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Graph Theoretic Aspects of Quantum Discord

Quantum discord [Henderson and Vedral, 2001; Ollivier and Zurek, 2001]D(ρ) is a class of
quantum correlations in quantum information [Brodutch and Terno, 2016; Pirandola, 2013]. The
computation of discord involves optimization, making it a computationally challenging task. In
fact, calculating quantum discord is an NP complete problem [Huang, 2014; Lim and Joynt, 2014].
Hence, the need to have an alternative formulation of quantum discord. In this chapter, we con-
struct graph theoretical criterion of zero and non-zero quantum discord in graph Laplacian quan-
tum states related to simple and weighted digraphs. Zero discord quantum states are known as
classical quantum states or pointer states [Kuś and Bengtsson, 2009; Henderson and Vedral, 2001].
Correspondingly, it will be seen here that there are graph Laplacian pointer states. This chapter
follows our two articles [Dutta et al., 2017a,b]. We begin this chapter with an introduction to the
formulation of quantum discord. Then we shall find out some graphical conditions for construct-
ing a family of normal commutingmatrices. Weuse these criterion for constructing quantum states
with zero and non-zero discord.

5.1 AN INTRODUCTION TO QUANTUMDISCORD
We begin by recapitulating a number of basic ideas in classical information theory [Cover

and Thomas, 2012]. An elementary information source is a pair (X, p)whereX is a finite set which
is formally called an alphabet and p is a probability distribution onX that is p : X → [0, 1] is a map
satisfying x∈X p(x) = 1. The quantity,

H(x) = −
x∈X

p(x) log p(x) (5.1)

is called the Shanon entropy [Shannon and Weaver, 1998] of the elementary information source
(X, p), or simply the Shanon entropy of the probability distribution p. Here,X is a randomvariable
whose probability distribution is p. The Shanon entropy has a crucial significance in information
and coding theory [Parthasarathy, 2013]. It is a measure of information that is the uncertainty of a
random variable.

Nowwe consider a joint probability distribution of two random variablesX and Y , that is
((X,Y ), p(x, y)). The joint entropy is given by,

H(x, y) = −
x∈X y∈Y

p(x, y) log p(x, y). (5.2)

The conditional random variable is denoted by Y |X . The conditional entropy is given by

H(Y |X) =
x∈X

p(x)H(Y |X = x) = −
x∈X y∈Y

p(x, y) log p(y|x). (5.3)

Here p(x) is the marginal probability distribution of the random variableX . The chain rule estab-
lishes a connection between joint entropy and conditional entropy which is given by,

H(X, Y ) = H(X) +H(Y |X). (5.4)
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The relative entropy is a measure of distance between two probability distributions. The
relative entropy between two probability mass functions p(x) and q(x) is defined by,

D(p||q) =
x∈X

p(x) log
p(x)

q(x)
. (5.5)

It leads us to the definition of mutual information of two random variables X and Y which is
denoted by I(X ;Y ). Consider two random variables X and Y with the joint probability distribu-
tion p(x, y) and marginal probability distributions p(x) and p(y). Now the mutual information is
the relative entropy between the joint distribution p(x, y) and the product distribution p(x)p(y).
Hence,

I(X; Y ) = −
x∈X y∈Y

p(x, y) log p(x, y)

p(x)p(y)
. (5.6)

It can also be shown that

I(X; Y ) = H(X)−H(X|Y ). (5.7)

Also applying the chain rule,

I(X; Y ) = H(X) +H(Y )−H(X, Y ). (5.8)

In classical information theory the two equations provide equal quantitative values of I(X;Y ) but
are different in quantum information theory.

In quantum information von-Neumann entropy is analogous to Shanon entropy. Given a
density matrix ρ the von-Neumann entropy is defined by,

S(ρ) = trace(ρ log(ρ)) = −
i

λi log(λi), (5.9)

where λi is an eigenvalues of the matrix ρ. Also, we assume that 0 log(0) = 0.

LetA andB are quantum systems with the correspondingHilbert spacesHA andHB . Let ρ
be a bipartite density matrix in the combinedHilbert spaceHA⊗HB . The reduced densitymatrices
corresponding to the individual subsystems are

ρA = traceB(ρ) and ρB = traceA(ρ), (5.10)

where traceA and traceB are partial trace on the subsystems A and B.

Now from the equation (5.8) we can derive an expression of the quantum mutual informa-
tion, which is

I(ρ) = S(ρA) + S(ρB)− S(ρ). (5.11)

But the quantum mechanical analogue of (5.8) is not so straightforward.

Let {ΠB
i : i = 1, 2, . . .dim(HB)} be complete set of measurement operators corresponding

to a von-Neumann measurement on the subsystem B. Let pi be the probability for obtaining the
outcome of the measurement ΠB

i that is

pi = trace[(Ia ⊗ΠB
i )ρ(Ia ⊗ΠB

i )]. (5.12)
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The post measurement state of the system A is given by,

ρAi =
1

pi
traceB (Ia ⊗ΠB

i )ρ(Ia ⊗ΠB
i ) . (5.13)

It was shown in [Ollivier and Zurek, 2001] that with respect to the measure {ΠB} the conditional
entropy of system A is

S(A|{ΠB
i }) =

i

piS(ρ
A
i ). (5.14)

The quantummechanical analogue of equation (5.7)with respect to themeasurement {ΠB
i } is given

by,

I(ρ|ΠB) = S(ρA)− S(A|{ΠB
i }). (5.15)

The quantum discord [Henderson and Vedral, 2001; Ollivier and Zurek, 2001] is the quantumme-
chanical difference between two classically equivalent definitions of mutual information.

Definition 5.1. Quantum discord: The quantum discord of a bipartite state ρ is

D(ρ) = min
ΠB

{I(ρ)− I(ρ|ΠB)}. (5.16)

In quantum information, quantum discord is a measure of non-classical correlations be-
tween two systems A and B, different from entanglement. Thus, there are separable quantum
states with non-zero discord. Also all entangled states has non-zero discord. There are quantum
states for which D(ρ) = 0. We call them classical-quantum states [Kuś and Bengtsson, 2009] or
pointer states. From the perspective of computational complexity, it has been proved that calcu-
latingD(ρ) is anNP-complete problem [Huang, 2014]. This calls for developing alternatemeasures
and techniques to realize quantum discord. A set of analytical criteria for zero and non-zero quan-
tum discord are developed in [Huang et al., 2011; Dakić et al., 2010].

Recall from equation (2.17) that, if we consider the canonical computational basis {|ia } of
HA, and {|ib } ofHB , then we can express ρ as,

ρ =
i,j

Eij ⊗Bij , (5.17)

where, Eij = |ia ja|, and Bi,j = tracea[(|ja ia| ⊗ Ib)ρ]. Therefore, Bij are blocks of the density
matrix ρ. It is proved in [Huang et al., 2011] that a quantum state represented by a density matrix
ρ has zero discord if and only if {Bij} is a family of commuting normal matrices. Recall that two
matrices A and B commute if AB = BA holds. Also a matrix A is a normal matrix if it commutes
with this conjugate transpose, that is AA† = A†A. A set of matrices {Ai : i = 1, 2, . . . } is a family
of commuting normal matrices if every Ai is a normal matrix and AiAj = AjAi for all i = j.
Properties of the family of commuting normal matrices are reviewed in [Horn and Johnson, 2012]
and have applications in different branches of science and technology.

5.2 GRAPH THEORETIC ASPECTS OF COMMUTING NORMALMATRICES
Recall that, a quantum state in H(m) ⊗ H(n) is represented by a density matrix ρ of order

mn×mnwhich is a block matrix with each block of size n. In subsection 2.2.6, we have partitioned
the graph into clusters which is given by

V = C1 ∪ C2 ∪ · · · ∪Cm;

Cµ ∩ Cν = ∅ for µ = ν and µ, ν = 1, 2, . . .m;

Cµ = {vµ1, vµ2, . . . vµn}.
(5.18)
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It leads the adjacency matrix to be partitioned into block matrix as A(G) = (Aµν). Similarly, the
blockmatrix representation of densitymatrix is given by ρ(G) = (Bµν). The relation between (Aµν)
and (Bµν) is given in the equation (2.18) and is as detailed below.

