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Graph Theoretic Aspects of Quantum Dynamics

Dynamics is concerned with a study of motion of elements. In general we study changes in
motion, stability, and state of an elementwith time by a system of differential equations depending
on time. Quantum dynamics is the quantum version of classical dynamics. Unitary evolution of
quantum state is a crucial component of quantum dynamics. A number of unitary operators act as
quantumgates which are quantummechanical counterparts of classical logic gates. In this chapter,
wepresent a graph theoretical analog of these logic gate operations. The bulk of thework presented
in this chapter follows [Dutta et al., 2016a].

3.1 AN INTRODUCTION TO UNITARY EVOLUTION AND GRAPH SWITCHING
We have seen in Chapter 2 that in quantum mechanics a state is represented by a state

vector belonging to an appropriate Hilbert space or a density matrix of appropriate order. Time
evolution of the quantum state is given by the time dependent Schrödinger equation

i
∂

∂t
|Ψ(r, t) = Ĥ |Ψ(r, t) , (3.1)

where |Ψ(r, t) is state of the particle at time t and position r, and Ĥ is the system Hamiltonian, a
Hermitian matrix. Assuming a time independent Hamiltonian H, a solution of the equation may
be given by,

|Ψ = exp − i Ĥt |Ψ , (3.2)

As Ĥ is a Hermitian matrix, exp(− i Ĥt) is a unitary operator. Thus, evolution of quantum states
are given by unitary operations on them. Given any unitary operator U , UU † = U †U = I where
U † is the conjugate transpose of U . If |Ψ be the new state after a unitary evolution U on the state
|Ψ , then |Ψ can be represented by,

|Ψ = U |Ψ . (3.3)

If the quantum system is represented by an ensemble of quantum states {pi, |ψi } the unitary evo-
lution on the system is given by {pi, U |ψi }. Recall that, in terms of density matrix the system can
be given by ρ = i pi |ψi ψi|. If ρ be the new density matrix after the unitary evolution then,

ρ =
i

piU |ψi ψi|U † = U
i

pi |ψi ψi| U † = UρU†. (3.4)

Definition 3.1. Local and global unitary operator: Consider the state |ψ = |ψ1 ⊗ |ψ2 ⊗ |ψn such
that |ψ ∈ Hi. Let U be an unitary operator acting on |ψ . If we can represent U = U1 ⊗ U2 ⊗ · · · ⊗ Un

where Ui acts on the state vectors belonging toHi, then U is called a local unitary operator. Otherwise U is
a global unitary operator.
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Example 3.1. Consider the unitary operator of order 4

CNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (3.5)

Note that, we can not write CNOT = U1 ⊗ U2 such that U1, and U2 act on states inH(2). Thus, CNOT
is a global unitary operator. But, for another unitary operator

U =





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



 =
1 0
0 1

⊗ 0 1
1 0

. (3.6)

Therefore, U is a local unitary operator.

Unitary operators of order 2 forms an algebraic group under matrix multiplication, which
is denoted by U(2). The special unitary group is denoted by SU(2) which contains all unitary
matrices of order 2 and determinant 1. Formally we can write,

SU(2) =
α −β
β α

: α, β ∈ C, |α|2 + |β|2 = 1 =
eiφ1 cos θ eiφ2 sin θ
−e−iφ2 sin θ e−iφ1 cos θ : |eiφ1 | = |eiφ2 | = 1 .

(3.7)

There is a Lie algebra corresponding to SU(2) which is given by,

su(2) =
ia −z
z −ia : a ∈ R, z ∈ C , (3.8)

and is generated by the Pauli matricesX =
0 1
1 0

, Y =
0 −i
i 0

, and Z =
1 0
0 −1 .

In quantum computation, we use the PauliX, Y ,Z, and theHadamardH = X+Z√
2

operators
as quantum gates. They are quantummechanical counterparts of logic gates, which play a key role
in classical computation. We use Kronecker products of their combinations on the system of qubits,
which forms a quantum circuit. Therefore, a unitary evolution of a multi-qubit quantum system
can be performed by local unitary operators of the form

Uk = U (1) ⊗ · · · ⊗ U (k−1) ⊗ U ⊗ U (k+1) ⊗ · · · ⊗ U (n), (3.9)

whereU ∈ {X,Y,Z,H} andU (j) = I2 the identitymatrix of order 2when j = k, and k = 1, 2, . . . , n.
Here Uk acts on the k-th qubit in an n-qubit system. Nowwe transit to the graph theory for further
development.

