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Graph Theoretic Aspects of Quantum Entanglement

In quantum mechanics, entanglement [Horodecki et al., 2009] is a feature implying the ex-
istence of a global state of a composite system which cannot be written as a product of individual
subsystems. It may be regarded as the most non-classical manifestation of quantum mechanics
[Neumann, 1932; Einstein et al., 1935]. The curious aspects of quantum entanglement has been de-
bated upon for a long time in the course of the evolution of quantummechanics. Progress has now
been made to such an extent that entanglement is being utilized for practical aspects, such as in
quantum teleportation [Bennett et al., 1993], cryptography [Bennett et al., 1992], and computation
[Shor, 1995]. In this chapter, we shall study the detection of entangled Graph Laplacian quantum
states [Dutta et al., 2016b].

4.1 AN INTRODUCTION TO QUANTUM ENTANGLEMENT
We begin this section with a simple example. Recall that, |0 = (1, 0)†. Consider the quan-

tum state |00 = (1, 0, 0, 0)† = (1, 0)†⊗(1, 0)† = |0 ⊗|0 ∈ H(2)⊗H(2). Clearly |00 can bewritten as
a product of state vectors of the individual subsystems. We describe it as a product state. Similarly,
|11 = |1 ⊗ |1 is also a product state. But, their linear combination |φ = 1√

2
(|00 + |11 ) cannot

be written as |φ = |φ 1 ⊗ |φ 2 for |φ 1 , |φ 2 ∈ H2. A state vector provides a complete description
of a quantum system. Here, |φ provides a description of the system globally. As we can not write
it as a product of state vectors of individual susbsystems we have no information about subsys-
tems. We like to say |φ is an entangled state whereas |00 and |11 are separable states. Some other
examples of entangled and separable two qubit states are as follows.

Example 4.1. Consider α and β ∈ C − {0} such that |α|2 + |β|2 = 1. Following states are separable two
qubit states:

|00 = |0 ⊗ |0 , |11 = |1 ⊗ |1 ,

α |00 ± β |01 = |0 ⊗ (α |0 ± β |1 ), α |10 ± β |11 = |1 ⊗ (α |0 ± β |1 ),

α |11 ± β |01 = (α |1 ± β |0 )⊗ |1 , α |10 ± β |00 = (α |1 ± β |0 )⊗ |0 .

(4.1)

Also (α |00 ± β |11 ), and (α |01 ± β |10 ) are two qubit entangled states.

Entanglement of Graph Laplacian states is our main concern in this chapter. Recall that
a density matrix is a Hermitian, positive semi-definite, trace one matrix. Consider two density
matrices ρ1 ∈ H1 and ρ2 ∈ H2. Clearly, ρ1⊗ ρ2 is also a density matrix inH1⊗H2 and is a product
state. A convex combination of these density matrices will also be a density matrix. We call it a
separable state. Mathematically, we may define separability and entanglement as follows:

Definition 4.1. Separability and entanglement A quantum state |ψ is separable if

|ψ = αi |ψ (A)
i ⊗ |ψ (B)

i , where
i

|αi| = 1.
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In terms of density matrix, a quantum state represented by ρ(G) is separable if

ρ = piρ
(A)
i ⊗ ρ(B)

i , where pi > 0 and
i

pi = 1.

Otherwise, the state is entangled.

We have already mentioned that entanglement is used as a resource in quantum informa-
tion and computation. Hence, detecting entanglement is crucial. Familiar methods in this context
are Peres-Horodecki criterion [Peres, 1996; Horodecki, 1997], entanglement witness [Horodecki
et al., 2001; Terhal, 2000], matrix realignment criterion [Rudolph, 2003; Chen andWu, 2002], reduc-
tion criterion [Cerf et al., 1997; Horodecki and Horodecki, 1999]. Some reviews on entanglement
include [Terhal, 2002; Horodecki et al., 2009; Krammer, 2005].