Bµν =
s
Aµν

d if µ = ν
Dµ+sAµµ

d if µ = ν,
(5.19)

where s = 1 for ρq(G) and s = −1 for ρl(G). Also, we have discussed the relationship between
blocks of the adjacency matrix and the subgraphs generated by these clusters, in the subsection
2.2.6. We require all these relationships for further investigations in this chapter and the next one.
Note that, the commuting normality property of blocks of the graph Laplacian states are deter-
mined by the structural properties of Cµ and Cµ, Cν . We break this section into two parts: one
for simple graphs, and another for weighted digraphs.

5.2.1 Commuting normal matrices generated by the blocks of simple graphs
We have assumed graph Laplacian quantum states related to the simple graphs in this

section. We investigate a number of structural properties on the subgraphs Cµ , and Cµ, Cν ,
such that,Bµ,ν are normal and commutating. Note that,Aµ,ν are binarymatrices as the underlined
graph is a simple graph.

Definition 5.2. Support of a vector: Given any binary vector a, we define, the support of a as,

nbd(a) = {i(mod n) : a(i) = 1}. (5.20)

In the above definition i(mod n)will be calculated with usual modular arithmetic. Also, n
will be chosen from the context. Let a, and b be two binary vectors. The product,

(a, b) = #(nbd(a) ∩ nbd(b)). (5.21)

For a binary matrix A = (aij)n×n, we denote ai∗ and a∗j as i-th row and j-th column
vector, respectively. Corresponding to every A, there is a simple bipartite graph of order 2n,
A = (V (A), E(A))with adjacency matrix,

A(A) =
0 A
A† 0

. (5.22)

Let bipartitions of V (A) are Cµ and Cν , where Cµ = {vµ,1, vµ,2, . . . vµ,n}, Cν = {vν,1, vν,2, . . . vν,n}.
Recall that, given any vertex vγi, the index i represents the position of a vertex in γ-th cluster, where
γ = µ, ν, etc. An undirected edge (vµi, vνj) ∈ E(A), if and only if aij = 1. Thus, A = Cµ, Cν . As
A is bipartite, the neighbourhood of a vertex vµi in A is a subset of Cν ,

NbdA(vµi) = {vνj : (vµi, vνj) ∈ E(G)}. (5.23)

Similarly, NbdA(vνi) ⊂ Cµ. Let 01,n, and 0n,1 are zero row and column vectors. Note that, the
i-th row of A(A), that is (01,n, ai∗) represents edges incident to vµi. Thus, nbd(01,n, ai∗) = nbd(ai∗)
represents indexes of vertices in NbdA(vµi). Hence, we write nbd(ai∗) as nbdA(vµi). Similarly,
the (n + i)-th column of A(A), that is (a∗i, 0n,1) represents edges incident to vνi. nbd(0n,1, a∗i) =
nbd(a∗i) represents indexes of vertices in NbdA(vνi). We also denote the set nbd(a∗i) as nbdA(vνi).
Precisely, we may combine the above text as,

nbdA(vµi) = {j : vνj ∈ NbdA(vµj)} = nbd(ai∗),
and nbdA(vνi) = {j : vµj ∈ NbdA(vνj)} = nbd(a∗i).

(5.24)
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In particular, any binary symmetric matrix A of order nwith zero diagonal entries may be
considered as an adjacency matrix of a graph A. Let V (A) = Cµ = {vµ,1, vµ,2, . . . vµ,n}. The edge
(vµ,i, vµ,j) ∈ E(A) if and only if aij = 0. Thus, A = Cµ .

Example 5.1. Consider the matrix A =




0 1 1
1 0 0
1 0 0



. Corresponding bipartite graph,A, is as follows.

•µ,1

❊❊
❊❊

❊❊
❊❊

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘ •µ,2

②②
②②
②②
②②

•µ,3

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧

•ν,1 •ν,2 •ν,3

Consider, a∗1 = (0, 1, 1)†, that is nbd(a∗1) = {2, 3}. Note that, NbdA(vν1) = {vµ,2, vµ,3}. Also, A is a
symmetric binary matrix with zero diagonal entries. Thus, A is the adjacency matrix of a graph A, depicted
below,

•µ3 •µ1 •µ2

Lemma 5.1. Let bipartite graphs corresponding to binary matrices A, and B of order n be A = Cµ, Cν ,
and B = Cα, Cβ , respectively. They commute, if and only if for all i, j with 1 ≤ i, j ≤ n,

#(nbd(vµi) ∩ nbd(vβj)) = #(nbd(vνj) ∩ nbd(vαi)).

Proof. For commutativity AB = BA holds if and only if (AB)ij = (BA)ij for all i, j with 1 ≤ i, j ≤
n. Now applying equation (5.21) we get,

(AB)ij =

n

k=1

aikbkj = ai∗, b∗j = #(nbd(vµi) ∩ nbd(vβj)),

(BA)ij =

n

k=1

bikakj = bi∗, a∗j = #(nbd(vνj) ∩ nbd(vαi)).
(5.25)

WhenA, andB do not commute, the above lemmadoes not hold. Thus, thenon-commutativity
of A and B is reflected in the edge sets of the graphsA, and B. We can assume the following quan-
tity as a measure of non-commutativity of A and B,

n

i=1

n

j=1

#(nbd(vµi) ∩ nbd(vβj))− #(nbd(vνj) ∩ nbd(vαi)) . (5.26)

Corollary 5.1. Let A = Cµ , and B = Cα, Cβ be graphs corresponding to a binary symmetric matrix
A = (aij)n×n with zero diagonal entries, and any binary matrix B = (bij)n×n. They commute if and only
if for all i, j with 1 ≤ i, j ≤ n,

#(nbd(vµi) ∩ nbd(vβj)) = #(nbd(vµj) ∩ nbd(vαi)).

Proof. We have already justified that, nbd(ai∗) = nbd(vµi) = nbd(a∗i), for all i = 1, 2, . . . n. From
equation (5.25) we get, A commutes with B, if and only if ai∗, b∗j = bi∗, a∗j for all i, and j.
Applying the symmetry of A, we get, ai∗, b∗j = aj∗, bi∗ . Using the graph theoretic convention,
we get #(nbd(vµi) ∩ nbd(vβj)) = #(nbd(vµj) ∩ nbd(vαi)).
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WhenA andB do not commutewemaymeasure the non-commutativitywith the following
quantity:

n

i=1

n

j=1

#(nbd(vµi) ∩ nbd(vβj))− #(nbd(vµj) ∩ nbd(vαi)) . (5.27)

Corollary 5.2. Two binary symmetric matrices with zero diagonal entriesA = (aij)n×n, and B = (bij)n×n

corresponding to graphs A = Cµ , and B = Cν commute, if and only if for every i, j with 1 ≤ i, j ≤ n,

#(nbd(vµi) ∩ nbd(vνj)) = #(nbd(vµj) ∩ nbd(vνi)).

Proof. The proof follows from the above Corollary by choosing α = β = ν.

In a similar fashion, the non-commutativity of A and B can be measured with,

n

i=1

n

j=1

#(nbd(vµi) ∩ nbd(vνj))− #(nbd(vµj) ∩ nbd(vνi)) . (5.28)

A binary normal matrix A commutes with its conjugate transpose, that is AA† = A†A.
Hermitian matrices are trivially normal matrices. But there are normal matrices which are not
Hermitian.

Lemma 5.2. Let A = Cµ, Cν be a bipartite graph corresponding to a binary matrix A = (aij)n×n. It is
normal, if and only if for every i, and j with 1 ≤ i, j ≤ n,

#(nbd(vµi) ∩ nbd(vµj)) = #(nbd(vνi) ∩ nbd(vνj)).

Proof. Let B = (bij)n×n = (aji)n×n = A†. Clearly, bi∗ = a∗i and b∗i = ai∗ for all i. Note that,

(AA†)ij =
n

k=1

aikbkj = ai∗, b∗j = ai∗, aj∗ = #(nbd(vµi) ∩ nbd(vµj)). (5.29)

Similarly, (A†A)ij = #(nbd(vνi)∩nbd(vνj)). Hence, for any two i, and j with 1 ≤ i, j ≤ nwe have,
#(nbd(vµi) ∩ nbd(vµj)) = #(nbd(vνi) ∩ nbd(vνj)).

