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Dynamics of a Uniformly Convergent Sequence

In this chapter, we investigate the dynamical behaviour of a non-autonomous system
generated by a uniformly convergent sequence of continuous surjective self maps on a compact
metric spaceX . In particular, if F= ( fn) is a sequence of continuous self maps converging uniformly
to f , we relate the dynamical behaviour of the system (X ,F) with the dynamics of the limiting
system (X , f ). In the process, we investigate properties like equicontinuity, various notions of
mixing and sensitivities, minimality and proximality for the two systems. We show that if the
family F is feeble open, topological mixing is equivalent for two systems. In addition, if {( n

n+k) :
k ∈ N} converges collectively, properties like minimality, various notions of mixing and different
forms of sensitivities are also equivalent for two systems. However, feeble openness is indeed
needed to establish the derived results and the results obtained do not hold good when feeble
openness is dropped. We give an example in support of our claim. Further, we prove that if
the family F is bijective, equicontinuity is equivalent for two systems and hence (under collective
convergence) many of the dynamical properties of non-autonomous dynamical systems can be
approximated by an autonomous dynamical system. We give conditions under which collective
convergence can naturally be obtained for a non-autonomous system. In particular, we prove
that if family F commutes with the limiting function f and

∞
∑
n=1

D( fn, f ) < ∞ then {( n
n+k) : k ∈ N}

converges collectively to { f k : k ∈ N}. We prove that if the limiting function f is an isometry and
∞
∑
n=1

D( fn, f ) < ∞ then {( n
n+k) : k ∈ N} converges collectively to { f k : k ∈ N}. We finally investigate

proximal pairs and proximal cells for non-autonomous dynamical systems. We prove that if the
generating family F commutative and

∞
∑
n=1

D( fn, f )< ∞ then proximal pairs (cells) are dense in (X ,F)

if and only if proximal pairs (cells) are dense in (X , f ).

4.1 EQUICONTINUITY AND MINIMALITY

Proposition 4.1.1 Let (X ,F) be a non-autonomous system generated by a sequence ( fn) converging
uniformly to f . If {( n

n+k) : k ∈ N} converges collectively to { f k : k ∈ N} (with respect to the metric D)
then, (X , f ) is equicontinuous ⇒ (X ,F) is equicontinuous. Further, if fi s are bijective then, (X ,F) is
equicontinuous ⇒ (X , f ) is equicontinuous.

Proof. Let (X , f ) be equicontinuous and let > 0 be given. By equicontinuity, there exists > 0
such that d(x,y) < implies d( f n(x), f n(y)) < 3 for all n ∈ N. As {( n

n+k) : k ∈ N} converges
collectively to { f k : k ∈ N}, there exists r0 ∈ N such that D( r

r+k, f
k) < 3 ∀r ≥ r0 and k ∈ N and

hence d( r0+k(x), f k( r0(x))) < 3 ∀k ∈ N, x ∈ X . As r0 is continuous, choose r0 > 0 such that
d(x,y) < r0 implies d( r0(x), r0(y)) < and hence d( f k( r0(x)), f

k( r0(y))) < 3 for all k ∈ N.
By triangle inequality, d(x,y) < r0 implies d( r0+k(x), r0+k(y)) < for all k ∈ N. Further, as
{ 1, 2, . . . , r0} is a finite set, there exists r0

> 0 such that d(x,y)< r0
forces d( i(x), i(y))< for

i= 1,2, . . . ,r0 and hence choosing = min{ r0 , r0
} ensures equicontinuity of (X ,F).
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Conversely, let fi’s be bijective and let > 0 be given. By equicontinuity of (X ,F), there
exists > 0 such that d(x,y) < implies d( n(x), n(y)) < 3 for all n ∈ N. As {( n

n+k) : k ∈ N}
converges collectively to { f k : k ∈N}, there exists r0 ∈N such thatD( r

r+k, f
k)< 3 ∀r≥ r0 and k ∈N

and hence d( r0+k(x), f k( r0(x)))< 3 ∀k ∈N,x ∈ X . As each fi is bijective, r0 is a homeomorphism
and thus there exists r0 > 0 such that d(x,y) < r0 implies d( −1

r0
(x), −1

r0
(y)) < . Let x,y ∈ X

such that d(x,y) < r0 . Let xr0 =
−1
r0

(x) and yr0 =
−1
r0

(y). For any k ∈ N, we have d( f k(x), f k(y)) ≤
d( f k( r0(xr0)), r0+k(xr0))+ d( r0+k(xr0), r0+k(yr0))+ d( r0+k(yr0), f

k( r0(yr0))) < and hence (X , f )
is equicontinuous.

Proposition 4.1.2 Let (X ,F) be a non-autonomous system generated by a sequence ( fn) converging
uniformly to f . If {( n

n+k) : k ∈ N} converges collectively to { f k : k ∈ N} (with respect to the metric D)
then, (X , f ) is minimal ⇔ (X ,F) is minimal.