In general a density matrix ρ ∈ HA ⊗HB can be expressed as,

ρ =
ijkl

pijkl |i j| ⊗ |k l| . (4.2)

The partial transpose with respect to the second subsystem is given by,

ρTB =
ijkl

pijkl |i j| ⊗ (|k l|)t =
ijkl

pijlk |i j| ⊗ |l k| . (4.3)

Let ρ be a separable state. Then using definition 4.1 it can be written as,

ρ = piρ
(A)
i ⊗ ρ(B)

i . (4.4)

Now the partial transpose is

ρTB = piρ
(A)
i ⊗ (ρ

(B)
i )t. (4.5)

The operation of conjugate transpose does not alter the eigenvalues. As ρ(B)
i is a density matrix,

(ρ
(B)
i )† will also be a density matrix. Ultimately, if ρ is separable ρTB will also be a positive semi-

definite matrix. This may be expressed as,

Definition 4.2. Positive partial transpose (PPT) criterion: If the density matrix ρ represents a separable
state in HA ⊗HB then ρTB is a positive semi-definite matrix.

Clearly, PPT criterion is a necessary condition for separability. It is sufficient for states
in H(2) ⊗ H(2) [Peres, 1996], H(2) ⊗ H(3) [Horodecki, 1997], and for low rank density matrices
[Horodecki et al., 2000]. In higher dimension, it is also sufficient under some given conditions.

4.2 GRAPH THEORETIC ASPECTS OF PARTIAL TRANSPOSE
Partial transpose, which is used in quantum information theory, due to a deep significance

in operator theory, has a graph theoretical analogue. In this section, we discuss its graph theoretic
counterpart. We apply it for obtaining separability criterion of graph Laplacian quantum states, in
the next section [Dutta et al., 2016b]. The graph theoretic partial transpose was first developed in
[Wu, 2006b].

In chapter 2, we have constructed a relation between clustering on vertex set and the blocks
of a density matrix. The clustering on the vertex set was given in equation (2.14). For simplicity
we may say that partial transpose on the second subsystem is the transpose on the blocks of the
density matrix. Transpose on the blocks can be expressed as an operation on the edges joining
vertices of two layers as follows:
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Figure 4.1 : GTPT equivalent non-isomorphic graphs

Definition 4.3. GTPT:Given a clustered graphGwithm×n vertices and clustersCµ = {vµ,1, vµ,2, . . . vµ,n}
for µ = 1, 2, . . .m, the Graph Theoretical Partial Transpose (GTPT) involves replacing all existing edges
(vα,i, vβ,j), with α = β, and i = j with the non-existing edges (vα,j , vβ,i).

It is clear form this definition that GTPT generates a clustered graph Gτ = (V (G), E(Gτ ))
from a graph G = (V (G), E(G)). We call G and Gτ as GTPT equivalent. Note that, the number of
vertices and edges in G and Gτ are equal. Now we investigate some relations between them. The
following lemma is trivial as replacement of edges (vµ,i, vν,j), µ = ν, i = j by (vµ,j , vν,i) introduce
transpose in the blocks of A(G).

Lemma 4.1. Given a clustered graph G, with m × n vertices and clusters Cµ = {vµ,1, vµ,2, . . . vµ,n} for
µ = 1, 2, . . .m, we have A(Gτ ) = A(G)TB , where A(G) and A(Gτ ) are adjacency matrices of the graphG
and Gτ .

Depending on graph G, the degree sequences of G and Gτ can be different. There is at
least one i ∈ V (G) s.t. degree of i in G, dG(i) = dGτ (i). Hence, degree matrices are also different,
D(Gτ ) = D(G). But as D(G) is a diagonal matrix,D(G)TB = D(G) ⇒ D(G)TB = D(Gτ ). Finding
properties of GTPT equivalent graphs are important as partial transpose is a significant tool in
entanglement detection. TwoGTPT equivalent graphsG andGτ may not be isomorphic and hence
may not have equal spectra. Belowwe provide some examples of interest to graph theory. Wewill
come back to this, in Chapter 6.

Example 4.2. Graphs shown in figure 4.1a are non-isomorphic but their adjacency matrices have equal
spectra. Also, consider the graph G and Gτ in figure 4.1b. Here G and Gτ are non-isomorphic but their
signless Laplacian matrices have equal spectra.