We have shown that there is a quantum state represented by the density matrix ρ(G) cor-
responding to a graph G. Recall, from the subsection 2.3.1, that a single qubit can be represented
by a graph with two vertices (see figure 2.4). In general, a n-qubit quantum state is represented
by a graph with 2n vertices partitioned into 2n−1 clusters. Thus, a unitary evolution on n-qubit
quantum state can be identified as a combinatorial operation on a graph with 2n vertices. In graph
theory, such types of operations are called graph switching. Two graphs G = (V (G), E(G)) and
H = (V (H), E(H)) are switching equivalent if V (H) = V (G), and E(H) is given by E(G) after
removing/adding someweighted edges and/or altering weights of the edges inG. In this context,
Seidel switching is a well known technique for generating co-spectral graphs.

22



•01
2 •1

X−→ •0 •1 1
2

•0 •1 1
2

X−→ •01
2 •1

Figure 3.1 : X-gate operation on |0 and |1 .

Given a graph G of order 2n we generate new graphs GUk by applying switching methods
on G such that ρ(GUk) = Ukρ(G)U

†
k for some unitary matrix Uk defined in equation (3.9). The

unitary matrix Uk of order 2n given in (3.9) is a local unitary transformation acting on the Hilbert
space C2n ≡ C2⊗C2⊗ · · ·⊗C2. We show that when Uk is applied on a density matrix of a n-qubit
quantum state ρ(G), obtained by signless Laplacian matrix associated with a weighted graph G,
the resulting unitary transformation can be realized by suitable graph switchings. We call G and
GUk as local unitary equivalent graphs.

In this chapter, we like to visualize graph theoretic interpretation of a number of quantum
gates widely used in quantum computation [Dutta et al., 2016a]. For simplicity, we restrict our
attention to weighted undirected graphs and the density matrices corresponding to their signless
Laplacian matrices. For Laplacian matrices all the constructions will be equivalent and hence is
not discussed here.

3.2 OPERATIONS ON SINGLE QUBIT QUANTUM STATES
We begin with the density matrices of the simplest quantum state |0 and|1 , that is ρ0 =

|0 0| and ρ1 = |1 1|, which corresponds to the graphs depicted in 2.4. Useful unitary opera-
tions on qubits are generated by the Pauli X, Y, Z and the Hadamard H transformation. We now
represent these evolutions as graphical operations:

1. X gate: TheX gate is considered as a quantum equivalent to the NOT gate in classical com-
putation which changes the bits 0 to 1 and 1 to 0. As, X |0 = |1 and X |1 = |0 in terms of
density matrices, Xρ0X† = ρ1 and Xρ1X† = ρ0. Thus, applying X gate on ρ0 is equivalent
to removing loop of weight 1

2 from node 0 and adding a loop of weight 1
2 at node 1. The

graphical changes are similar for ρ1, which are illustrated in the figure 3.1.

2. Y gate: The Y gate acts as X gate with an additional phase shift. Precisely, Y |0 = i |1 and
Y |1 = −i |0 . Clearly, Y ρ0Y † = ρ1 and Y ρ1Y † = ρ0. The graphical representation of Y gate
is equivalent to that ofX above.

3. Z gate: The Z gate keeps |0 unchanged and converts |1 to − |1 . Therefore, Z |0 = |1 and
Z |1 = − |1 . Here Zρ0Z† = ρ0 and Zρ1Z† = ρ1. Thus their is no change in the graph.

4. H gate: WehaveH |0 = 1√
2
(|0 +|1 ) andH |1 = 1√

2
(|0 −|1 ). Note that,Hρ0H† = 1

2

1 1
1 1

.

It is the signless Laplacian density matrix corresponding to a graph with two vertices and an

edge. Similarly, Hρ1H† = 1
2

1 −1
−1 1

. It corresponds to a graph with two vertices with an

edge of weight -1. The graphical representations ofH are depicted in the figure 3.2.

Although the graphical changes for Y and Z gate are insignificant for a single qubit, we may find
differences when multi-qubit systems are considered, as in the next section.
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H−→ •0 1 •1

•0 •1 1
2
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Figure 3.2 : H -gate operation on |0 and |1 .

3.3 OPERATIONS ONMULTI-QUBIT QUANTUM STATES
Recall the unitary operator Uk acting on the n qubit quantum state mentioned in the equa-

tion (3.9). For simplicity we start our calculations with Un which is,

Un = U (1) ⊗ U (2) · · · ⊗ U (n−1) ⊗ U, (3.10)

where U (i) = I , the identity matrix of order 2, for i = 1, 2, . . . (n − 1) and U ∈ {X, Y, Z,H}.
Therefore, the quantum gate U acts on n-th qubit in an n-qubit quantum state and the other qubits
remain unaltered. Later we shall establish an isomorphism to calculate Uk in terms of Un. The
operator Un is beneficial for simplifying our calculations as it has a structure of diagonal block
matrix as follows,

Un = diag{U,U, . . . U}, (3.11)

that is, its 2× 2 diagonal blocks are the unitary matrix U .

