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Metric Dynamics of a Finite Family

Let (X ,d) be a compact metric space and let F = { f1, f2, . . . , fk} be a finite family of
continuous surjective self maps on X . In this chapter, we investigate various metric related
dynamical properties of the non-autonomous system generated by a finite family F. We relate
the dynamics of the non-autonomous system (X ,F) with the dynamics of the autonomous system
(X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1). We investigate properties like equicontinuity, minimality and various
forms of sensitivities for two systems. In the process, we show that, while equivalence of
properties like equicontinuity, sensitivity, Li-Yorke sensitivity holds unconditionally for two
systems, minimality is equivalent for two systemswhen space X is connected. We give an example
to show the necessity of condition imposed. We also investigate properties like proximality,
distality and Li-Yorke chaos for non-autonomous system generated.

3.1 EQUICONTINUITY ANDMINIMALITY

Proposition 3.1.1 Let (X ,F) be a non-autonomous dynamical system generated by finite family F. The
system (X ,F) is equicontinuous if and only if (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) is equicontinuous.

Proof. Let (X ,F) be equicontinuous and let > 0 be given. As (X ,F) is equicontinuous, there exists
> 0 such that d(x,y)< implies d( n(x), n(y))< for all n∈N. In particular, d( nk(x), nk(y))<

for all n ∈ N and hence (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) is equicontinuous.

Conversely, let (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) be equicontinuous and let > 0 be given. Then, as
the family {gr = fr ◦ . . .◦ f2 ◦ f1 : r= 1,2, . . .k} is a finite family of continuousmaps, there exists > 0
( < ) such that d(x,y)< implies d(gr(x),gr(y))< (for r= 1,2, . . .k).As (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1)
is equicontinuous, there exists > 0 ( < ) such that d(x,y) < implies d( nk(x), nk(y)) < for
all n ∈ N. Consequently, d(x,y) < ensures d(gr( nk(x)),gr( nk(y))) < for all r ∈ {1,2, . . .k} and
n∈ Z+. As any point m(x) can bewritten as gr( nk(x)) for some r ∈ {1,2, . . .k} and n ∈Z+, we have
d( m(x), m(y))< for all m ∈ N and hence (X ,F) is equicontinuous.

Proposition 3.1.2 Let (X ,F) be a non-autonomous dynamical system generated by finite family of maps.
If the system (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) is minimal then the system (X ,F) is minimal. Further if space X is
connected then converse is also true.

Proof. Let (X ,F) be minimal and let x ∈ X . As orbit of x is dense in (X ,F), for each y ∈ X there exists
a sequence (mi) of natural numbers and r ∈ {1,2, . . .k} such that kmi+r(x) converges to y (follows
from the fact that the generating family F is finite). For any, b∈ X ,we say a is related to b in F-sense
(denoted as aFb) if there exists m ∈ {1,2, . . .k} and sequences (si) and (ti) of natural numbers such
that ( ksi+m(x), kti+m(x)) converges to (a,b) (in the product topology). Note that the relationdefines
an equivalence relation on X and hence partitions X into k disjoint setsC1,C2, . . .Ck of X . Further, as
each Ck is closed (and hence clopen), connectedness of X implies C1 =C2 = . . .=Ck = Xand hence
orbit of x is dense in (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1).
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Conversely, as orbit of any point x under (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) is contained in orbit of x
in (X ,F), minimality of (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) implies minimality of (X ,F) and hence the proof of
converse is complete.

Remark 3.1.1 The above result establishes the equivalence of minimality for the two systems
(X ,F) and (X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1) when the space X is connected. Although the proof of
converse is trivial, the proof for the forward part partitions the space X into k (atmost) disjoint
non-empty clopen setsCr,whereCr is the set of limit points of the sequence ( nk+r(x)) (r= 1,2, . . .k).
Consequently, if X is connected, the generated sets coincide which in turn implies the denseness
of orbit of x (for (X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1)) and hence minimality of the two systems is equivalent.
However, the equivalence holds good only when the space X is connected and fails to hold good
in the absence of the stated condition. We now give an example in support of our claim.
Example 3.1.1 Let Sr = {rei : 0 ≤ ≤ 2 } (r = 1,2) and let X = S1 ∪ S2. Let ∈ R be an irrational
multiple of 2 . Define f1, f2 : X → X as