When A is not a normal matrix we may measure its non-normality in terms of the edges of
A. The following quantity may be accepted as a measure of non-normality,

n

i=1

n

j=1

#(nbd(vµi) ∩ nbd(vµj))− #(nbd(vνi) ∩ nbd(vνj)) . (5.30)

Example 5.2. The zero matrix Θn, the identity matrices In and the all one matrix Jn are three binary
symmetric normal matrices. They also commute with all other matrices. Graphs corresponding to Θn are
empty graphs. The bipartite graph I corresponding to I is depicted in the figure 5.1. The bipartite graph J
corresponding to Jn is a complete bipartite graph Kn,n. Graph K3,3 is depicted in the figure 5.2a. Another
important binary symmetric matrix is Jn − In. The graph Jn − In is a complete graphKn.
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vµ1 vµ2 . . . vµn

vν1 vν2 . . . vνn

Figure 5.1 : Bipartite graph corresponding to the identity matrix I

5.2.2 Commuting normal matrices generated by the blocks of weighted digraphs
In this subsection, we find out conditions on a weighted digraph G such that the blocks

of ρ(G) form a family of normal commuting matrix. We consider only those weighted digraphs
satisfying our basic assumptions 2.1.

Given a vertex i of a weighted digraph G we call the set nbdG(i) = {j : j ∈ V (G), (i, j) ∈
E(G)} as the neighbourhood of vertex i. According to our assumption (i, j) and (j, i) belong to
E(G) together. Thus, the neighbourhood determined by incoming edges, and out-going edges
are equivalent. Due to its requirement in the next section we now develop the terminology of the
neighbourhood.

For a labelled digraph G corresponding to any vertex i there is an ordered set of vertices,
called an outer neighbourhood of i denoted and defined by,

NbdG(i)out = {j : j ∈ V (G), (i, j) ∈ E(G)}. (5.31)

Also we define,

NbdG(i)in = {j : j ∈ V (G), (j, i) ∈ E(G)}. (5.32)

Corresponding to the sets NbdG(i)out and NbdG(i)in there are multi-sets of edge weights denoted
and defined by,

W (NbdG(i)out) = {wG(i, j) : j ∈ NbdG(i)out, (i, j) ∈ E(G)}, (5.33)
W (NbdG(i)in) = {wG(j, i) : j ∈ NbdG(i)in, (j, i) ∈ E(G)}. (5.34)

Given a vertex i we call the set nbdG(i) = {j : j ∈ V (G), (i, j) ∈ E(G)} as the neigh-
bourhood of vertex i. Under the basic assumptions outlined above, (i, j) and (j, i) belong to E(G)
together. With respect to the vertex i we describe (i, j) as the outgoing edge and (j, i) as the in-
coming edge. We collect the weights of the edges incident to vertex i in the following sets:

W (nbdG(i)out) = {wG(i, j) : (i, j) ∈ E(G)},
W (nbdG(i)in) = {wG(j, i) : (j, i) ∈ E(G)}.

(5.35)

Definition 5.3. Support of a vector: Given a vector a ∈ Cn there is a set of natural numbers nbd(a)
defined by,

nbd(a) = {i : a(i) = 0},

where a(i) denotes the ith entry of a.

Given two vectors a, b ∈ Cn we define their product as,

(a, b) =

k∈nbd(a)∩nbd(b)
a(k)b(k). (5.36)
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Given amatrixA = (aij)n×n, ai∗ and a∗j denotes the i-th row and j-th column vectors, respectively.
Corresponding to everyA, there is a weighted bipartite graph of order 2n,A = (V (A), E(A))with
the adjacency matrix,

A(A) =
0 A
A† 0

. (5.37)

As A is a bipartite graph we can write V (A) = Cµ ∪ Cν , where Cµ = {vµ1, vµ2, . . . vµn}, Cν =
{vν1, vν2, . . . vνn} and Cµ ∩ Cν = ∅ as mentioned in equation (2.14). Therefore, A = Cµ, Cν , the
subgraph generated by the vertex sets Cµ and Cν . The directed edge (vµi, vνj) ∈ E(A), if and only
if aij = 0. Also, w(vµi, vνj) = aij . Moreover, the adjacency matrix A(A) indicates the existence of
(vνj, vµi) with w(vνj, vµi) = aij . Now,

nbdA(vµi) = {vνj : (vµi, vνj) ∈ E(G)} ⊂ Cν . (5.38)

Similarly, nbdA(vνi) ⊂ Cµ. Let 01,n and 0n,1 are zero row and column vectors. Note that, the i-th
row ofA(A), that is (01,n, ai∗) represents weights of outgoing edges from the vertex vµi. According
to the definition 5.3, nbd(01,n, ai∗) = nbd(ai∗) which represents indexes of vertices in nbdA(vµi).
Thus we have,

nbd(ai∗) = nbdA(vµi), and ai∗ =W (nbdA(vµi)out). (5.39)

The (n+ i)-th column of A(A), that is (a∗i, 0n,1) represents edge weights of the incoming edges to
the vertex vνi. Also, nbd(a∗i) represents indexes of vertices in nbdA(vνi). Hence,

nbd(a∗i) = nbdA(vνi) and a∗i =W (nbdA(vνi)in). (5.40)

In particular, any complexHermitianmatrixA of order n can be considered as an adjacency
matrix of a graph Ã, where V (Ã) = Cµ = {vµ,1, vµ,2, . . . vµ,n}. The edge (vµ,i, vµ,j) ∈ E(Ã) if and
only if aij = 0. Thus, Ã = Cµ , the induced subgraph generated by the vertex set Cµ. Here,
the row vector ai∗ represents all outgoing edges from the vertex vµi. Thus, nbd(ai∗) = nbdÃ(vµi).
Similarly, nbd(a∗i) = nbdÃ(viµ).

Lemma 5.3. Let the weighted bipartite digraphs corresponding to complex square matricesA andB of order
n be A = Cµ, Cν , and B = Cα, Cβ , respectively. The matrices A and B commute, if and only if for all
i, j with 1 ≤ i, j ≤ n,

k∈nbd(vµi)∩nbd(vβj)

w(vµi, vνk)w(vαk, vβj) =

k∈nbd(vαi)∩nbd(vνj)
w(vαi, vβk)w(vµk, vνj).

Proof. Commutativity AB = BA holds if and only if (AB)ij = (BA)ij for all i, j with 1 ≤ i, j ≤ n.
Note that, aik = w(vµi, vνk) and bkj = w(vαk, vβj). Now applying equation (5.36) we get,

(AB)ij =
n

k=1

aikbkj = ai∗, b∗j =
k

w(vµi, vνk)w(vαk, vβj) : k ∈ nbd(vµi) ∩ nbd(vβj),

(BA)ij =
n

k=1

bikakj = bi∗, a∗j =
k

w(vαi, vβk)w(vµk, vνj) : k ∈ nbd(vαi) ∩ nbd(vνj).

(5.41)

Note that, if Cµ, Cν = Cα, Cβ then the condition of commutativity holds. Also, if any of
the graphs be empty, then the commutativity condition holds trivially.
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Corollary 5.3. Let Ã = Cµ , and B = Cα, Cβ be graphs corresponding to a Hermitian matrix A =
(aij)n×n, and square matrix B = (bij)n×n. They commutes if and only if for all i, j with 1 ≤ i, j ≤ n,

k∈nbd(vµi)∩nbd(vβj)
w(vµi, vµk)w(vαk, vβj) =

k∈nbd(vαi)∩nbd(vµj)
w(vαi, vβk)w(vµk, vµj).

Proof. We have already justified that, nbd(ai∗) = nbdÃ(vµi) and nbd(a∗i) = nbdÃ(vµi), for all
i = 1, 2, . . . n. The matrix A commutes with B, if and only if the product ai∗, b∗j = bi∗, a∗j for
all i, and j. Applying the symmetry of A, we get, ai∗, b∗j = aj∗, bi∗ . Using the graph theoretic
convention, we get the desired result.

Corollary 5.4. Two Hermitian matrices A = (aij)n×n, and B = (bij)n×n corresponding to graphs Ã =
Cµ , and B̃ = Cν commute, if and only if for every i, j with 1 ≤ i, j ≤ n,

k∈nbd(vµi)∩nbd(vνj)
w(vµi, vµk)w(vνk, vνj) =

k∈nbd(vνi)∩nbd(vµj)
w(vνi, vνk)w(vµk, vµj).

Proof. The proof follows from the above Corollary by choosing α = β = ν.