In subsection 2.2.6, we have seen that an n qubit system can be represented by a graphwith
2n−1 clusters each containing two vertices. That is,

V (G) = C1 ∪C2 ∪ · · · ∪ C2n−1 such that Cµ = {vµ,1, vµ,2}. (3.12)

Recall that the subgraph Cµ is the induced subgraph generated by Cµ. Its adjacency matrix is
given by the diagonal block Aµ,µ. The subgraph Cµ, Cν consists of vertex set Cµ ∪ Cν and edges
joining vertices belonging to different clusters. Its adjacency matrix is given by,

A( Cµ, Cν ) =
0 Aµ,ν

Aν,ν 0
. (3.13)

The clustering partition the density matrix ρ(G) into blocks. Therefore,

ρ(G) =





ρ11 ρ12 . . . ρ12n−1

ρ21 ρ22 . . . ρ22n−1

. . . . . . . . . . . .
ρ2n−11 ρ2n−12 . . . ρ2n−12n−1



 . (3.14)

As Un is a block diagonal matrix,

ρ(GUn) = Unρ(G)U
†
n =





Uρ11U
† Uρ12U

† . . . Uρ12n−1U†

Uρ21U
† Uρ22U

† . . . Uρ22n−1U†

. . . . . . . . . . . .
Uρ2n−11U

† Uρ2n−12U
† . . . Uρ2n−12n−1U †



 . (3.15)

Clearly, V (GUn) = V (G) and E(GUn) can be expressed in terms of some well defined changes in
E(G) depending on U .

For a simplified description, we colour the vertices vµ,1 with blue and vµ,2 with red for all
µ = 1, 2, . . . 2n−1. Therefore, V (G) = B ∪ R where B = {vµ,1 : µ = 1, 2, . . . 2n−1}, and R = {vµ,2 :
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C1 •1,1 •1,2

C2 •2,1 •2,2

...
...

...

C2n−1 •2n−1,1 •2n−1,2

Figure 3.3 : Colouring on vertices in clusters for graphs representing multi-qubit systems

µ = 1, 2, . . . 2n−1}. The coloured grid structure is shown in the figure 3.3. We call two vertices vµ,1
and vµ,2 conjugate to each other. Also we consider a loop (vµ,i, vµ,i) as an edge joining vertices of
same colour Now, we are in a position to describe switching procedures which are graph theoretic
analogues of different quantum gate operations.

3.3.1X Gate
We consider the local unitary operationXn = I⊗ I⊗ I⊗· · ·⊗X . In an n-qubit system, it is

equivalent of X gate operation on the n-th qubit keeping other qubits unchanged. Let GXn be the
graph derived from G such that ρ(GXn) = Xnρ(G)X

†
n. Here we enlist the switching procedure to

convertG toGXn . We consider the procedure as the graph theoretical analogue ofX gate operation
on n-th qubit.

Procedure 3.1. Construct E(GXn) from E(G): Following changes in E(G) switch G into GXn :

1. Given an edge joining vertices of same colour in G, E(GXn) has a member joining corresponding
conjugate vertices with same edge weight.

2. Given an edge joining vertices of different colours inG, E(GXn) has a member joining corresponding
conjugate vertices with same edge weight.

No change is required for other edges.

Example 3.2. Consider a graph G of order 4 with edge weights a, b, c, d and e, depicted in the figure 3.4a.
Note that, ρ(G) a 2-qubit state. After coloring the vertices we get the figure depicted in 3.4b. In the figure
3.4c, we depict the graph GX2 . Density matrices of these graphs are

ρ(G) =
1

d





2a+ b b 0 0
b b+ c+ d c d
0 c c 0
0 d 0 d+ 2e



 and ρ(GX2) =
1

d





b+ c+ d b d c
b 2a+ b 0 0
d 0 d+ 2e 0
c 0 0 c



 .

(3.16)

where d = 2a+ 4b+ 4c+ 4d+ 2e. Now we can see ρ(GX2) = X2ρ(G)X
†
2 .

Theorem 3.1. Let GXn be the graph obtained from graph G using the procedure 3.1, then ρ(GXn) =

Xnρ(G)X
†
n.
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(b) The graphG after coloring.
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(c) The graphGX2 after switching.

