List of Symbols

Symbol	Description
⊗	Kronecker product or tensor product
$\overset{\smile}{t}$	Transpose of a matrix or a vector.
†	Conjugate transpose of a matrix or a vector.
\mathbb{R}	Set of all real numbers.
\mathbb{C}	Set of all complex numbers.
\mathbb{C}^n	Complex Hilbert space of dimension n .
G	Combinatorial graph.
V(G)	Vertex set of the graph G .
$ \stackrel{\smile}{V(G)} $	Number of vertices in the graph G .
E(G)	Edge set of the graph G .
$ \stackrel{\smile}{E(G)} $	Number of edges in the graph G .
\hat{e}	Directed edge.
e	Undirected edge.
w_{uv}	Edge weight of the edge (u, v) .
A(G)	Adjacency matrix of the graph G .
d_v	Degree of the vertex v .
D(G)	Degree matrix of the graph G .
L(G)	Laplacian matrix of the graph G
Q(G)	Signless Laplacian matrix of the graph G
K(G)	Laplacian matrix of the graph G in general. We use the symbol when the Laplacian
	or signless Laplacian matrix is not explicitly mentioned.
$\langle C_{\mu} \rangle_G$	Induced subgraph of G generated by the vertex set C_{μ} .
$\langle C_{\mu}, C_{\nu} \rangle_G$	Subgraph of G generated by the vertex set $C_{\mu} \cup C_{\nu}$ and edges joining vertices in C_{μ}
	and C_{ν} .
$\rho_l(G)$	Density matrix corresponding to the graph G with respect to $L(G)$.
$ ho_q(G)$	Density matrix corresponding to the graph G with respect to $Q(G)$.
$\rho(G)$	Density matrix of the graph G when the Laplacian or signless Laplacian matrix is
	not explicitly mentioned.
$\mathcal{H}_{(\cdot)}$	Hilbert space.
$\mathcal{H}^{(n)}$	Hilbert space with dimension n .
$\mathcal{H}^{(n)}\otimes\mathcal{H}^{(m)}$	Product Hilbert space of $\mathcal{H}^{(n)}$ and $\mathcal{H}^{(m)}$.
\mathcal{H}_A	Hilbert space corresponding to the party A .
$\mathcal{H}_A^{(n)}$	Hilbert space corresponding to the party A with dimension n .
$ \psi angle$	Quantum state vector ψ .
$\langle \psi $	Conjugate transpose of $ \psi\rangle$.
$\langle \phi \psi angle$	Inner product between $\langle \phi $ and $ \psi \rangle$.
$\ket{\phi}ra{\psi}$	Outer product between $ \phi\rangle$ and $\langle\psi $.
$A = (a_{ij})_{m \times n}$	Matrix A of order $m \times n$ whose entries are a_{ij} .
$\Lambda(A)$	Spectra of a matrix A.
$\Lambda(G)$	Spectra of a graph G .

xix