Lemma 5.4. LetA = Cµ, Cν be a weighted bipartite digraph corresponding to a matrix A = (aij)n×n. It
is normal, if and only if for every i, and j with 1 ≤ i, j ≤ n,

k∈nbd(vµi)∩nbd(vµj)

w(vµi, vνk)w(vνk, vµj) =

k∈nbd(vνi)∩nbd(vνj)
w(vνi, vµk)w(vµk, vνj).

Proof. Let B = (bij)n×n = (aji)n×n = A†. Clearly, bi∗ = a†∗i and b∗i = a†i∗ for all i. Note that,

(AA†)ij =
n

k=1

aikbkj = ai∗, b∗j = ai∗, aj∗

=
k

w(vµi, vνk)w(vνk, vµj) : k ∈ nbd(vµi) ∩ nbd(vµj).
(5.42)

Similarly, (A†A)ij = k w(vνi, vµk)w(vµk, vνj) : k ∈ nbd(vνi)∩nbd(vνj). Hence, we get the equality
as stated for normality.

Nowwe consider a trivial observation related to the above lemma, which will be used later.
Let there be only one edge of arbitrary non-zeroweight, (vµ,p, vν,q)with p = q, between two clusters
Cµ and Cν . Now, for i = j = p,

k∈nbd(vµi)∩nbd(vµj)

w(vµi, vνk)w(vνk, vµj) = w(vµp, vνq)w(vνq, vµp). (5.43)

Also, for i = j = p the set nbd(vνi) ∩ nbd(vνj) = ∅, as vνp is an isolated vertex. Hence, the term
k∈nbd(vνi)∩nbd(vνj) w(vνi, vµk)w(vµk, vνj) takes no value. In this case, the graph Cµ, Cν fails to

fulfil the normality condition. Note that, for p = q the graph Cµ, Cν with single edge (vµ,p, vν,q)
represents a normal matrix.
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5.3 DISCORD OF GRAPH LAPLACIAN QUANTUM STATES IN GENERAL
In the last section, we have realized that blocks of a density matrix ρ(G) forms a family of

normal commuting matrices depending on the structure of the graphG. In graph theoretic terms,
a graph Laplacian quantum state ρ(G) has zero quantum discord if these followings properties of
block matrices are satisfied.

1. Normality of Bµµ, that is of Dµ ±Aµµ for all µ.

2. Normality of Bµν , that is of Aµν for all µ = ν.

3. Commutativity of Bµν , and Bαβ , that is between Aµν , and Aαβ , where µ = ν, and α = β.

4. Commutativity between Bµµ, and Bαβ , that is Dµ ±Aµµ, and Aαβ , where α = β.

5. Commutativity between Bµµ, and Bνν , that is betweenDµ ±Aµµ, and Dν ±Aνν .

In this section, we shall discuss about discord in graph Laplacian quantum states based on the
above properties. We shall find out simple and weighted digraphs such that the corresponding
quantum states has zero discord. Also, we shall provide a graph theoretic measure of quantum
discord for simple graphs.

5.3.1 Zero discord graph Laplacian states related to simple graphs
The Property 1 holds trivially for all graphs because symmetric matrices are normal. The

matrixAµµ, andDµ are adjacencymatrix, and degree matrix, respectively of the induced subgraph
Cµ . They are symmetric. Thus, Bµµ = Dµ ±Aµµ are normal matrices for all µ.

The Property 2 is satisfied by all those graphs for which all the subgraphs Cµ, Cν meet the
normality condition in Lemma 5.2. If there are some block matricesBµν , which are not normal, we
may measure the violation of normality by the graph G using the following sum,

P =

m

µ=1

m

ν=1

n

i=1

n

j=1

#(nbd(vµi) ∩ nbd(vµj))− #(nbd(vνi) ∩ nbd(vνj)) . (5.44)

It comes from the equation (5.30) after adding on all possible subgraphs Cµ, Cν of G.

The Property 3 is satisfied by all those graphs for which any two subgraphs Cµ, Cν , and
Cα, Cβ fulfil the lemma (5.1). If any two blocks do not commute, we may measure the existing
non-commutativity in the graph using the equation (5.26) with the following quantity,

Q =
m

µ=1

m

ν=1

n

i=1

n

j=1

#(nbd(vµi) ∩ nbd(vβj))− #(nbd(vνj) ∩ nbd(vαi)) . (5.45)

Theproperty 4dealswith commutativity betweenBµµ andBαβ , that is thegraphwill satisfy
BµµBαβ = BαβBµµ for all µ, α, and β. It indicates,

1

d
(Dµ ± Aµµ)

±1
d
Aαβ =

±1
d
Aαβ

1

d
(Dµ ±Aµµ)

or DµAαβ ±AµµAαβ = AαβDµ ±AαβAµµ.
(5.46)

Rearranging its terms we get the equation,

(DµAαβ −AαβDµ)± (AµµAαβ −AαβAµµ) = 0. (5.47)
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Note that, Dµ, and Aµµ are degree, and adjacency matrices of Cµ , respectively. Also, Aαβ cor-
responds the bipartite graph Cα, Cβ . The above equation holds if for all i, j with 1 ≤ i, j ≤ n,

(DµAαβ)ij − (AαβDµ)ij ± {(AµµAαβ)ij − (AαβAµµ)ij} = 0

or dµi(Aαβ)ij − (Aαβ)ijdµj ± {(AµµAαβ)ij − (AαβAµµ)ij} = 0.
(5.48)

Now, (Aαβ)ij is either zero or one depending on existence of the edge (vαi, vβj). Commutativity of
Aµµ and Aαβ has been discussed in the Corollary 5.1. Applying it in the above equation we get,

Xαβ(i, j)(dµi − dµj)± #(nbd(vµi) ∩ nbd(vβj))− #(nbd(vµj) ∩ nbd(vαi)) = 0. (5.49)

Observe that, if vertices of Cµ, µ = 1, 2, . . .m have equal degree, then dµi − dµj = 0 independent
of the existence of edge (vαi, vβj). In this case, the graph satisfies the Property 4 if every pair of
subgraph Cµ and Cα, Cβ satisfies the Corollary 5.1. Violation of the Property 4 can bemeasured
by,

R =
m

µ=1

m

ν=1

n

i=1

n

j=1

Xαβ(i, j)(dµi−dµj)± #(nbd(vµi)∩nbd(vβj))−#(nbd(vµj)∩nbd(vαi)) .

(5.50)

We consider ‘+’ sign for ρq(G) and ‘−’ sign for ρl(G) in the above expression.

The Property 5 requires commutativity of Bµµ and Bνν , that is BµµBνν = BννBµµ. It indi-
cates,

1

d
(Dµ ±Aµµ)

1

d
(Dν ±Aνν) =

1

d
(Dν ±Aνν)

1

d
(Dµ ±Aµµ)

or DµDν ±DµAνν ±AµµDν +AµµAνν = DνDµ ±DνAµµ ±AννDµ +AννAµµ

or (AµµAνν −AννAµµ)± (DµAνν −AννDµ)± (AµµDν −DνAµµ) = 0

or (AµµAνν −AννAµµ)ij ± (DµAνν −AννDµ)ij ± (AµµDν −DνAµµ)ij = 0,

(5.51)

holds for all i, j with 1 ≤ i, j ≤ n. Commutativity ofAµµ, andAνν is discussed in the Corollary 5.2.
We may write,

(AµµAνν −AννAµµ)ij = #(nbd(vµi) ∩ nbd(vνj))− #(nbd(vµj) ∩ nbd(vνi)). (5.52)

Also,

(DµAνν −AννDµ)ij = dµi(Aνν)ij − (Aνν)ijdµj = Xνν(i, j)(dµi − dµj) (5.53)
(AµµDν −DνAµµ)ij = (Aµµ)ijdνj − dνi(Aνν)ij = Xµµ(i, j)(dνj − dνi). (5.54)

Combining them together, we get

#(nbd(vµi) ∩ nbd(vνj))− #(nbd(vµj) ∩ nbd(vνi)) ± Xνν(i, j)(dµi − dµj)
± Xµµ(i, j)(dνj − dνi) = 0.