Figure 3.4 : Graph switching operation equivalent toX gate.

Proof. The adjacency matrix of induced subgraph Cµ is given by Aµ,µ. Note that,

Aµ,µ =
w(vµ,1, vµ,1) w(vµ,1, vµ,2)
w(vµ,1, vµ,2) w(vµ,2, vµ,2)

⇒ XAµ,µX
† =

w(vµ,2, vµ,2) w(vµ,1, vµ,2)
w(vµ,1, vµ,2) w(vµ,1, vµ,1)

,

and Aµ,ν =
w(vµ,1, vν,1) w(vµ,1, vν,2)
w(vµ,1, vν,2) w(vµ,2, vν,2)

⇒ XAµ,νX
† =

w(vµ,2, vν,2) w(vµ,1, vν,2)
w(vµ,1, vν,2) w(vµ,1, vν,1)

.

(3.17)

Therefore the edges obtained by joining vertices of same colour is replaced by the edges joining the
conjugate vertices. Also note that the edge weight inside the module Ci remains unchanged. They
reflect procedure 3.1. Combining the changes in the block matrices we get,A(GXn) = XnA(G)X

†
n.

Also note that, d(vµ,1)|GXn = d(vµ,2)|G and d(vµ,2)|GXn = d(vµ,2)|G. Hence,

D(Gn) = diag{D(Xn)
i : i = 0, 1, . . . } = XnD(G)X†

n

Q(GXn) = D(GXn) +A(GXn) = Xn(D(G) +A(G))X†
n

(3.18)

Also, trace(Q(GXn)) = trace(Q(G)). Therefore, ρ(GXn) = Xnρ(G
Xn)X†

n. Hence the proof.

3.3.2 Y gate
Here, we consider the local unitary operation Yn = I ⊗ I ⊗ I ⊗ · · · ⊗Y , which is equivalent

to the Y gate operation on n-th qubit in an n qubit system. LetGYn be the graph generated fromG

after suitable changes inE(G) such that ρ(GYn) = Ynρ(G)Y
†
n . The changes in edge set are described

in the following procedure.

Procedure 3.2. Construct E(GYn) from E(G): Following changes in E(G) switch G into GYn :
Follow the procedure 3.1 with an additional operation mentioned below:

1. If there is an edge joining vertices of different colours in G, the new edge weight is equal to −1 times
the old edge weight in the graph GYn .

Example 3.3. Consider the graph G of order 4 with edge weights a, b, c, d and e, depicted in the figure 3.5.
After switching operation, we get the new graph depicted in the figure 3.5b. Note that, we have considered
the graph of the last example. Difference between theX and Y operations are brought out by the weights of
edges joining two vertices of different color. After Y operation edge weights of these edges becomes negative.
Consider the density matrix

ρ(GY2) =
1

d





b+ c+ d −b d −c
−b 2a+ b 0 0
d 0 d+ 2e 0
−c 0 0 c



 . (3.19)

We can check that ρ(GY2) = Y2ρ(G)Y
†
2 .
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(b) The graphGY2 after switching.

Figure 3.5 : Graph switching operation equivalent to Y gate.

Theorem 3.2. LetGYn be a graph obtained fromG after the switching operation mentioned in the procedure
3.2. Then ρ(GYn) = Ynρ(G)Y

†
n .

Proof. First consider the diagonal block matrices for A(G) and A(GYn).

Aµ,µ =
w(vµ,1, vµ,1) w(vµ,1, vµ,2)
w(vµ,1, vµ,2) w(vµ,2, vµ,2)

⇒ Y Aµ,µY
† =

w(vµ,2, vµ,2) −w(vµ,1, vµ,2)
−w(vµ,1, vµ,2) w(vµ,1, vµ,1)

. (3.20)

Note that, the loops at vµ,1 and vµ,2 change their positions keeping edge weight unchanged. Also,
the edge joining vertices of two different colours remains unchanged but the edgeweight becomes
negative.

Now consider changes in a non-diagonal block.

Aµ,ν =
w(vµ,1, vν,1) w(vµ,1, vν,2)
w(vµ,1, vν,2) w(vµ,2, vν,2)

⇒ Y Aµ,νY
† =

w(vµ,2, vν,2) −w(vµ,1, vν,2)
−w(vµ,1, vν,2) w(vµ,1, vν,1)

. (3.21)

This reflects the fact that the edges between the vertices of same colours change their positions be-
tween conjugate vertices of the opposite colours Also, the edges joining vertices of different colours
change their position by joining their conjugate vertices and the edge weights become negative.

