; Bell, 1964] are maximally entangled two qubit states. We
use them in bipartite quantumteleportation, dense coding and cryptography [Nielsen andChuang,
2002]. They are represented as

|φ± =
1√
2
|00 ± |11 , and |ψ± =

1√
2
|01 ± |10 . (2.23)

The corresponding density matrices are given by,

|φ± φ±| = 1

2





1 0 0 ±1
0 0 0 0
0 0 0 0
±1 0 0 1



 and |ψ± ψ±| = 1

2





0 0 0 0
0 1 ±1 0
0 ±1 1 0
0 0 0 0



 . (2.24)

These density matrices corresponding to the following graphs G and H, respectively are depicted
in Figure 2.7b. We may generalize them in higher dimension, adding more isolated vertices.
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•11

❊❊
❊❊

❊❊
❊❊

•12

•21 •22

(a) A 2-qubit entangled state

G = •11

❊❊
❊❊

❊❊
❊❊

•12

•21 •22

H = •11 •12

②②
②②
②②
②②

•21 •22

(b) Bell states

Figure 2.7 : 2-qubit entangled states

•1

✰✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰ •2

•3 •4

•5 •6

•7 •8

(a) |ψ (1,8)

•1 •2

✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓

•3 •4

•5 •6

•7 •8

(b) |ψ (2,7)

•1 •2

•3

❇❇
❇❇

❇❇
❇❇

•4

•5 •6

•7 •8

(c) |ψ (3,6)

•1 •2

•3 •4

⑤⑤
⑤⑤
⑤⑤
⑤⑤

•5 •6

•7 •8

(d) |ψ (4,5)

Figure 2.8 : 3 qubit GHZ states

2.3.2 Three-qubit GHZ States
We apply three qubit quantum states when we involve three parties in a quantum infor-

mation theoretic task. There are two classes of three qubit pure entangled states: W class and GHZ
class [Greenberger et al., 1990; Dür et al., 2000]. Graph theoretic representation of W class states
need some additional settings which will be stated in the next subsection. The eight orthogonal
GHZ states are,

|ψ (1,8) =
1√
2
|000 ± |111 , |ψ (2,7) =

1√
2
|001 ± |110 ;

|ψ (3,6) =
1√
2
|010 ± |101 , |ψ (4,5) =

1√
2
|011 ± |100 .

(2.25)

Wemay represent their graphs as ρl(G) or ρq(G). The graphs corresponding to Equation (2.25) are
given in Figures 2.8. They consists of one edge and isolated vertices. In higher dimensions they
can be represented in a similar manner but with more isolated vertices.

2.3.3 Quantum states with signed Laplacian matrices
In [Adhikari et al., 2017] a new Laplacian matrix called signed Laplacian matrix was intro-

duced. The density matrix for these classes of states can be expressed as L−(G)
trace(L−(G)) , where L−(G)
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2|a|(|a|−|b|−|c|) ab

ac

4 |b|(|b|−|a|−|c|)

5|c|(|c|−|a|−|b|)
cb

⑦⑦⑦⑦⑦⑦⑦⑦
1◦ 3◦ 6◦ 7◦ 8◦

(a) 3 qubit W state in general

2−1
1

1

4 − 1◦ 3◦ 6◦ 7◦ 8◦

5−1

1

(b) 3 qubit W states for specific parameter values

Figure 2.9 : 3 qubit W states

is the signed Laplacian matrix of G. Like all other Laplacian matrices, L−(G) is also a positive
semi-definite Hermitian matrix. In this case a graph representing a pure state may have multiple
weighted directed edges and loops. Using it we represent the following quantum states, without
going to further details.

The general three-qubit W state is given by |ψ W
123 = a |001 + b |010 + c |100 where |a|2 +

|b|2 + |c|2 = 1. The graph representation of the density matrix |ψ W
123 ψ|W123 is given in the figure

2.9a. For a specific case, when a = b = c = 1√
3
, figure 2.9b represents a standardW state.