In the present context we are interested in those graphs which remains invariant under
partial transpose and call them partially symmetric graphs. Idea of partial symmetry is different
from the conventional idea of symmetry in graphs.

Definition 4.4. Partial Symmetry: Aclustered graphG ofm×n vertices with clustersCµ = {vµ,1, vµ,2, . . . vµ,n}
for µ = 1, 2, . . .m is a partially symmetric if (vµ,i, vν,j) ∈ E(G) indicates (vµ,j , vν,i) ∈ E(G) for allµ, ν, i, j
and µ = ν.

Therefore, a graph G is partially symmetric if all its subgraphs Cµ, Cν are partially sym-
metric. Note that, if Cµ, Cν is an empty graph then it is trivially partially symmetric. We call
the edges (vµ,i, vν,j) ∈ E(G) and (vµ,j , vν,i) ∈ E(G) complement to each other. When a graph is
partial symmetric with respect to some vertex labelling, every edge joining two vertices belonging
to the two layers has its complement. The following properties of partially symmetric graph G are
immediate.
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Figure 4.2 : Example and non-examples of partially symmetric graphs

1. A partial symmetric graph may not be connected.

2. Chromatics number of G ≤ min{m,n}.

3. Obviously A(G) = A(Gτ ).

4. Given a partial symmetric graphD(G) = D(Gτ ).

5. Two GTPT equivalents graphs G and Gτ are isomorphic.

Partial symmetry is not a structural property of a graph. Depending on vertex labellings two iso-
morphic graphs may not be partially symmetric. In the next example we mentions some graphs
which are partially symmetric with respect to at least one vertex labellings.

Example 4.3. A complete graph (figure 4.2a) of composite order with clusters is always a partially symmetric
graph with respect to any vertex labelling. A complete multi-partite graph with equal partitions and usual
vertex labellings is a partially symmetric graph. For every path of even order there is a vertex labelling such
that it is partially symmetric. Consider the figure 4.2b. Similarly, an even cycle is partially symmetric.
Tensor product of two graphs are partially symmetric. The idea of partial symmetry is different from the
conventional idea of symmetry in graph theory. Given an asymmetric graph there may be a vertex labeling
such that it is a partially symmetric graph. Consider the graph in the figure 4.2c. Also there are asymmetric
graphs which are not partially symmetric with respect to any vertex labelling. One such example is shown
in figure 4.2d. A symmetric graph may be partially symmetric. Consider the graph in figure 4.2e.

4.3 SEPARABILITY CONDITION ON GRAPHS
We begin this section recalling the definition 4.1 of separability. A bipartite quantum state

represented by a density matrix ρ is is separable if ρ = i piρ
(A)
i ⊗ρ(B)

i where pi > 0 and i pi = 1.
Otherwise, ρ is entangled. We have also mentioned that PPT criterion is a necessary condition of
separability. But in higher dimensions there are entangled states which satisfies PPT criterion. We
call them bound entangled states [Bennett et al., 1999]. There are graph Laplacian bound entangled
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states also. Proving separability of a given class of entangled states is a formidable task. But,
imposing additional conditions with PPT criterion generates classes of new separable states. In
this section, we collect some of these classes of graph Laplacian quantum states. Recall that, we
have considered two density matrices ρl(G) and ρq(G) corresponding to the Laplacian and the
signless Laplacian matrix of the graph G.

Theorem 4.1. The density matrices ρ(G) and ρ(Gτ ) are separable together ifD(G) = D(Gτ ).

Proof. Let ρ(G) = ρl(G). Consider ρl(G) is separable. Thus ρl(G) = i piρ
A
i ⊗ ρBi . Therefore,

ρl(G)
TB =

i

piρ
A
i ⊗ (ρBi )

TB

=
1

trace(L(G))
(L(G))TB =

1

trace(L(G))
((D(G))TB − (A(G))TB)

=
1

trace(L(G))
(D(G)−A(Gτ ))

=
1

trace(L(G))
(D(G)−D(Gτ ) +D(Gτ )−A(Gτ ))

=
1

trace(L(G))
(D(G)−D(Gτ ) + L(Gτ ))

=
1

trace(L(Gτ ))
L(Gτ ) +

1

trace(L(G))
(D(G)−D(Gτ ))

[∵ d(G) = d(Gτ )⇒ trace(L(G)) = trace(L(Gτ )).]