(5.55)

Note that, if vertices ofCµ, µ = 1, 2, . . .m have equal degree, then dµi−dµj = 0 aswell as dνj−dνi =
0. Then, G satisfies the Property 5, if and only if for any two subgraphs Cµ and Cν , conditions
of Corollary 5.2 is fulfilled. We may measure violation of the Property 5 by the quantity,

S =

m

µ=1

m

ν=1

n

i=1

n

j=1

#(nbd(vµi) ∩ nbd(vνj))− #(nbd(vµj) ∩ nbd(vνi))

± Xνν(i, j)(dµi − dµj) ± Xµµ(i, j)(dνj − dνi) .

(5.56)
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Here, ‘+’ sign will be used for ρq(G) and ‘−’ sign will be used for ρl(G).

Finding out all graphs satisfying all five structural properties is difficult. Here, we state a
number of sufficient conditions on graphs representing zero discord quantum states.

Theorem 5.1. Let the graph G have the following structural properties:

1. Degrees of the vertices in a cluster Cµ is equal for all µ = 1, 2, . . .m.

2. Any pair of subgraphs Cµ, Cν , and Cα, Cβ fulfils the commutativity conditions of the Lemma 5.1.

3. Any pair of subgraphs Cµ , and Cα, Cβ fulfils the commutativity conditions of the corollary 5.1.

4. Any pair of subgraphs Cµ , and Cν fulfills the commutativity conditions of the corollary 5.2.

5. Any subgraph Cµ, Cν satisfies the normality condition of Lemma 5.2.

Then, the quantum state ρ(G) has zero geometric quantum discord.

Proof. The proof follows from the above discussion.

Before proceeding further, we recall a number of classes of graphs. Every vertex of a regular
graph has equal degree. A complete graph has all possible edges. A bipartite graph G has two
clusters C1 and C2 in the vertex set such that E(G) = {(u, v) : u ∈ C1, v ∈ C2}. That is, all the
edges of a bipartite graph lies between these two clusters. A complete bipartite graph contains all
such possible edges. An example of a complete bipartite graph is drawn in figure 5.2a.

Theorem 5.2. Let G be a complete graph of order N , such that, ρ(G) ∈ H(m) ⊗H(n). Then ρ(G) has no
quantum discord.

Proof. As G is a complete graph, degree of every vertex is equal = (n − 1). Degree of G is d =
N(N − 1). Consider blocks of ρ(G),

Bµν =
±1
d Aµµ = 1

d [(N − 1)In + Jn − In] = 1
d [(N − 2)In + Jn] for µ = ν

±1
d Aµν = ±1

d Jn for µ = ν
. (5.57)

All the blocks Bµν are normal and commute with each other. Thus, every complete graph corre-
sponds to a zero discord quantum state.

This theorem provides a constructive method to generate a zero discord quantum state in
any given bipartite quantum system H(m) ⊗ H(n). The next theorem provides an alternative to
H(2) ×H(n).

Theorem 5.3. There is a quantum state ρ(G) ∈ H(2)×H(n) with zero discord corresponding to any complete
bipartite graphKn,n.

Proof. Let C1 = {v1,1, v1,2, . . . v1,n}, C2 = {v2,1, v2,2, . . . v2,n} be bipartition ofKn,n. Now,

ρ(Kn,n) =
1

2n2
nIn ±Jn
±Jn nIn

. (5.58)

Here, all the blockmatrices commutewith each other and they are normalmatrices. Hence, ρ(Kn,n)
is a quantum state with zero discord.
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(b) Graph with non-zero discord

Figure 5.2 : Two isomorphic copies ofK3,3 with zero and non-zero discord

Note that, quantum state with zero discord depends on vertex labelling. Consider isomor-
phic copies ofK3,3 depicted in figure 5.2. The graph in 5.2a has zero discord but, the graph in 5.2b
has non-zero discord.

Consider a binary matrix A = (aij)n×n, such that, i aij = j aij = r for all i, and j.
Hence, for all i and j we have ai∗ = a∗j . Using the graph theoretic conversion, in the graph
A = Cµ, Cν , we have nbd(vµi) = nbd(vνj) for any two i and j. It indicates that A is a regular
graph. In mathematical terminology, 1

rA is a doubly stochastic matrix .

There are 2n
2 binary matrices of order n. Among them, 2

n(n+1)
2 matrices are symmetric.

Excluding zero matrix from them, there are 2
n(n+1)

2 − 1 quantum states with zero discord inH(2)⊗
H(n) represented by ρ(G) where G is a bipartite partially symmetric graph as stated in the above
theorem.

Theorem 5.4. Let A = Cµ, Cν be a regular graph satisfying the condition of Lemma 5.2. Then ρ(A) is a
quantum state with zero discord.

Proof. Graphs satisfying the above theorem will generate the quantum state,

ρ(G) =
1

2nr

rIn ±An

±A†
n rIn

=
1

2n

In ±1
rAn

±1
rA

†
n In

. (5.59)

Here, An is a normal matrix with equal row and column sum r, which commutes with all other
blocks. Therefore, ρ(A) is a quantum state with zero discord.

We end up this section with an example of a separable graph Laplacian quantum state
having non-zero quantum discord. Recall the definition 4.4 of partially symmetric graphs. For a
partially symmetric graph every block Aµν of its adjacency matrix is symmetric. In the Chapter 3,
we have discussed that under some conditions partial symmetric graphs are separable states. Now
we like to state:

Example 5.3. Consider the partially symmetric graph depicted in the figure 5.3. Clearly, it represents a
separable two-qubit mixed state. Its density matrix is given by,

ρ(G) =
1





2 0 −1 −1
0 1 −1 0
−1 −1 2 0
−1 0 0 1



 . (5.60)

Note that, 2 0
0 1

and −1 −1
−1 0

do not commute. Therefore, ρ(G) has non-zero discord. It is easy to find

a number of other such examples.

59



•1,1

❊❊
❊❊

❊❊
❊❊

•1,2

②②
②②
②②
②②

•2,1 •2,2

Figure 5.3 : A graph representing a separable state with non-zero discord

5.3.2 Quantum discord in graph Laplacian quantum states related to simple graphs
In the last section, we have justified that zero quantum discord is a property of combinato-

rial graphs. Hence, it can be measured with a number of structural constrains of graphs. We have
shown if a graphG corresponds to quantum states with zero discord, then its subgraphs Cµ and
Cµ, Cν fulfil five properties for all µ, ν with 1 ≤ µ, ν ≤ m. When a graph fails to satisfy those
properties, we have measured its dispersion with the quantities ‘P ’ (5.44), ‘Q’ (5.45), ‘R’ (5.50), and
‘S’ (5.56).

Note that, P,Q,R and S are non-negative integers. If the graph corresponds to a classical
quantum state, that is, a quantum state with zero discord, then all these quantities become zero.
A function M(x, y, z, w) : R4 → R+ ∪ {0}, such that, M(0, 0, 0, 0) = 0 is called a non-negative
function. Here, R+ ∪ {0} is the set of non-negative real numbers. Any suitably chosen positive
function of P,Q,R and S will generate a measure of quantum correlation.

A general measure,M, of quantum correlation is expected to possess the following prop-
erties [Streltsov, 2014, Section 4.2.2].

1. M is non-negative.

2. M is zero for classically correlated states.

3. M is invariant under local unitary transformation.

As an example wemay consider,M(ρ) = P +Q+R+S, as a measure of quantum discord.
According to our construction, the first two properties ofM is satisfied. The properties of local
unitary operation is not modelled for quantum states corresponding to a combinatorial graph.
Hence, whetherM will satisfy the property 3 is not transparent. But it holds for a special case of
local unitary operations, discussed below.

Permutationmatrices are unitarymatrices. Consider any two permutationmatrices P1 and
P2 acting on the Hilbert spaces HA, and HB . Thus, P1 ⊗ P2 is a local unitary operator acting on
HA ⊗HB . Before proceeding to the next theorem recall that, P1 ⊗ P2 = (P1 ⊗ I)(I ⊗ P2).

Theorem 5.5. Let P2 be a permutation matrix acting on the Hilbert space HB and ρ(G) be a quantum
state with zero discord in the bipartite system HA ⊗ HB . Consider a graph H , such that, A(H) = (I ⊗
P2)A(G)(I ⊗ P2)

†. Then, ρ(H) also represents a zero discord quantum state.

Proof.

(I ⊗ P2)ρ(G)(I ⊗ P2)
† = (I ⊗ P2)

1

d





D1 ±A11 ±A12 . . . ±A1m

±A21 D2 ±A22 . . . ±A2m
...