Combining all the blockmatrices we get A(GYn) = YnA(G)Y
†
n . Also note that, d(vµ,1)GYn =

d(vµ,2)G and d(vµ,2)GYn = d(vµ,1)G. Hence,

D(Gn) = diag{D(Yn)
i : i = 0, 1, . . . } = YnD(G)Y †

n

Q(GYn) = D(GYn) +A(GYn) = Yn[D(G) +A(G)]Y †
n = YnQ(G)Y

†
n

(3.22)

Also, trace(Q(GYn)) = trace(Q(G)). Therefore, ρ(GYn) = Ynρ(G)Y
†
n . Hence the proof.

3.3.3 Z gate
Consider the Z gate operation on the n-th qubit in an n qubit system. The local unitary

operation involved here is Zn = I ⊗ I ⊗ I ⊗ · · · ⊗ Z . Let GZn be the graph generated from G such
that ρ(GZn) = Zρ(G)Z†.

Procedure 3.3. Construct E(GZn) from E(G): Following changes in E(G) switch G into GZn :

1. Multiply (−1) with the edge weight of the edge joining two vertices of different colours

Example 3.4. We consider the graph G depicted in the figure 3.6. Note that the graph structure remains
unchanged after Z2 operation. Only the edges joining two vertices of different colour have negative weight.
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(b) The graphGZ2 after switching.

Figure 3.6 : Graph switching operation equivalent to Z gate operation.

The density matrix of GZ2 is given by

ρ(GZ2) =





2a+ b −b 0 0
−b b+ c+ d −c d
0 −c c 0
0 d 0 d+ 2e



 = Z2ρ(G)Z
†
2. (3.23)

Theorem 3.3. Let GZn be a graph generated by the procedure 3.3 from the graph G. Then, ρ(GZn) =

Znρ(G)Z
†
n.

Proof. Consider changes in the diagonal blocks of the adjacency matrices A(G) and A(GZn) under
Zn operation,

Aµ,µ =
w(vµ,1, vµ,1) w(vµ,1, vµ,2)
w(vµ,1, vµ,2) w(vµ,2, vµ,2)

⇒ ZAµ,µZ
† =

w(vµ,1, vµ,1) −w(vµ,1, vµ,2)
−w(vµ,1, vµ,2) w(vµ,2, vµ,2)

.

(3.24)

Hence, the loops at vµ,1 and vµ,2 remain unchanged. Also, the edge weight of the edge joining two
vertices of different colours inside the cluster Cµ is multiplied by −1. Now consider changes in
non-diagonal block,

Aµ,ν =
w(vµ,1, vν,1) w(vµ,1, vν,2)
w(vµ,1, vν,2) w(vµ,2, vν,2)

⇒ ZAµ,νZ
† =

w(vµ,1, vν,1) −w(vµ,1, vν,2)
−w(vµ,1, vν,2) w(vµ,2, vν,2)

. (3.25)

It reflects that the edge weights of the edges joining vertices of different colours are multiplied
by −1. There is no change in any other edges and their locations. It is important that there is
no interchange between two constitutive rows. Thus, d(vµ,1)|GZn = d(vµ,1)|G and d(vµ,2)|GZn =
d(vµ,2)|G. Hence,

D(GZn) = diag{Z.Di.Z
† : i = 0, 1, . . . } = ZnD(G)Z†

n = D(G)

Q(GZn) = D(GZn) +A(GZn) = Zn[D(G) +A(G)]Z†
n = ZnQZ

†
n.

(3.26)

Also, trace(Q(GZn)) = trace(Q(G)). Therefore, ρ(GZn) = Znρ(G
Zn)Z†

n. Hence, the proof.

3.3.4H Gate
Next, we discuss the graph theoretical approach for applying Hadamard gate on a product

state. Recall that, Hadamard gate is given by 1√
2

1 1
1 −1 . We construct a new graph GHn =

(V (GHn), E(GHn)) fromG = (V (G), E(G)) such that ρ(GHn) = Hnρ(G)H
†
n whereHn = I⊗I⊗· · ·⊗

I ⊗H which is equivalent to H gate operation on n-th qubit of an n-qubit quantum state. Clearly
V (G) = V (GHn) and E(GHn) will be constructed from E(G) using the following procedure.
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Procedure 3.4. Construct E(GHn) from E(G)

1. A loop on a blue colour vertex in G at the cluster Cµ will produce loops on both the vertices and an
edge joining them at the cluster Cµ of the graph GHn . If w is the loop weight in G, weights of loops
and edges in GHn will be w

2 . A loop on a red vertex will generate loops on vertices, similarly. But the
edge will have negative weight. Pictorially,