ρl(G
τ ) = ρl(G)

TB − 1

trace(L(G))
(D(G)−D(Gτ ))

=
i

piρ
A
i ⊗ (ρBi )

TB − 1

trace(L(G))
(D(G)−D(Gτ ))

ρl(G
τ )TB =

i

piρ
A
i ⊗ ρBi −

1

trace(L(G))
(D(G)−D(Gτ )) [∵ (D(G))TB = D(G).]

(4.6)

Thus, ρl(Gτ ) is separable, whenD(G) = D(Gτ ).

Nowwe assume that ρ(G) = ρq(G) and ρq(G) is separable. In a similar fashion, ρq(Gτ )TB =

i piρ
A
i ⊗ ρBi + 1

trace(Q(G))(D(G) − D(Gτ )), assuming, ρq(Gτ ) = i piρ
A
i ⊗ ρBi . Thus, ρq(Gτ ) is

separable, whenD(G) = D(Gτ ).

This theorem has a number of implications. We have a pair of graphs G and Gτ with equal
degree matrices. If we know ρ(G) is separable, then immediately ρ(Gτ ) is also separable. Suppose
G and Gτ are non-isomorphic having same degree sequence. Now by the above theorem, both of
them are separable. Therefore, in this case separability does not help in solving graph isomorphism
problem.

In the previous section, we have seen that partial symmetry keeps the graph unchanged
under partial transpose. Thus density matrices corresponding to the partially symmetric graphs
remains positive semi-definite after partial transpose which is a necessary condition of separabil-
ity. Imposing additional criterion ensures separability. Also, partial symmetry keeps the density
matrix unchanged. This provides another motivation to investigate separability property of ρ(G)
for partially symmetric graphs.

Theorem 4.2. If the following criterion are satisfied by a partially symmetric graphG then ρ(G) is separable:
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1. Between two vertices belonging to a layer Cµ, there is no edge for all µ.

2. Degree of all the vertices of a partition is equal, that is, d(vr) = d(vs) for all vr, vs ∈ Cµ and for all µ.

3. Either the subgraph Cµ, Cν is empty or any two non-empty induced subgraphs Cα, Cβ and Cµ, Cν

are equal.

Proof. As there is no edge joining two vertices of a layer Cµ, Aµ,µ = 0 for all µ. Also, vertices of
same partition have equal degree. Therefore, the degree submatrix of theDµ = diag{dµ} = di.I.

As pattern of edge distribution between different modules are same, Aα,β = Aµ,ν , for all
α, β, µ, ν ; if there is no edge joining Cµ and Cν , Aµ,ν = 0. Also, Aµ,ν is a symmetric matrix because
G is partially symmetric graph. Therefore for Aµ,ν = 0we can write

Aµ,ν =
r

λruru
†
r, (4.7)

where ur is a normalised eigenvector that is uru†r is trace 1 positive semi-definite matrix. Also
Aµ,ν = Aν,µ = A†

µ,ν . If Aµ,ν = 0 we can write Aµ,ν = r 0.uru
†
r. The proof does not differ much

for Aµ,ν = 0. Therefore, we assume that Aµ,ν = 0 for all µ, ν. Now,

L(G) =





d1.I A1,2 A1,3 . . . A1,m

A2,1 d2.I A2,3 . . . A2,m
...

...
...

...
...

Am,1 Am,2 Am,3 . . . dm.I





=





d0 r uru
†
r r λruru

†
r r λruru

†
r . . . r λruru

†
r

r λruru
†
r d1 r uru

†
r r λruru

†
r . . . r λruru

†
r

...
...

...
...

...
r λruru

†
r r λruru

†
r r λruru

†
r . . . d(m−1) r uru

†
r





=
r





d1 λr λr . . . λr
λr d2 λr . . . λr
...

...
...

...
...

λr λr λr . . . dm



⊗ uru
†
r =

r

B ⊗ uru†r,

(4.8)

where B =





d1 λr λr . . . λr
λr d2 λr . . . λr
...

...
...