... . . . ...
±Am1 ±Am2 . . . Dm ±Amm



 (I ⊗ P2)
†
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or (I ⊗ P2)ρ(G)(I ⊗ P2)
† =

1

d





P2(D1 ±A11)P
†
2 ±P2A12P

†
2 . . . ±P2A1mP

†
2

±P2A21P
†
2 P2(D2 ±A22)P

†
2 . . . ±P2A2mP

†
2

...
... . . . ...

±P2Am1P
†
2 ±P2Am2P

†
2 . . . P2(Dm ±Amm)P †

2



 .

Now recall the subgraphs Cµ and Cµ, Cν constructed after clustering on vertex set in equation
(2.14). Graph isomorphism is represented by permutation matrices. Hence, the above equation
can be interpreted as a graph isomorphism operation. The adjacency matrix of the new subgraph

corresponding to Cµ , and Cµ, Cν is given byP2AµµP
†
2 , and

0 P2AµνP
†
2

P2A
†
µνP

†
2 0

, respectively.

Note that, the permutation matrix P2 does not switch one vertex of Cµ to another vertex of Cν .
It only changes the indexes of vertices of Cµ and Cν in a similar fashion. Thus, the normality
and commutativity conditions holds as earlier in the new graph. Hence, if ρ(G) represents a zero
quantumdiscord state, then (I⊗P2)ρ(G)(I⊗P2)

† also represents a zero quantum discord state.

The above theorem indicates that (I ⊗ P2) keeps the conditions for zero discord unaltered.
Thus, there is no change in discord measure M. To realize the action of P1 ⊗ I on G we need a
suitable reordering on the vertex set. In a similar fashion, we may prove P1 ⊗ I keeps the discord
measure unaltered. Combining them we get the discord measureM is unaltered by P1 ⊗ P2.

5.3.3 Zero discord graph Laplacian states related to weighted digraphs
Now we generalize the results of the last sections to weighted digraphs. We shall derive

conditions on the subgraphs Cµ, Cν and Cµ such that the blocks of ρ(G) construct a family for
commuting normal matrices. Commutativity condition of two matrices A and B were discussed
in terms of digraphs Cµ, Cν and Cµ in the lemma 5.3, and its corollaries 5.3 and 5.4. That the
matrix A is normal has been discussed in the lemma 5.4. Hence, if the blocks of a given graphical
density matrix form a family of commuting normal matrices, the underlined graph will satisfy all
these graphical conditions. We combine them in the following theorem.

Theorem 5.6. Blocks of a density matrix ρ acting on H(m) ⊗ H(n) form a family of commuting normal
matrices if and only if the following conditions are satisfied.

1. Commutativity condition: Given any two subgraphs Cµ, Cν , and Cα, Cβ and for all i, j with
1 ≤ i, j ≤ n,

k∈nbd(vµi)∩nbd(vβj)

w(vµi, vνk)w(vαk, vβj) =

k∈nbd(vαi)∩nbd(vνj)
w(vαi, vβk)w(vµk, vνj).

2. Normality condition: For all subgraph Cµ, Cν and for every i, and j with 1 ≤ i, j ≤ n,

k∈nbd(vµi)∩nbd(vµj)

w(vµi, vνk)w(vνkvµj) =

k∈nbd(vνi)∩nbd(vνj)
w(vνi, vµk)w(vµkvνj).

3. Degree condition The graph satisfies the following two degree criterion,

a)

± w(vνi, vνj)(dµi − dµj) + w(vµi, vµj)(dνj − dνi)

+

k∈nbd(vµi)∩nbd(vνj)
w(vµi, vµk)w(vνk, vνj)

−
k∈nbd(vνi)∩nbd(vµj)

w(vνi, vνk)w(vµk, vµj) = 0,

(5.61)
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b)

w(vαi, vβj)(dµi − dµj)±
k∈nbd(vµi)∩nbd(vβj)

w(vµi, vµk)w(vαk, vβj)

−
k∈nbd(vαi)∩nbd(vµj)

w(vαi, vβk)w(vµk, vµj) = 0.
(5.62)

Proof. The commutativity and normality conditions follow from the lemma 5.3 and 5.4 for all non-
diagonal blocks. Note that, diagonal blocks are adjacency matrices of Cµ which are Hermitian,
hence normal. The degree condition includes all diagonal blocks in this family.

First we consider commutativity of two diagonal blocks,

1

d
(Dµ ±Aµµ)

1

d
(Dν ±Aνν) =

1

d
(Dν ±Aνν)

1

d
(Dµ ±Aµµ)

⇒DµDν ±DµAνν ±AµµDν +AµµAνν = DνDµ ±DνAµµ ±AννDµ +AννAµµ

⇒(AµµAνν −AννAµµ)± (DµAνν −AννDµ)± (AµµDν −DνAµµ) = 0

⇒(AµµAνν −AννAµµ)ij ± (DµAνν −AννDµ)ij ± (AµµDν −DνAµµ)ij = 0.

(5.63)

In terms of graphical parameters we may write,

(DµAνν − AννDµ)ij = dµi(Aνν)ij − (Aνν)ijdµj = w(vνi, vνj)(dµi − dµj), (5.64)
(AµµDν −DνAµµ)ij = (Aµµ)ijdνj − dνi(Aνν)ij = w(vµi, vµj)(dνj − dνi). (5.65)

Also from the corollary 5.4,

(AµµAνν − AννAµµ)ij =

k∈nbd(vµi)∩nbd(vνj)
w(vµi, vµk)w(vνk, vνj)−

k∈nbd(vνi)∩nbd(vµj)

w(vνi, vνk)w(vµk, vµj). (5.66)

Thus for commutativity of diagonal blocks the following degree condition need to be satisfied,

k∈nbd(vµi)∩nbd(vνj)
w(vµi, vµk)w(vνk, vνj)−

k∈nbd(vνi)∩nbd(vµj)

w(vνi, vνk)w(vµk, vµj)

± w(vνi, vνj)(dµi − dµj) + w(vµi, vµj)(dνj − dνi) = 0.

(5.67)

We consider + for ρq(G) and − for ρl(G) in the above equation.

Now we consider commutativity of a diagonal and a non-diagonal block.

1

d
(Dµ ±Aµµ)

±1
d
Aαβ =

±1
d
Aαβ

1

d
(Dµ ±Aµµ)

⇒DµAαβ ±AµµAαβ = AαβDµ ±AαβAµµ.
(5.68)

Rearranging the terms we get the equation,

(DµAαβ −AαβDµ)± (AµµAαβ −AαβAµµ) = 0. (5.69)

The above equation holds if for all i, j with 1 ≤ i, j ≤ n,

(DµAαβ)ij − (AαβDµ)ij ± {(AµµAαβ)ij − (AαβAµµ)ij} = 0

⇒dµi(Aαβ)ij − (Aαβ)ijdµj ± {(AµµAαβ)ij − (AαβAµµ)ij} = 0.
(5.70)
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Graph theoretic counterpart of (AµµAαβ −AαβAµµ) follows from the corollary 5.3. Thus,

(AµµAαβ)ij − (AαβAµµ)ij =

k∈nbd(vµi)∩nbd(vβj)
w(vµi, vµk)w(vαk, vβj)−

k∈nbd(vαi)∩nbd(vµj)
w(vαi, vβk)w(vµk, vµj). (5.71)

Also,

dµi(Aαβ)ij − (Aαβ)ijdµj = w(vαi, vβj)(dµi − dµj). (5.72)

Combining the above two equations we get,

w(vαi, vβj)(dµi − dµj)±
k∈nbd(vµi)∩nbd(vβj)

w(vµi, vµk)w(vαk, vβj)

−
k∈nbd(vαi)∩nbd(vµj)

w(vαi, vβk)w(vµk, vµj) = 0.
(5.73)

We nowmake a number of observations. If vertices ofCµ, µ = 1, 2, . . .m have equal degree,
then dµi − dµj = 0 independent of the existence of edge (vαi, vβj). In this case, the graph satisfies
the Property 4 if every pair of subgraph Cµ and Cα, Cβ satisfies the Corollary 5.3.