Cµ G ≡ •

w

• Hn−−→ Cµ GHn ≡ •

w
2

w
2 •

w
2

Cµ G ≡ • •

w

Hn−−→ Cµ GHn ≡ •

w
2

−w
2 •

w
2

2. An edge of weight w joining two vertices in a cluster Cµ of G will produce two loops on the vertices
of Cµ in GHn . Loop weights will be w and −w for blue and red colour vertices. Pictorially,

Cµ G ≡ • w • Hn−−→ Cµ GHn ≡ •

w

•

−w

3. An edge of weight w joining two vertices of in Cµ, Cν of G will produce all the edges in Cµ, Cν of
GHn . Edge weights in Cµ, Cν GHn will be as follows:

a) If the edge joins two blue vertices in G weights of all the edges in GHn will be w
2 . Pictorially,

Cµ, Cν G ≡ •
w

•

• •

Hn−−→ Cµ, Cν GHn ≡ •
w
2

w
2

❅❅
❅❅

❅❅
❅ •

w
2w

2⑦⑦
⑦⑦
⑦⑦
⑦

• •

b) If the edge joins two red vertices in G then weight of edge joining same color vertices will be w
2

and −w
2 for others. Pictorially,

Cµ, Cν G ≡ • •
w

• •

Hn−−→ Cµ, Cν GHn ≡ •
w
2

−w
2

❅❅
❅❅

❅❅
❅ •

w
2−w

2⑦⑦
⑦⑦
⑦⑦
⑦

• •

c) If the edge joins a blue and a red vertices in G then weight of edge joining same colour vertices
will be w

2 and −w
2 for others. Pictorially,

Cµ, Cν G ≡ • •
w

• •

Hn−−→ Cµ, Cν GHn ≡ •
w
2

−w
2

❅❅
❅❅

❅❅
❅ •

w
2−w

2⑦⑦
⑦⑦
⑦⑦
⑦

• •

Theorem3.4. LetGHn be the graph generated fromG using the above procedure, then ρ(GHn) = Hnρ(G)H
†
n.

Proof. The adjacency submatrix corresponding to the subgraph Cµ is given by Aµ,µ. Then the
adjacency submatrix corresponding to Cµ GHn is given byHAµ,µH

†. Nowwe observe the changes
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mentioned in the procedure by comparing two subgraphs Cµ G and Cµ Gn . Similarly, we may
find the changes between the subgraphs Cµ, Cν G and Cµ, Cν Gn .

Also note that d(vµ,2)|GHn = d(vµ,1)|G and d(vµ,1)|GHn = d(vµ,2)|G. Thus,

D(Gn) = diag{D(H)
i : i = 0, 1, . . . } = HnD(G)H†

n

Q(GHn) = D(GHn) +A(GHn) = H(D(G) +A(G))H†.

Combining we get, trace(Q(GHn)) = trace(Q(G)) and ρ(GHn) = Hnρ(G
Hn)H†

n. Hence the proof.

3.3.5 Operation on arbitrary qubit
In the proceeding subsectionswe have studied the graph switching techniques correspond-

ing to the local unitary operators Xn, Yn, Zn and Hn acting on a density matrix ρ(G) representing
an n-qubit quantum state defined by the signless Laplacian associated with a weighted undirected
graph G. Now we focus on the local unitary operators Uk when k < nmentioned in the equation
(3.9). Therefore, Uk = U (1) ⊗ · · · ⊗ U (k−1) ⊗ U ⊗ U (k+1) ⊗ · · · ⊗ U (n), where U ∈ {X,Y, Z,H} and
U (j) = I2 the identity matrix of order 2 when j = k, and k < n.

Recall that, the graphG represents a densitymatrix ρ(G) corresponding to ann-qubit quan-
tum state. Thus, number of vertices in G is 2n. Therefore, we may write V (G) = {0, 1}n ≡
{0, 1, . . . , 2n−1} such that a vertex j ∈ V (G) is represented by a sequence of 0, and 1. The labelling
of the vertices of G is determined by the lexicographic ordering defined on {0, 1}n. For example, if
n = 2 the labelled vertex set is given by V (G) = {00, 01, 10, 11}. Now, we can consider a permu-
tation pk,n : {0, 1}n → {0, 1}n such that p(x1x2 . . . xk−1xkxk+1 . . . xn) = x1x2 . . . xk−1xnxk+1 . . . xk
where xi ∈ {0, 1}. Thus, given the standard lexicographic ordering on {0, 1}n, pk,n introduces a
relabelling of the vertices. Let Pk,n be the unique permutation matrix associated with pk,n. Then it
is easy to verify that

