## List of Symbols

| Symbol | Description |
| :---: | :---: |
| Q | Kronecker product or tensor product |
| $t$ | Transpose of a matrix or a vector. |
| $\dagger$ | Conjugate transpose of a matrix or a vector. |
| $\mathbb{R}$ | Set of all real numbers. |
| $\mathbb{C}$ | Set of all complex numbers. |
| $\mathbb{C}^{n}$ | Complex Hilbert space of dimension $n$. |
| G | Combinatorial graph. |
| $V(G)$ | Vertex set of the graph $G$. |
| $\|V(G)\|$ | Number of vertices in the graph $G$. |
| $E(G)$ | Edge set of the graph $G$. |
| $\|E(G)\|$ | Number of edges in the graph $G$. |
| , | Directed edge. |
| $e$ | Undirected edge. |
| $w_{u v}$ | Edge weight of the edge ( $u, v$ ). |
| $A(G)$ | Adjacency matrix of the graph $G$. |
| $d_{v}$ | Degree of the vertex $v$. |
| $D(G)$ | Degree matrix of the graph $G$. |
| $L(G)$ | Laplacian matrix of the graph $G$ |
| $Q(G)$ | Signless Laplacian matrix of the graph $G$ |
| $K(G)$ | Laplacian matrix of the graph $G$ in general. We use the symbol when the Laplacian or signless Laplacian matrix is not explicitly mentioned. |
| $\left\langle C_{\mu}\right\rangle_{G}$ | Induced subgraph of $G$ generated by the vertex set $C_{\mu}$. |
| $\left\langle C_{\mu}, C_{\nu}\right\rangle_{G}$ | Subgraph of $G$ generated by the vertex set $C_{\mu} \cup C_{\nu}$ and edges joining vertices in $C_{\mu}$ and $C_{\nu}$. |
| $\rho_{l}(G)$ | Density matrix corresponding to the graph $G$ with respect to $L(G)$. |
| $\rho_{q}(G)$ | Density matrix corresponding to the graph $G$ with respect to $Q(G)$. |
| $\rho(G)$ | Density matrix of the graph $G$ when the Laplacian or signless Laplacian matrix is not explicitly mentioned. |
| $\mathcal{H}$ | Hilbert space. |
| $\mathcal{H}^{(n)}$ | Hilbert space with dimension $n$. |
| $\mathcal{H}^{(n)} \otimes \mathcal{H}^{(m)}$ | Product Hilbert space of $\mathcal{H}^{(n)}$ and $\mathcal{H}^{(m)}$. |
| $\mathcal{H}_{A}$ | Hilbert space corresponding to the party $A$. |
| $\mathcal{H}_{A}^{(n)}$ | Hilbert space corresponding to the party $A$ with dimension $n$. |
| $\|\psi\rangle$ | Quantum state vector $\psi$. |
| $\langle\psi\|$ | Conjugate transpose of $\|\psi\rangle$. |
| $\langle\phi \mid \psi\rangle$ | Inner product between $\langle\phi\|$ and $\|\psi\rangle$. |
| $\|\phi\rangle\langle\psi\|$ | Outer product between $\|\phi\rangle$ and $\langle\psi\|$. |
| $A=\left(a_{i j}\right)_{m \times n}$ | Matrix $A$ of order $m \times n$ whose entries are $a_{i j}$. |
| $\Lambda(A)$ | Spectra of a matrix $A$. |
| $\Lambda(G)$ | Spectra of a graph $G$. |