Also if the subgraphs Cµ and Cν fulfil the commutativity condition described in the
corollary 5.4 then the first degree condition takes the following simpler form:

w(vνi, vνj)(dµi − dµj) + w(vµi, vµj)(dνj − dνi) = 0 for all i, j. (5.74)

Further, if the subgraphs Cα, Cβ and Cµ satisfy the commutativity condition described in the
corollary 5.3, the equation is simplified to

w(vαi, vβj)(dµi − dµj) = 0 for all i, j. (5.75)

5.4 DISCORD OF SOME SPECIFIC GRAPH LAPLACIAN QUANTUM STATES
We find out conditions on graphs such that the corresponding quantum states have non-

zero discord. These conditions shed light into the nature of discord in a number of important quan-
tum states, and will be discussed in this section. Hence just by observing the structural properties
of the graph, the zero or non zero discord quantum states can be determined. These properties
include existence or non-existence of some particular edges, and degree of vertices. Therefore, this
work develops a new method of approaching the problem of discord by exploiting the connection
between graph theory and quantum mechanics. We apply these results on some important pure
two qubit states, as well as a number of mixed quantum states, such as the Werner, Isotropic, and
X-states.

5.4.1 Two qubit pure states
Two qubit quantum states are the simplest bipartite quantum states. Here, we consider

two examples of 2-qubit pure states: |ψ1 = a |00 + b |11 , and |ψ2 = a |00 + b |01 , where |a|2 +
|b|2 = 1. Restricting a and b in |ψ1 to 1√

2
leads to the well known Bell state. The density matrices

corresponding to these quantum states are

σ1 = |ψ1 ψ1| =





a2 0 0 ab
0 0 0 0
0 0 0 0
ab 0 0 b2



 , and σ2 = |ψ2 ψ2| =





a2 ab 0 0
ab b2 0 0
0 0 0 0
0 0 0 0



 . (5.76)
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Figure 5.4 : Graphs representing two qubit quantum states. ρ(G1) has non-zero discord but ρ(G2) has zero dis-
cord.

From basis assumptions 2.1, we can see that these density matrices represent graph Lapla-
cian quantum states if a2 ≥ ab and b2 ≥ ab. If a = 0 and b = 0 then these two inequalities together
imply a = b. A density matrix of order 4 corresponds to a graph with four vertices. Also, the
graphs representing 2-qubit bipartite states must have two clusters.

Example 5.4. Consider the graphs in the figure 5.4. Their density matrices ρq(G1), and ρq(G2) are of the
form σ1, and σ2, respectively. From the conditions in Theorem 5.6, we conclude that the graphG1 violates the
normality condition. But, the graph G2 satisfies all of them. Hence, the state σ2 has zero discord, but σ1 has
non-zero discord. This example clearly indicates that quantum discord of states depend on the distribution
of edges in the graph.

5.4.2 Werner state
We have considered Werner states [Werner, 1989] as Graph Laplacian quantum states in

subsection 2.3.4. A Werner state is represented by (recall equation (2.26)),

ρx,d =
d− x
d3 − dI +

xd− 1

d3 − dF, (5.77)

where F = d
i,j |i j| ⊗ |j i|, x ∈ [0, 1] and d is the dimention of the individual subsystems.

Note that, ρx,d is a real symmetric matrix of order d2. Writing the Werner state in the equation
(2.26) as a matrix we conclude that, it can be represented by a graph having a number of specific
combinatorial structures. We have depicted graphs representingWerner states ρx,3 and ρx,4 in the
figure 2.11. There are separable Werner states with non-zero quantum discord [Luo, 2008].

Theorem 5.7. Every Werner state represented by a simple graph has non-zero discord.

Proof. Note that, for all x there is only one edge in the subgraph Cµ, Cν . Its position does not
vary with x. Thus forgetting the edge weight we may consider Cµ, Cν as a simple graph. From
the structure of Cµ, Cν using the lemma 5.2, we may conclude that Aµ,ν is not a normal matrix.
Thus every Werner state has a non-zero discord.

Theorem 5.8. Graph Laplacian Werner states represented by weighted graphs have non-zero quantum dis-
cord except for a finite set of values of x.

Proof. Note that, for all x there is only an edge (vµ,i, vi,µ) in the subgraph Cµ, Ci where µ = i.
After the lemma 5.4 we have shown such type of graphs cannot fulfil normality condition. As an
example, consider the sub-digraph C1, C2 of ρx,3 depicted in figure 5.5. There is only one edge
(v1,2, v2,1)with weight (3x−1) between two clustersC1 and C2. The edge weight is non-zero when
x = 1

3 . Note that,w(v12, v21)w(v2,1v1,2) = (3x−1)2 butw(v22, v12)w(v12, v12) = 0 as v22 is an isolated
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Figure 5.5 : Subgraph C1, C2 of the graph representing a Werner state ρx,3 drawn in figure 2.11

.

•1,1 •1,2 •1,3
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(F − 1

d2 )

Figure 5.6 : Subgraph C1, C2 of the graph representing an isotropic state ρ3,x drawn in the figure 2.12

vertex. In this case, the graph C1, C2 fulfils the normality condition if and only if x = 1
3 . Thus,

the normality condition of the theorem 5.6 is violated except some parameter values. Hence, graph
Laplacian Werner states have non-zero quantum discord except for some values of x.

5.4.3 Isotropic state
Wehave discussed about the Isotropic states in the subsection 2.3.5. Recall that, an isotropic

state ρd,x acting onH(d) ⊗H(d) is defined by,

ρd,x =
d2

d2 − 1

(1− F )
d2

I + F − 1

d2
P , (5.78)

where F ∈ [0, 1] is the fidelity of the quantum state and P = |ψ ψ| where |ψ = 1√
d i |ia |ib ,

the maximally entangled state in dimension d. There are graphs with a particular combinatorial
structure that represent isotropic states. We have depicted graphs in the figure 2.12 representing
isotropic states ρd,x for d = 2, 3, 4. Discord of isotropic state is studied in [Luo and Fu, 2010; Guo,
2016]. Considering diagonal and off-diagonal terms we may conclude that an isotropic quantum
state is graphical provided

(d− 1) F − 1

d2
≤ d2 − 1

d2
F. (5.79)

Putting d = 2, 3, 4 in the above equation we get, 17 ≤ F ≤ 1, 1
13 ≤ F ≤ 1

5 ,
1
11 ≤ F ≤ 1

21 , respectively.

Theorem 5.9. Graph Laplacian isotropic states have non-zero quantum discord except for some specific
values of F .

Proof. From the graph structure of the state ρ, Eq. (2.27), we see that the family of subgraphs
{ Cµ, Cν } do not satisfy the commutativity and normality criterion, except some specific edge
weights. For example consider the subgraph C1, C2 of the graph ρ3,x depicted in the figure 5.6.
The subgraph C1, C2 also breaks the normality condition for all non-zero edgeweights due to rea-
sons similar to those stated in theorem 5.8. Thus, we may conclude that graph Laplacian isotropic
states have non-zero quantum discord except for some specific values of F .
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5.4.4 X state
The X-state is well known in quantum information theory due to the specific structure of

its density matrix. Discord of some classes of 2-qubit X-states have been studied in the literature
[Ali et al., 2010; Sabapathy and Simon, 2013]. We have considered graph LaplacianX-states acting
on H(m) ⊗H(n) in the subsection 2.3.6, and depicted some of the graphs representing them.

Theorem 5.10. A graph Laplacian X state acting on H(m) ⊗H(n) represented by a simple graph has zero
quantum discord if and only if the following conditions are satisfied:

1. Any two non-empty sub-digraphs of the form Cµ, Cν are equal.

2. Degree of the vertices of Cµ will fulfil dµi = dµ(n−i) for i = 1, 2, . . . n.

Proof. Recall that if two subdigraphs Cµ, Cν and Cα, Cβ are equal, then the commutativity con-
dition is satisfied. Also, if any one of them is empty, the commutativity condition is again satisfied.
Now we consider the subgraphs Cµ, Cν and Cα . When any one of them is an empty graph the
commutativity condition is satisfied trivially. There is only one non-empty subgraph of the form
Cα . Using corollary 5.3 we may verify that the non-empty graphs Cµ, Cν and Cα are commu-
tative. Also using lemma 5.4 we can show that subgraphs Cµ, Cν and Cα satisfy the conditions
for being normal. Last, we shall check the degree condition,

w(vµi, vνj)(dαi − dαj) = 0. (5.80)

As Cµ, Cν is non-empty, we have w(vµi, vµ(n−i)) = 0 for some i = 1, 2, . . . n. For those specific
values of i we have,

w(vµi, vν(n−i))(dαi − dα(n−i)) = 0. (5.81)

As w(vµi, vν(n−i)) = 0, we have dαi = dα(n−i) for i = 1, 2, . . . n.