The four qubit cluster [Briegel and Raussendorf, 2001] and Chi [Yeo and Chua, 2006] states
are given by |ψ 1234 =

1
2(|0000 + |0101 + |1010 −|1111 ) and |φ 1234 =

1
2(|0000 + |0101 + |1011 −

|1110 ), respectively. Their graph representations are depicted in the figure 2.10a and 2.10b.

2.3.4 Werner state
AWerner stateWerner [1989] is a bipartite mixed quantum state inH(d)⊗H(d). It is invari-

ant under the unitary transformation U ⊗ U , where U is an unitary operator acting on H(d). It is
represented by,

ρx,d =
d− x
d3 − d

I +
xd− 1

d3 − d
F, (2.26)

where F = d
i,j |i j| ⊗ |j i|, x ∈ [0, 1] and d is the dimension of the individual subsystems. As

the Werner state belongs to H(d) ⊗H(d), the density matrix ρx,d is a symmetric matrix of order d2.
All theWerner states are graph Laplacian states. As ρx,d acts on the spaceH(d)⊗H(d), we partition
the vertex set into d clusters Cµ, µ = 1, 2, . . . d, each having d vertices. The corresponding digraph
has three types of edges:

1. Loops at diagonal vertices v11, v22, . . . vdd having loopweightsw(vµ,µ, vµ,µ) = (d−1)+(d−1)x.

2. Loops at non-diagonal vertices {vµ,i : µ = i} having loop weights w(vµ,i, vµ,i) = d− x.

3. Non-loop edges with weight w(vµ,i, vi,µ) = dx− 1. Note that, there is only one edge between
two different clusters. All such edges are diagonal and parallel to each-other.

17



1◦−2
1

−1 1
❊❊

❊❊
❊❊

❊❊
6◦ −2

−1

2◦ 3◦ 4◦ 5◦ 7◦ 8◦

11◦−2
−1

−1

②②②②②②②②
16◦ −2 9◦ 10◦ 12◦ 13◦ 14◦ 15◦

(a) 4 qubit cluster states

1◦−2
1

1
1
❊❊

❊❊
❊❊

❊❊
6◦ −2

−1

2◦ 3◦ 4◦ 5◦ 7◦ 8◦

12◦−2
−1

−1

②②②②②②②②
15◦ −2 9◦ 10◦ 11◦ 13◦ 14◦ 16◦

(b) 4 qubit Chi state

Figure 2.10 : 4 qubit cluster and Chi states

The following example would help to illustrate this structure. Properties of Werner state will be
discussed in the later chapters.

Example 2.5. We may represent ρx,3, and ρx,4 as a graph with 9 and 16 vertices depicted in figure 2.11.
The edge weights a, b, and c represents weights of different classes of edges discussed above.

2.3.5 Isotropic state
An isotropic state belongs to H(d) ⊗H(d). This state is invariant under the transformation

U ⊗ U †, where U is a unitary operator acting onH(d). Its density matrix ρd,x is defined by,

ρd,x =
d2

d2 − 1

(1− F )
d2

I + F − 1

d2
P , (2.27)

where F ∈ [0, 1] is the fidelity of the quantum state and P = |ψ ψ|where |ψ = 1√
d i |ia |ib , the

maximally entangled state in dimension d. Considering diagonal and off-diagonal terms we may
conclude that an isotropic quantum states is graphical provided

(d− 1) F − 1

d2
≤ d2 − 1

d2
F. (2.28)

Putting d = 2, 3, 4 in the above equation we get, 17 ≤ F ≤ 1, 1
13 ≤ F ≤ 1

5 ,
1
11 ≤ F ≤ 1

21 , respectively.

As ρd,x acts onH(d)⊗H(d), we represent the vertex set into d clustersCµ : µ = 1, 2, . . . dwith
Cµ = {vµ1, vµ2, . . . vµn}. We observe that a graph representing an isotropic state has the following
properties.

1. The diagonal vertices v1,1, v22, . . . vdd form a complete graph which consists of all non-loop
edges of the graph. Weight of these edges are F − 1

d2
.

2. The loop weight of the non-diagonal vertices is 1−F
d2

.