Proof. Let (X , f ) be minimal and let x ∈ X . Let y ∈ X and let > 0 be fixed. As {( n
n+k) : k ∈ N}

converges collectively to { f k : k ∈N}, there exists r0 ∈N such thatD( r
r+k, f

k)< 2 ∀r≥ r0 and k ∈N
and hence d( r0+k(z), f k( r0(z)))< 2 ∀k ∈N, z ∈ X . As (X , f ) is minimal, orbit of r0(x)(under f ) is
dense in X and there exists k ∈N such that f k( r0(x))∈ S(y, 2 ). Also collective convergence ensures
d( r0+k(x), f k( r0(x)))< 2 and hence by triangle inequality, d( r0+k(x),y)≤ d( r0+k(x), f k( r0(x)))+
d( f k( r0(x)),y)< and hence r0+k(x)∈ S(y, ). As the proof holds good for any choice of > 0 and
y ∈ X , orbit of x (under F) is dense in X . Further, as the proof holds good for any x ∈ X , (X ,F) is
minimal.

Conversely, let (X ,F) be minimal and let x ∈ X . Let y ∈ X and let > 0 be fixed. As {( n
n+k) :

k ∈ N} converges collectively to { f k : k ∈ N}, there exists r0 ∈ N such that D( r
r+k, f

k) < 2 ∀r ≥
r0 and k ∈Nwhich implies d( r0+k(z), f k( r0(z)))< 2 ∀k ∈N, z ∈ X . As (X ,F) is minimal, orbit of
any z ∈ −1

r0
(x)(under F) is dense in X and hence intersects S(y, 2 ). Further, as the orbit intersects

S(y, ) for each > 0, the set {n : n(z)∈ S(y, 2 )} is infinite and there exists k ∈N such that r0+k(z)∈
S(y, 2 ). Further, collective convergence ensures d( r0+k(z), f k( r0(z))) < 2 and hence by triangle
inequality, d( f k( r0(z)),y) < or f k(x) ∈ S(y, ). As the proof holds good for any choice of > 0
and y ∈ X , orbit of x (under f ) is dense in X . As the proof holds good for any x ∈ X , (X , f ) is
minimal.

Remark 4.1.1 The above results establish the relation between equicontinuity and minimality of
the two systems (X , f ) and (X ,F). We prove that Collective convergence of {( n

n+k) : k ∈ N} is
sufficient to establish the equivalence of minimality for two systems. While collective convergence
is enough to establish the equicontinuity of (X ,F) from equicontinuity of (X , f ), the proof uses
additional assumption of bijectivity of the generating functions fi to establish the converse.

4.2 TOPOLOGICAL DYNAMICS GENERATED BY A UNIFORMLY CONVERGENT SEQUENCE

Proposition 4.2.1 Let (X ,F) be a non-autonomous system generated by a sequence ( fn) of feeble open maps
converging uniformly to f . If {( n

n+k) : k ∈ N} converges collectively to { f k : k ∈ N} (with respect to the
metric D) then, (X , f ) is transitive ⇔ (X ,F) is transitive.

Proof. Let > 0 be given and let U = S(x, ) and V = S(y, ) be two non-empty open sets in X . As
{( n

n+k) : k ∈ N} converges collectively to { f k : k ∈ N}, there exists r0 ∈ N such that D( r
r+k, f

k) <

2 ∀r ≥ r0 and k ∈ N. Further, as the family F is feeble open, int( r0(U)) is non-empty open and
thus by transitivity of (X , f ) (applied to open sets U = int( r0(U)) and V = S(y, 2 )), there exists
m ∈N such that f m(U )∩V = . Consequently, there exists u ∈U such that f m(u )∈V . Further, as
U = int( r0(U)), there exists u ∈U such that f m( r0(u)) ∈V . Also, collective convergence ensures
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d( m+r0(u), f
m( r0(u)))< 2 and hence by triangle inequality d(y, m+r0(u))< or m+r0(U)∩V = .

Finally, as the proof holds for any pair of non-empty open sets S(x, ),S(y, ) in X , the proof holds
for any pair of non-empty open sets in X and (X ,F) is transitive.

Conversely, let > 0 be given and let S(x, ) and S(y, ) be two non-empty open sets
in X . As {( n

n+k) : k ∈ N} converges collectively to { f k : k ∈ N}, there exists r0 ∈ N such that
D( r

r+k, f
k)< 2 ∀r ≥ r0 and k ∈N. As transitivity of a system forces any open setU to visit S(y, 1

m)
for each m, the set of times when any non-empty open setU visits S(y, ) is infinite. Consequently
for the pair (U,V ) = ( −1

r0
(S(x, )),S(y, 2 )), there exists k ∈ N and u ∈U such that d( r0+k(u),y)< 2 .

Further, collective convergence ensures d( r0+k(u), f k( r0(u)))< 2 and hence by triangle inequality
d(y, f k( r0(u)))< . As r0(u) ∈ S(x, ), we have f k(S(x, ))∩S(y, ) = . As the proof holds for any
choice of non-empty open sets S(x, ) and S(y, ), the system (X , f ) is transitive.