Example 5.5. Consider the graph in the figure 5.7. Let edge weight w(v11, v13) = 2 and for the other two
edges, weight is 1. Here number of clusters m = 2 and number of vertices in each cluster n = 3. The
corresponding quantum state is given by the density matrix,

ρ(G) =
1

8




2 0 0 0 0 2
0 1 0 0 1 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 1 0
2 0 0 0 0 2



, (5.82)

which lies in H(2) ⊗ H(3). Degree of the vertices are: d(v11) = 2, d(v12) = 1, d(v13) = 1, d(v11) =
1, d(v22) = 1, d(v23) = 2. According to the second condition of the above theorem, for zero discord d(v11) =
d(v13) which is not fulfilled in this case. Hence, the corresponding quantum state has non-zero discord.

In general the density matrix of a two-qubit X state is given by,

ρ =





ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44



 . (5.83)

It must be a Hermitian, positive semidefinite, trace one matrix. To satisfy Hermiticity, ρ41 =
ρ14, ρ32 = ρ23 and ρii are real for all i. The positivity condition requires that ρ22ρ33 ≥ |ρ23|2 and
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Figure 5.7 : Graph representing anX station inH(3) ⊗H(2).

ρ11ρ44 ≥ |ρ14|2. Also, for unit trace 4
i=1 ρii = 1. Lemma 2.1 implies that ρ represents a graph

Laplacian state if and only if

ρ11 ≥ |ρ14|, ρ22 ≥ |ρ23|, ρ33 ≥ |ρ32| and ρ44 ≥ |ρ41|. (5.84)

A graph with four vertices distributed into two clusters, each containing two vertices represent ρ
as a graph Laplacian state. Discord of the state depends on the edge distribution in the graph. For
simplicity, let the graph have no loops. Then the equation (5.84) simplifies to

ρ11 = |ρ14|, ρ22 = |ρ23|, ρ33 = |ρ32| and ρ44 = |ρ41|. (5.85)

Combining this with the positivity conditions we get,

ρ11 = |ρ14| = |ρ41| = ρ44 = a

ρ22 = |ρ23| = |ρ32| = ρ33 = b
(5.86)

for some real numbers a and b. A graph satisfying the above condition is
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Here, weights of (v11, v22) and (v12, v21) are a and b, respectively. Degree of the vertices are given
by d(v11) = a, d(v12) = b, d(v21) = b and d(v22) = a. Now by theorem 5.10, the corresponding
quantum state has zero discord if and only if a = b. In all other cases ρ has non-zero discord.
Further, we know that a two qubit X-state is entangled if and only if either ρ22ρ33 < |ρ14|2 or
ρ11ρ44 < |ρ23|2. From this we can conclude that if a = b then entanglement is also zero. This
coincides with the results in [Ali et al., 2010].

As an important example of the above considered general two qubit X state, we take up
the two qubit Werner state, given by

ρ = a |ψ− ψ−|+ 1− a
4

I, (5.87)

where |ψ− = 1√
2
(|01 − |10 ) and 0 ≤ a ≤ 1. The density matrix in expanded from is,

ρ =





1−a
4 0 0 0
0 1+a

4
−a
2 0

0 −a
2

1+a
4 0

0 0 0 1−a
4



 . (5.88)

As a ≤ 1, clearly 1−a
4 ≥ 0 and 1+a

4 ≥ a
2 . Therefore, ρ represents a graph Laplacian quantum

state for all values of a. Consider the graph shown in the figure 5.8. It represents a two qubit
Werner state if loop weights are 1−a

8 , and edge weights are a
2 . Therefore, degree of the vertices

are d(v11) = 1−a
8 , d(v12) = 1−3a

8 , d(v21) = 1−3a
8 and d(v22) = 1−a

8 . For zero discord, we need
1−a
8 = 1−3a

8 , which implies that a = 0. This is consistent with the results in [Ali et al., 2010].
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Figure 5.8 : Graph representing a two qubit Werner state
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Figure 5.9 : A simple graph representing a zero discord state inH2 ⊗H(3).

5.4.5 Graph Laplacian quantum states corresponding to simple graphs
A simple graph G satisfies the basis assumptions stated in section 2. Given any edge (i, j)

of a simple graph, the edge weight w(i, j) = w(j, i) = 1. Also, a simple graph has no loop, that
is, (i, i) /∈ E(G) for all vertices i. A detailed description on quantum discord of graph Laplacian
quantum states arising from simple graphs is available in [Dutta et al., 2017a].

Example 5.6. Consider the graph in figure 5.9. It has two clusters C0 and C1, each containing 4 vertices.
Note that, there is only one bipartite subgraph C0, C1 in the above graph. Also, degree of every vertex is
three. The density matrices corresponding to this graph are:

ρl(G) =
1

24





3 0 0 0 −1 0 −1 −1
0 3 0 0 0 −1 −1 −1
0 0 3 0 −1 −1 −1 0
0 0 0 3 −1 −1 0 −1
−1 0 −1 −1 3 0 0 0
0 −1 −1 −1 0 3 0 0
−1 −1 −1 0 0 0 3 0
−1 −1 0 −1 0 0 0 3





, and ρq(G) =
1

24





3 0 0 0 1 0 1 1
0 3 0 0 0 1 1 1
0 0 3 0 1 1 1 0
0 0 0 3 1 1 0 1
1 0 1 1 3 0 0 0
0 1 1 1 0 3 0 0
1 1 1 0 0 0 3 0
1 1 0 1 0 0 0 3





.

(5.89)

This graph satisfies all the conditions of theorem 5.1. Therefore, the mixed quantum states corresponding to
this graph have zero discord.

5.5 WHAT NEXT?
In this chapter, we have studied graph theoretic criterion for graph Laplacian quantum

states having zero and no-zero quantumdiscord. Pointer states or classical quantum states has zero
quantum discord. Blocks of a density matrix of a pointer state form a family of normal commuting
matrices. In this work, we exploit this condition to determine the structural properties of a graph
for which this condition is met. This leads to a number of meaningful observations. We find
out conditions on graphs such that the corresponding quantum states have zero discord. These
conditions shed light into the nature of discord in a number of important quantum states. Hence
just by observing the structural properties of the graph, the zero or non zero discord quantum states
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can be determined. These properties include existence or non-existence of some particular edges,
and degree of vertices. Therefore, this work develops a new method of approaching the problem
of discord by exploiting the connection between graph theory and quantum mechanics. We have
also produced a graph theoretic measure of quantum discord for graph Laplacian quantum states
related to simple graphs. There are a number of problems that can be attempted in future. Some
of them are listed below:

1. Given a binary (0, 1) matrix A of order n there is a graph A of order 2n whose adjacency
matrix is given by,

A(A) =
0 A
A† 0

. (5.90)

We have to find conditions on A such that the matrix A is a binary normal matrix. Similarly,
wemay construct graphs for binary normal matrices whose elements are (1,−1) or (1, 0,−1).
Given a natural number n let number of normal binary (0, 1), (1,−1), (1, 0,−1) matrix are
an, bn, and cn, respectively. The sequence {an≥2} = {2, 8, 68, 1124, 36112, 2263268, 281249824,
. . . }, {bn≥2} = {2, 12, 80, 2096, 49792, 3449088, 357236224, . . . } and {cn≥2} = {3, 33, 939, 75041,
15901363, . . . }. Detaileddescription of an, bn, and cn is available in ,

, and , respectively. But, there is no
general form of these sequences. One may attempt to construct a general formula with our
graph theoretic criterion for binary normal matrix.

2. Wehaveproposed a graph theoreticmeasure of discord applicable for graph Laplacian quan-
tum states related to simple graphs. In theorem 5.5, we have shown that measure is invariant
under the operation P1 ⊗ P2, where P1 and P2 are permutation matrices, which are special
cases of unitary matrices. We need to prove it for arbitrary unitary matrices U1 and U2. But
a graph theoretic description of a general local unitary operator on graphs is not known as
yet. Further work is required for getting a clearer picture.
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