A(Gpk,n) = Pk,nA(G)P
†
k,n, D(Gpk,n) = Pk,nD(G)P †

k,n (3.27)

where Gpk,n denotes the graph G with a new labelling of the vertices given by pk,n. Moreover,
Uk = Pk,nUnPk,n. This yields

Ukρ(G)U
†
k = (Pk,nUnPk,n)ρ(G)(Pk,nUnPk,n)

† = Pk,n(Un(Pk,nρ(G)P
†
k,n)U

†
n)P

†
k,n. (3.28)

Therefore, the local unitary operation Uk on an n-qubit density matrix ρ(G) defined by a
graph G of order 2n can be explained by the following switching procedure

G
pk,n−−→ Gpk,n

Un−−→ GUn
pk,n

pk,n−−→ GUk (3.29)

where Un = I2 ⊗ · · · ⊗ I2 · · · ⊗ U and U ∈ {X,Y, Z,H}. Then we have the following theorem.

Theorem 3.5. Let G be a weighted undirected graph of order 2n. Then ρ(GUk) = Ukρ(G)U
†
k where Uk =

I1 ⊗ · · · ⊗ I2 ⊗ U ⊗ I2 ⊗ · · · ⊗ I2, k < n and U ∈ {X, Y, Z,H} placed in the k-th position of the tensor
product.

Proof. Combining equation (3.27), (3.28) and (3.29) we find,

Ukρ(G)U
†
k = Uk

1

trace(L(G))
L(G)U †

k =
1

trace(L(G))
Uk[D(G) +A(G)]U †

k

=
1

trace(L(G))
Pk,nUnPk,n[D(G) +A(G)](Pk,nUnPk,n)

† =
1

trace(L(G))
[D(GUk) +A(GUk)].
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•00 •01

②②
②②
②②
②②

•10 •11

(a) Original graphG

•00 •10

②②
②②
②②
②②

•01 •11

(b) Applying permutation P1,2 on
G

•00 •01

②②
②②
②②
②②

•10 •11

(c) GraphGp1,2

•00

❊❊
❊❊

❊❊
❊❊

•01

•10 •11

(d) After X2 operation on Gp1,2

new graphGX2
p1,2

•00

❊❊
❊❊

❊❊
❊❊

•10

•01 •11

(e) Applying permutation P1,2 on
GX2

p1,2

•00

❊❊
❊❊

❊❊
❊❊

•01

•10 •11

(f) Final graphGX1

Figure 3.7 : X operation on the first qubit of a 2-qubit state

Here, Pk,nUn is a unitary matrix. Thus, trace(L(G)) = trace(L(Gk)). Replacing it in the above
equation we get,

Ukρ(G)U
†
k =

1

trace(L(Gk))
[D(GUk) +A(GUk)] =

1

trace(L(Gk))
L(Gk) = ρ(GUk).

Hence proved.

Example 3.5. In the last theorem, instead of taking a general unitary operator Uk let us consider Xk, that
is, an X gate operation on the k-th qubit. The theorem suggests the following steps:

1. Apply the permutation Pk,n on the initial graph G to get graph Gpk,n .

2. Now we construct GXn
pk,n

from Gpk,n by applying the procedure 3.1.

3. We again apply Pk,n on GXn
pk,n

to getGXk .

In a graph of four vertices representing a 2 qubit quantum state, we have seen graph switching for X gate
operation on second qubit. Now we are able to discuss the X gate operation on first qubit. We have shown
different steps ofX1 operation in sequence in the figure 3.7. One can easily check that ρ(GX1) = X1ρ(G)X1.

3.3.6 CNOT gate operation
The CNOT gate occupies a central position in various quantum information processing

tasks to generate non-locality and entanglement in quantum states as well as different quantum
information and coding theoretic tasks. It is represented by the unitary matrix,

CNOT =
I 0
0 X

=





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 , (3.30)

Note that, it acts on two qubit quantum states. A graph with four vertices represents a two qubit
state. Thus, here we mention the graph switching method equivalent to CNOT gate applicable for
graphs with four vertices.
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A graph of order 4, representing a 2-qubit quantum state consists of two cluters Cµ =
{vµ,1, vµ,2} forµ = 1, 2. LetGCNOT be the graph generated from the graphG such that ρ(GCNOT ) =

CNOT ρ(G)C
†
NOT . We generate GCNOT by the following switching procedure.

