List of Figures

Figures	Title	page
2.1	Examples of simple and weighted digraphs	7
2.2	A subgraph and an induced subgraph of a graph	8
2.3	Isomorphic and non-isomorphic copy of a graph	8
2.4	Qubits $\ket{0}$ and $\ket{1}$ as graphs.	11
2.5	A star graph which corresponds to a state in $\mathcal{H}^{(2)}\otimes\mathcal{H}^{(3)}.$	13
2.6	Grid structure of the vertex set after clustering.	14
2.7	2-qubit entangled states	16
2.8	3 qubit GHZ states	16
2.9	3 qubit W states	17
2.10	4 qubit cluster and Chi states	18
2.11	Graphs of some Werner states	19
2.12	Graphs of some Isotropic states.	19
2.13	Graphs of some X states.	20
3.1	X-gate operation on $ 0 angle$ and $ 1 angle$.	23
3.2	H-gate operation on $ 0 angle$ and $ 1 angle$.	24
3.3	Colouring on vertices in clusters for graphs representing multi-qubit systems	25
3.4	Graph switching operation equivalent to X gate.	26
3.5	Graph switching operation equivalent to Y gate.	27
3.6	Graph switching operation equivalent to Z gate operation.	28
3.7	X operation on the first qubit of a 2-qubit state	31
4.1	GTPT equivalent non-isomorphic graphs	37
4.2	Example and non-examples of partially symmetric graphs	38
4.3	Example of theorem 4.2.	41
4.4	Example of theorem 4.3.	43
4.5	Graphs for entangled Werner states	44
4.6	Two isomorphic copies of a path graph with different separability properties	45
4.7	Mixed separable state to mixed entangled state via graph isomorphism.	46
5.1	Bipartite graph corresponding to the identity matrix I	53
5.2	Two isomorphic copies of $K_{3,3}$ with zero and non-zero discord	59
5.3	A graph representing a separable state with non-zero discord	60
5.4	Graphs representing two qubit quantum states. $ ho(G_1)$ has non-zero discord but $ ho(G_2)$ has zero discord.	64
5.5	Subgraph $\langle C_1, C_2 angle$ of the graph representing a Werner state $ ho_{x,3}$ drawn in figure 2.11	65
5.6	Subgraph $\langle C_1, C_2 \rangle$ of the graph representing an isotropic state $\rho_{3,x}$ drawn in the figure 2.12	65
5.7	Graph representing an X station in $\mathcal{H}^{(3)} \otimes \mathcal{H}^{(2)}$.	67
5.8	Graph representing a two qubit Werner state	68
5.9	A simple graph representing a zero discord state in $\mathcal{H}^2\otimes\mathcal{H}^{(3)}.$	68
6.1	GTPT equivalent non-isomorphic cospectral graphs	77
6.2	GTPT equivalents of two isomorphic graphs may not be isomorphic or cospectral	78

6.3	Graphs of 6.1 after alternative clustering	79
6.4	Example of Procedure 6.1	80
6.5	Example of Procedure 6.2	82
6.6	Example of procedure 6.4	83
6.7	Example of procedure 6.5	84
6.8	Example of procedure 6.6	85