f1(x) =
�

(r+1)ei( + ) for r = 1
(r−1)ei( +2 ) for r = 2

f2(x) =
�

(r+1)ei( +2 ) for r = 1
(r−1)ei( + ) for r = 2

It may be noted that both f1 and f2 map S1 to S2 (and vice-versa) with an additional rotation of angle
(or 2 ). Further as orbit of any point x in Si is a rotation on Si by angle 2 (or 4 ) at even iterates and

visits the other component of the space X via a rotation by angle 2 (or 4 ) at odd iterates, the system (X ,F)
is minimal. However, as f2 ◦ f1 keeps each Si invariant, the system (X , f2 ◦ f1) is not minimal.
Remark 3.1.2 The discussions above establish that if the space X is connected, the system (X ,F)
is minimal if and only if the system (X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1) is minimal. Further, it may be noted
that connectedness is indeed required for the result to hold good and the derived result does not
hold good in absence of the condition imposed (Example 3.1.1). It may be noted that the proof of
proposition 3.1.2 does not require the maps fi in the generating family to be distinct. Thus for an
autonomous system (X , f ), a similar proof establishes the minimality of f k(from minimality of f )
when the space X is connected. Consequently, if the space X is connected, an autonomous system
(X , f ) is minimal if and only if (X , f m) is minimal (for each m ∈ N). Further, connectedness is once
again needed and the derived conclusion does not hold goodwhen the stated condition is dropped.
Hence we obtain the following corollary.
Corollary 3.1.1 If the space X is connected, then (X , f ) is minimal if and only if (X , f m) is minimal for each
m ∈ N. Further, there exists a disconnected space X and a continuous self map f on X such that (X , f ) is
minimal but (X , f 2) is not minimal.

Proof. The proof follows from the discussions in Remark 3.1.2. The conclusion follows directly
from Example 3.1.1 as (X , f1) is minimal but (X , f 2

1 ) is not minimal.

3.2 VARIOUS FORMS OF SENSITIVITIES

Proposition 3.2.1 Let (X ,F) be non-autonomous dynamical system generated by finite family of maps. The
system (X ,F) is sensitive if and only if (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) is sensitive.

Proof. Let (X ,F) be sensitive (with sensitivity constant ). As the family {gr = fr ◦ fr−1 · · · ◦ f1 : r =
1,2, · · · ,k−1} is finite family of continuous (uniformly continuous) maps, there exists > 0 such
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that d(x,y)< ensures d(gr(x),gr(y))< for all x,y ∈ X . We claim that is sensitivity constant for
(X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1). Note that if there exists open setU such that diam( nk(U)) < ∀ n then,
diam(gr( nk(U)))< for all r = 1,2, · · · ,k and n ∈ N. As {gr( nk(U)) : r = 1,2, · · ·k,n ∈ N} coincides
with the trajectory of the open set U under (X ,F), diam( n(U)) < ∀n ∈ N which contradicts
sensitivity of the system (X ,F) and hence any open set U expands (to size more than ) for
(X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1). Thus (X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1) is sensitive (with sensitivity constant )
and the proof of forward part is complete.

Conversely, as orbit of any point x under (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) is contained in orbit of x
in (X ,F), sensitivity of (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) implies sensitivity of (X ,F) and hence the proof of
converse is complete.

Remark 3.2.1 The above proof establishes the equivalence of sensitivity for the two systems (X ,F)
and (X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1). While proof in one of the directions is trivial, the other direction
uses the fact that any continuous function on a compact metric space is uniformly continuous.
However, the proof does not preserve the sensitivity constant and hence the two systems may be
sensitive with different constant of sensitivity. It may be noted that cofinite sensitivity of (X ,F)
ensures cofinite sensitivity of (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1). Also, a proof similar to proof of proposition
3.2.1 (considering the family {hr = fk ◦ fk−1◦· · ·◦ fk−r : r= 0,1,2, · · · ,k−1} and proving that common
constant of uniform continuity is sensitivity constant for (X ,F)) establishes that cofinite sensitivity
of (X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1) ensures cofinite sensitivity of (X ,F) and hence cofinite sensitivity is
equivalent for the two systems. Thus we get the following corollary.

Corollary 3.2.1 The system (X ,F) is cofinite sensitive if and only if (X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1) is cofinite
sensitive.

Proof. The proof follows directly from discussions in Remark 3.2.1.