...
...

λr λr λr . . . dm



. Note that, Ai,j = 0 ⇒ bi,j = 0. We claim that B is a positive

semi-definite matrix, which will be proved later. We have degree of the graph d(G) = µ dµ =

trace(B). Therefore, B
traceB = B

d(G) is a matrix of unit trace. Now,

ρl(G) =
1

d(G)
L(G) =

r

B

d(G)
⊗ uru†r. (4.9)

Hence, ρl(G) is separable. In a similar fashion, we can show that ρq(G) is also separable.

Now we have to prove our claim that B in the above equation is a positive semi-definite
matrix. First we recall the definition 2.13 of a diagonally dominant matrix. Let us assume, Aµ,ν =
(aij)n×n. Note that, the spectral radius of Aµ,ν ≤ ||Aµ,ν ||∞, where ||Aµ,ν ||∞ is the subordinate
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Figure 4.3 : Example of theorem 4.2.

matrix norm defined by ||Aµ,ν ||∞ = maxi n
j=1 |ai,j |. Additionally,

di =

m−1

k=0

max
i

n

j=1

|ai,j | = mmax
i

n

j=1

|ai,j |. (4.10)

Therefore, (m − 1)λr ≤ (m − 1) × ( Spectral radius of Aµ,ν) ≤ dµ for all µ. Hence, B is a diago-
nally dominant, Hermitian matrix. Its diagonal entries are positive real numbers. Therefore B is a
positive semi-definite matrix.

The following graph satisfies all the conditions satisfying the above theorem. Thus, quan-
tum states represented by its density matrices are separable.

Example 4.4. Consider the graph G in figure 4.3. It has three clusters C1, C2 and C3 each containing four
vertices. Between two vertices of a layer there is no edge. In a layer degree of vertices is two. The subgraph
C1, C3 is empty. Also two non-empty induced subgraphs C1, C2 and C2, C3 are equal. Therefore, G
satisfies all the conditions of the theorem 4.2. Thus, ρ(G) is separable.

In theorem 4.2 we did not consider an edge between two vertices of a cluster. But in the
next lemma we have assumed those edges to generate a class of separable states. Before that we
present a standard definition of graph theory.

Definition 4.5. Unionof graphs: The union graph of two graphsG = (V (G), E(G)) andH = (V (H), E(H))
is defined by a new graph G ∪H = (V (G) ∪ V (H), E(G) ∪ E(H)).

Let G be a graph of order n with vertex labelling {v1, v2, . . . vn}. The union of m copies of
G is given by a graph, mG = G ∪ G ∪ · · · ∪ G with vertex labelling {vµ,i : µ = 1, 2, . . .m and i =
1, 2, . . . n}. Therefore, copies of G construct the layers ofmG. Note that, there is no edge between
two vertices belonging to two different clusters. Hence, mG is trivially partially symmetric and
it violates the 1-st condition of Theorem 4.2. Interestingly, we will show now thatmG represents
separable states.

Lemma 4.2. Given a graph G, the density matrix ρ(mG) represent a bipartite separable state with respect
to the standard vertex labelling onmG.

Proof. We observe that

A(mG) = diag{A(G), A(G), . . . , A(G)(m times)} = Im ⊗A(G),
D(mG) = diag{D(G), D(G), . . . , D(G)(m times)} = Im ⊗D(G),

L(mG) = diag{L(G), L(G), . . . , L(G)(m times)} = Im ⊗ L(G),
Q(mG) = diag{Q(G), Q(G), . . . , Q(G)(m times)} = Im ⊗Q(G).

(4.11)
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where, Im denotes the identity matrix of order m. Now Im is a positive semi-definite Hermitian
matrix. Thus, ρl(mG) = L(mG)

trace(L(mG))
and ρq(mG) = Q(mG)

trace(Q(mG))
are separable states.

Nowwe are in position to generalize the theorem 4.2 using the last lemma. LetG be a graph
with n vertices andH be a partially symmetric graph satisfying all the conditions of result 4.2 with
m different clusters. We construct a new graph G H by placingm copies of G on m clusters of
H . It is easy to show that ρ(G H) is a separable state.