3. The loop weight of the diagonal vertices are given by d2−1
d2 F .
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•2,1 •2,2 •2,3

•3,1 •3,2 •3,3

a

a

a

b

b

b

b

b

b

c

c
c

a = 2 + 2x
b = 3 - x
c = 3x - 1

(a) Graph for ρx,3

•1,1 •1,2 •1,3 •1,4

•2,1 •2,2 •2,3 •2,4

•3,1 •3,2 •3,3 •1,4

•4,1 •4,2 •4,3 •4,4

a

a

a

a

b

b

b

b

b

b b

b

b

b

bb
c

c
c

c
c

c

a = 3x + 3
b = 4 - x
c = 4x - 1

(b) Graph for ρx,4

Figure 2.11 : Graphs of someWerner states

•2,1

•2,2

•1,1

•2,2

(a) ρ2,x

•31 •32 •33

•21 •22 •23

•11 •12 •1,3

(b) ρ3,x

•41 •42 •43 •44

•31 •32 •33 •34

•21 •22 •23 •24

•11 •12 •13 •14

(c) ρ4,x

Figure 2.12 : Graphs of some Isotropic states.

All isotropic states are separable forF < 1
d . Otherwise, they are entangled andviolate the reduction

criterion of separability.

Example 2.6. Graph representations of the isotropic state ρd,x for d = 2, 3, 4 are depicted in the figure 2.12.
In the picture, all the edges and loops are weighted as described above.

2.3.6 X state
TheX-state is well known in quantum information theorydue to the specific structure of its

densitymatrix. Here, we consider graph LaplacianX-states living inH(m)⊗H(n). Hence, as before
the vertex set of the corresponding digraph has m clusters Cµ, µ = 1, 2, . . .m, each containing n
vertices. The distribution of the non-zero elements in the density matrices suggests that the edge
set has the following combinatorial characteristics:

1. If the bipartite subgraph Cµ, Cν is non-empty then all the edges are of the form (vµk, vν(n−k))
for k = 1, 2, . . . n.

2. There is only one non-empty subgraph Cα with edges of the form (vαk, vα(n−k)) for k =
1, 2, . . . n.
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(a)X state acting onH3 ⊗H3.

•1,1

•2,1

•3,1

•1,2

•2,2

•3,2

•1,3

•2,3

•3,3

•1,4

•2,4

•3,4

(b)X state acting onH3 ⊗H4.

Figure 2.13 : Graphs of someX states.

Conversely, if the edge set of any graph follows the above two properties the corresponding quan-
tum states will be classified as anX state.

Example 2.7. Some of the graphs ofX states without edge weights and directions are depicted in the figures
2.13a and 2.13b.

2.4 WHAT NEXT?
We initiated this chapter with a minimal basic overview of quantum information theory.

Then we have developed the idea of graph Laplacian states which was introduced in [Braunstein
et al., 2006b]. Later it was extended for signless and signed Laplacian matrices of weighted di-
graphs in [Adhikari et al., 2017]. Investigating different properties of quantum states via combina-
torial graphs is a broad general problem. We identify the following problems which have not been
discussed earlier. They are important from the perspective of the interface of quantum information
and graph theory, the subject of this thesis.

1. Unitary evolution of quantum states are well studied in quantum mechanics. In quantum
information theory we use a number of unitary operators as the quantum counterpart of
computational gates. Can we capture the action of quantum gates from a graph theoretic
perspective?

2. Separability problem is interesting in quantum mechanics and information theory. How to
detect an entangled state using its graph structure? An entangled state is generated from
a separable state applying a global unitary transformation. Well know procedure of entan-
glement generation is the generation of Bell state. Can we generate a mixed entangled state
from amixed separable state? Note that, graph Laplacian states are mixed quantum states in
general.

3. Quantumdiscord is another quantum correlationwhich has recently being used as a resource
of quantum information. The reason behind classifying zero and non-zero quantum discord
state is manifold. Can we classify the graph Laplacian states with zero discord?

4. Themain theme of thiswork is in the interface of quantum information andgraph theory. Are
the techniques of quantum information theory useful for elucidation of non-trivial problems
in graph theory?

The above questions will be discussed in the subsequent chapters of this thesis.
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