3.3 LI-YORKE SENSITIVITY AND LI-YORKE CHAOS

Proposition 3.3.1 Let (X ,F) be a non-autonomous dynamical system govern by finite family of maps. (x,y)
is proximal in (X ,F) if and only if (x,y) is proximal in (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1).

Proof. Let (x1,x2) be proximal for (X ,F) and let (rn) be the sequence of natural numbers such that
lim
n→∞

d( rn(x1), rn(x2)) = 0. As X is compact, without loss of generality (by passing on subsequence
which we again denote by (rn), we obtain an element z ∈ X such that ( rn(x1), rn(x2)) converges
to (z, z). As the family F is finite, there exists a subsequence (rnl ) of (rn), s ∈ {1,2, . . .k} and a
sequence (kmnl) (of multiples of k) such that rnl

(xi) = fs ◦ fs−1 ◦ . . . ◦ f1( kmnl
)(xi) (for i = 1,2). As

rnl
(xi) converges (to z) and fk ◦ fk−1 · · · ◦ fs+1 is continuous, fk ◦ fk−1 · · · ◦ fs+1( rnl

(xi)) converges
to fk ◦ fk−1 · · · ◦ fs+1(z) (for i = 1,2) or k(mnl+1)(xi) converges to fk ◦ fk−1 · · · ◦ fs+1(z)(for i = 1,2).
Consequently, lim

l→∞
d( k(mnl+1)(x1), k(mnl+1)(x2)) = 0 and hence (x1,x2) is proximal for (X , fk ◦ fk−1 ◦

. . .◦ f2 ◦ f1).

Conversely, as orbit of any point x under (X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1) is a subset of orbit of
x under (X ,F), proximality of the pair (x1,x2) for (X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1) ensures proximality of
(x1,x2) for (X ,F) and hence the proof of converse is complete.

Remark 3.3.1 The above result establishes the equivalence of proximal pairs for the two systems
(X ,F) and (X , fk ◦ fk−1 ◦ . . .◦ f2◦ f1). While proof of the converse is straightforward, the forward part
uses the fact that if k is a fixed natural number and (rn) is a sequence of natural numbers then there
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exists a subsequence (rnl) of (rn) such that ((rnl )modulo k) is constant and hence the set of proximal
pairs for the two systems coincide. Further, as equivalence of proximal pairs for two systems
ensures equivalence of distal pairs, the system (X ,F) is distal if and only if (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1)
is distal. Hence we get the following corollary.

Corollary 3.3.1 Let (X ,F) be non-autonomous dynamical system generated by finite family of maps. (X ,F)
is distal ⇔ (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) is distal.

Proof. The proof follows from discussions in Remark 3.3.1.

Proposition 3.3.2 (X ,F) is Li-Yorke sensitive if and only if (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) is Li-Yorke sensitive.

Proof. Let (X ,F) be Li-Yorke sensitive (with sensitivity constant ) and let x ∈ X . For
any neighbourhood U of x, there exists y ∈ U such that liminf

n→∞
d( n(x), n(y)) = 0 and

limsup
n→∞

d( n(x), n(y))> . As is constant of sensitivity, a proof similar to proposition 3.2.1 ensures

existence of > 0 such that limsup
n→∞

d( nk(x), nk(y))> . Further, as a pair is proximal for (X ,F) if

and only if it is proximal for (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1), (x,y) is Li-Yorke pair for (X ,F) if and only
if (x,y) is Li-Yorke pair for (X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1). Hence, (X ,F) is Li-Yorke sensitive implies
(X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) is Li-Yorke sensitive and the proof of forward part is complete.

Conversely, as orbit of any point x under (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) is contained in orbit of x
in (X ,F), Li-Yorke sensitivity of (X , fk ◦ fk−1 ◦ . . .◦ f2 ◦ f1) implies Li-Yorke sensitivity of (X ,F) and
hence the proof of converse is complete.

Corollary 3.3.2 Let (X ,F) be a non-autonomous dynamical system generated by finite familyF then, (X , fk◦
fk−1 ◦ . . .◦ f2 ◦ f1) is Li-Yorke chaotic ⇔ (X ,F) is Li-Yorke chaotic.

Proof. As (x,y) is a Li-Yorke pair of the system (X ,F) if and only if (x,y) is a Li-Yorke pair of the
system (X , fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1). Hence, the system (X ,F) is Li-Yorke chaotic if and only if (X , fk ◦
fk−1 ◦ . . .◦ f2 ◦ f1) is Li-Yorke chaotic.

…
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