Lemma 4.3. L(G H) = L(H) + L(mG). Also. Q(G H) = Q(G) +Q(H).

Proof. The graph mG is an union of m copies of G. Thus, A(mG) = diag{A(G), A(G), . . . A(G)}.
As H satisfies the conditions of theorem 4.2 there is no edge between two vertices belonging to
same clusters. Thus the diagonal blocks ofH are zero matrices. After puttingm copies ofG in the
clusters of H the diagonal bolcks of G H are A(G). Therefore, it is clear from the construction
of G H that A(G H) = A(H) + A(mG). Now considering the Laplacian and the signless
Laplacian matrices we get the result.

Theorem 4.3. The quantum state represented by the density matrix ρ(G H) is a separable state in
H(n) ⊗H(m).

Proof. Dividing the Laplacian and signless Laplacian matrices of G H by their traces we get
ρ(G H) = ρ(mG) + ρ(H). We have proved that ρ(H) and ρ(mG) are separable states. We know
that a convex combination of separable states is separable. Thus, ρ(G H) is also separable.

Our results provide methods for constructing classes of new separable states in higher di-
mensions. Here we present an example in support of theorem 4.3.

Example 4.5. Consider the graphs G andH in the figure 4.4a and 4.4b. Note that, graphH satisfies all the
conditions of theorem 4.2. The graph G H is shown in the figure 4.4c. Applying the theorem 4.3 we say
the density matrix ρ(G H) is separable.

We end the section with an example of Graph Laplacian entangled quantum state state
represented by a graph which is not partially symmetric.

Example 4.6. Werner state is a mixture of projectors onto the symmetric and antisymmetric subspaces, with
the relative weight psym being the only parameter that defines the state.

ρ(d, psym) = psym
2

d2 + d
Psym + (1− psym)

2

d2 − dPas, (4.12)

where,Psym = 1
2(1+P ), Pas =

1
2(1−P ), are the projectors and P = ij |i j|⊗|j i| is the permutation

operator that exchanges the two subsystems.

The quantum state ρ(d, 0) = I−P
d2−d

is represented by Laplacian matrix of simple graphs. We know
that ρ(d, 0) is an entangled state. The density matrix ρ(2, 0) is given by,

ρ(2, 0) =





0 0 0 0
0 .5 −.5 0
0 −.5 .5 0
0 0 0 0



 = ρl(G), (4.13)
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Figure 4.4 : Example of theorem 4.3.

for the graph G depicted in figure 4.5a. Also, the state ρ(3, 0) is represented by the graph in the figure 4.5b,
where

ρ(3, 0) =





0 0 0 0 0 0 0 0 0
0 0.1667 0 −0.1667 0 0 0 0 0
0 0 0.1667 0 0 0 −0.1667 0 0
0 −0.1667 0 0.1667 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.1667 0 −0.1667 0
0 0 −0.1667 0 0 0 0.1667 0 0
0 0 0 0 0 −0.1667 0 0.1667 0
0 0 0 0 0 0 0 0 0





. (4.14)

Note that, none of these graphs are partially symmetric. Any subgraph Cµ, Cν consists of exactly
one edge of the form (vµ,ν , vν,µ). But the edge (vµ,µ, vν,ν) is absent.

4.4 GRAPH ISOMORPHISM AND QUANTUM ENTANGLEMENT
In chapter 3, we have studied CNOT gate operation on graphs. Recall that,

CNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (4.15)

A permutation matrix P contains a 1 in every row and column, remaining all elements are zero.
Therefore, CNOT is a permutation matrix. Now recall the definition 2.3 of graph isomorphism
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Figure 4.5 : Graphs for entangled Werner states

discussed in Chapter 2. If two graphs G and H are isomorphic then there is a permutation matrix
P such that ρ(H) = Pρ(G)P †. If ρ(G) is entangled in H(p) ⊗ H(q), ρ(H) need not be entangled in
H(p)⊗H(q). There are a number of graphs for which the separability property does not depend on
graph isomorphism. We mention two results form [Braunstein et al., 2006b].

Theorem 4.4. For anyN = n×m the density matrix ρ(KN ) represents a separable state inH(m) ⊗H(n),
whereKN denotes a complete graph of order N .