Procedure 3.5. CNOT operation

1. The induced subgraph C1 will remain invariant in both G and GCNOT .

2. The loops of C2 will interchange their position to generateGCNOT from G.

3. If there is an edge joining two vertices of opposite colours in C1, C2 G then C1, C2 GCNOT contains
an edge joining different colors. Pictorially,

C1, C2 G ≡ •11

❊❊
❊❊

❊❊
❊❊

•12

•21 •22

CNOT−−−−→ C1, C2 GCNOT ≡ •11 •12

•21 •22

C1, C2 G ≡ •11 •12

②②
②②
②②
②②

•21 •22

CNOT−−−−→ C1, C2 GCNOT ≡ •11 •12

•21 •22

4. If there is an edge joining two vertices of same colour in C2 G then C2 GCNOT contains an edge
joining vertices of same colour. Pictorially,

C1, C2 G ≡ •11 •12

•21 •22

CNOT−−−−→ C1, C2 GCNOT ≡ •11

❊❊
❊❊

❊❊
❊❊

•12

•21 •22

C1, C2 G ≡ •11 •12

•21 •22

CNOT−−−−→ C1, C2 GCNOT ≡ •11 •12

②②
②②
②②
②②

•21 •22

Theorem 3.6. LetG be a graph of order 4with two clusters, each containing two vertices. The graphGCNOT

is generated by the above procedure from the graph G. Then, ρ(GCNOT ) = CNOTρ(G)C
†
NOT .

Proof. Note that, CNOTρ(G)C
†
NOT = 1

d(G)CNOT (D(G) + A(G))C†
NOT = 1

d(G)(CNOTD(G)C†
NOT +

CNOTA(G)C
†
NOT ). Now,

CNOTA(G)C
†
NOT =

I 0
0 X

A11 A12

A21 A22

I 0
0 X

†
=

IA11I IA12X
†

XA21I XA22X
† =

A11 IA12X
†

XA21I XA22X
† .

(3.31)

In the above equation, A11 represents the adjacency matrix of the subgraph C1 which remains
invariant under the CNOT operation. Also, A22 represents the adjacency matrix corresponding to
the induced subgraph C2 , which is converted toXA22X

†. Now,XA22X
† is theX gate operation

on C2 , that is, interchange of the loops between the vertices. We also observe that the changes in
the subgraph C1, C2 is equivalent to the matrix operation

0 A12

A21 0
→ 0 IA12X

†

XA21I 0
.
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Combining we find that CNOTA(G)C
†
NOT = A(GCNOT ). Also, (CNOTD(G)C†

NOT ) = D(GCNOT ).
Therefore, CNOTρ(G)C

†
NOT = ρ(GCNOT ).

3.3.7 Bell state generation
Wenowuse graph switching techniques to depict the action of Hadamard and CNOT gates

to generate Bell states from two qubit separable states. The structure of Bell states was shown
earlier in [Adhikari et al., 2017], and is also discussed in Chapter 2.

We beginwith the initial state |10 . We operate a Hadamard gate on the first qubit followed
by a CNOT gate to generate Bell state as follows,

|10 H1−−→ 1√
2
(|00 − |10 )

CNOT−−−−→ 1√
2
(|00 − |11 ).

Graph, corresponding to state |10 10|, with vertex decomposition C = C1 ∪ C2, is

•11 •12

•211
2 •22

To apply Hadamard gate on first qubit, i.e., H1, we first swap vertices. The graph changes
to

•11 •21

•121
2 •22

≡ •11 •12

1
2

•21 •22

Apply H2 and get a new graph

•11
−1 •12

•21 •22

To finish H1 we swap it again. Graph after completing Hadamard operation is

•11
−1 •21

•12 •22

≡ •11
−1

•12

•21 •22

Now apply CNOT operation. Following the procedure discussed above, the new graph
represents the state 1√

2
(|00 − |11 ) [Adhikari et al., 2017].

•11
−1

❊❊
❊❊

❊❊
❊❊

•12

•21 •22

Similarly, all other Bell states can be generated graph theoretically.
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3.4 WHAT NEXT?
In this chapter, we have observed that familiar quantum grate operations has a graph the-

oretic counterpart. Therefore, graph theoretic operations can be used in quantum computation.
There are a number of open problems in this direction. Some of them are mentioned below.

1. Let G and G1 be two graphs such that ρ(G) and ρ(G1) have equal eigenvalues. From the
structure of the graphs we need to justify existence or non-existence of a unitary operator U
such that ρ(G1) = Uρ(G)U †.

2. Let there is a unitary operatorU such that ρ(G1) = Uρ(G)U † holds. From the graph theoretic
properties we need to justify whether U is a local or a global unitary operator.
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