Theorem 4.5. For any N = n × m ≥ 4, the density matrix of a star graph ρ(K1,N−1) is entangled in
H(m) ⊗H(n).

Note that, in the above two results separability does not depend on the graph isomorphism
or the vertex labellings on them. But consider the following example,

Example 4.7. Here, we consider two isomorphic copies of a path graph depicted in the figure 4.6. Considering
the vertex labellings in the figure 4.6b we find the density matrix,

ρ(G) =
1

6





1 1 0 0
1 2 0 1
1 0 2 1
0 0 1 1



 . (4.16)

We also consider the density matrix of the path graph with respect to the vertex labellings depicted in 4.6c
which is

ρ(H) =
1

6





1 1 0 0
1 2 1 0
0 1 2 1
0 0 1 1



 . (4.17)

Clearly, ρ(G) and ρ(H) represents two qubit density matrices. A simple calculation using PPT criterion
shows that ρ(G) is separable but ρ(H) is entangled. The graph isomorphism acting here is given by u :
G1 → G2 where, u(1) = 2, u(2) = 1, u(3) = 3, u(4) = 4. Also, the permutation matrix corresponding to
this permutation is,

P =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (4.18)
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Figure 4.6 : Two isomorphic copies of a path graph with different separability properties

Therefore, we may classify all the graphs into three classes as follows:

1. S-Graphs : All the vertex labelling on G generates separable states. For example, consider
complete graphs.

2. E-Graphs: All the vertex combination onG generates entangled states. For example, consider
the star graphs.

3. SE-Graphs: Here different vertex labellings produce both entangled and separable states.
For example consider the path graph.

Therefore, graph isomorphism has a specific significance for SE graphs as they can convert
a mixed separable state to a mixed entangled state. In this way, graph isomorphism acts as an
entanglement generator for Graph Laplacian quantum states. Note that, the PPT criterion is nec-
essary and sufficient for quantum states in H(2) ⊗ H(2) and H(2) ⊗ H(3). Therefore, all quantum
states represented by a partial symmetric graph of order ≤ 6 is separable. Consider the following
example:

Example 4.8. Consider two isomorphic graphs in the figure 4.7. Graph G in the figure 4.7a is separable
state. Note that, it is partially symmetric and its order is ≤ 6. An isomorphic copy H of G is depicted in
4.7b, which is entangled. The corresponding permutation is given by

11 12 13 21 22 23
13 11 23 21 22 12

. (4.19)

The permutation matrix is

P =





0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0




. (4.20)

Note that, the matrix P different from CNOT . Also ρ(H) = Pρ(G)P †.

4.5 WHAT NEXT?
The crucial philosophy behind this work is that graph isomorphism can be utilized in gen-

erating mixed entangled states from graph Laplacian separable states. We have also established a
number of sufficiency conditions of separability in higher dimensions. This opens up a number of
problems for future consideration, such as:
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Figure 4.7 : Mixed separable state to mixed entangled state via graph isomorphism.

1. Though we have generated some classes of separable bipartite states in higher dimensions,
we need other classes of such states to get a more complete picture of bipartite separability.
We have seen that partial symmetric graphs provide separable states under some additional
condition. Yet the scenario is not transparent for other partial symmetric graphs. Bound
entangled states fulfil PPT criterion. Is there any partially symmetric graph Laplacian bound
entangled state? What are the graphical criterion to be a bound entangled state?

2. Graph isomorphism can be used as an entanglement generator for ES-Graphs. Different iso-
morphic copies of an ES-Graph have different separability properties. Thus we need to find
graphical conditions for a graph to be an ES-Graph.

3. Another immediate generalization of this work can be done for multipartite systems. Mul-
tipartite entanglement is useful in quantum information theory. But characteristics of graph
Laplacian multipartite entangled states are not well studied. Very recently a work has come
in this direction [Zhao et al., 2017].

4. We have seen that there are GTPT equivalent cospectral, non-isomorphic graphs. In graph
theory finding classes of non-isomorphic, cospectral graphs is an important problem. We
shall have further discussions in this direction in Chapter 6.
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