Remark 4.2.1 If the family F is feeble open and ( n
n+k) convergences collectively, then, the above

result establishes the equivalence of transitivity for the two systems. However, the converse part
does not use the feeble openness of the maps fn and hence transitivity of the non-autonomous
system is carried forward to (X , f ) even when the family F is not feeble open. Further, if
Nf (U,V )(NF(U,V )) denotes the set of times when an open set U visits V under f (F), the proof
establishes that for each pair of open sets U,V , there exists a pair of open sets U ,V of open sets
such that the set of times of interactions of U and V under F contains the translates of set of times
of interactions of U and V under f (and vice-versa). As the argument depends on the diameter
of open sets and not on the sets themselves, a similar argument establishes equivalence of weak
mixing for the two systems. Hence we get the following corollary.

Corollary 4.2.1 Let (X ,F) be a non-autonomous system generated by a sequence ( fn) of feeble open maps
converging uniformly to f . If {( n

n+k) : k ∈ N} converges collectively to { f k : k ∈ N} (with respect to the
metric D) then, (X , f ) is weakly mixing ⇔ (X ,F) is weakly mixing.

Proof. The proof follows from the discussions in Remark 4.2.1.

Proposition 4.2.2 Let (X ,F) be a non-autonomous system generated by a family F of feeble open maps. If
( fn) converges uniformly to f then, (X , f ) is topologically mixing ⇔ (X ,F) is topologically mixing.

Proof. Let U be a non-empty open set in X . As f is topologically mixing there exists > 0 such
that for any open set V , DH(V,X) < ensures DH( f (V ),X) < (proof follows from the fact that
if V is big enough then it cannot shrink significantly as f is topologically mixing). Further, as fn
converges uniformly to f , there exists r0 ∈ N such that DH( fn(V ),X) < for all n ≥ r0. Note that
topological mixing (of f ) implies there exists k0 ∈ N (k0 ≥ r0) such that DH( f n(U),X)< 2 ∀n ≥ k0.
Also, as n

n+k0
converges to f k0 , there exists n0 ∈ N such that D( n

n+k0
, f k0) < 2 ∀n ≥ n0 and hence

DH(
n
n+k0

(U),X)< ∀n≥ n0. Consequently, DH(
n
n+k(U),X)< ∀n≥ n0,k ≥ k0. As the argument

holds for arbitrarily small > 0, the proof ensures collective convergence (on open sets) and hence
(X ,F) is topologically mixing.

Conversely, if non-autonomous system is topologically mixing, similar arguments
establishes collective convergence of n

n+k(U) (to X) and hence (X , f ) is topologically mixing.

Remark 4.2.2 The above proof establishes that if the non-autonomous system (X ,F) is generated
by a uniformly convergent sequence of feeble openmaps ( fn) then topological mixing is equivalent
for the non-autonomous system (X ,F) and the limiting system (X , f ). The proof uses the fact that
for a topologically mixing system, when an open set becomes ”large” then it stays ”large” for all
times. The observation helps in establishing collective convergence for the family {( n

n+k) : k ∈ N}
which in turn establishes equivalence of topological mixing for the two systems.
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Proposition 4.2.3 Let (X ,F) be a non-autonomous system generated by a family F. If ( fn) converges
uniformly to f , then, x is periodic for (X ,F)⇒ x is periodic for (X , f ).

Proof. Let x0 be periodic for (X ,F)with period k and let > 0 be given. As n
n+k converges uniformly

to f k, there exists n0 ∈N such thatD( n
n+k, f

k)< ∀n≥ n0. Therefore, d( n0k
n0k+k(x), f

k(x))< for any
x ∈ X and hence d( n0k

n0k+k( n0k(x0)), f k( n0k(x0))) < . As rk(x0) = x0 for all r, the above argument
ensures d( f k(x0),x0) < . As the result holds good for any > 0 we have f k(x0) = x0 and hence x0
is periodic for f .

Example 4.2.1 Let S1 denote the unit circle and let F = { fn : n ∈ N} where fn : S1 → S1 is defined as
fn( ) = + 1

n2 . Then fn’s are rotations on unit circle converging uniformly to identity I and hence every

point is periodic for (S1, I). However, as
∞
∑
n=1

1
n2 =

2

6 < 2 , the non-autonomous system (S1,F) does not have

any periodic point and hence the converse of the above result is not true.

Remark 4.2.3 Proposition 4.2.3 shows that any point periodic for the system (X ,F) is also periodic
point for the limiting system (X , f ). However, the above example shows that the converse do not
hold good and proves that (X ,F) can be void of periodic points even when each point of X is
periodic for (X , f ). Further, it must be noticed that the proposition 4.2.3 preserves only the periodic
behaviour not the period itself from the system (X ,F) to the system (X , f ).

4.3 METRIC DYNAMICS OF UNIFORMLY CONVERGENT SEQUENCE

Proposition 4.3.1 Let (X ,F) be a non-autonomous system generated by a sequence ( fn) of feeble open maps
converging uniformly to f . If {( n

n+k) : k ∈ N} converges collectively to { f k : k ∈ N} (with respect to the
metric D) then, (X , f ) is sensitive ⇔ (X ,F) is sensitive.

Proof. Let (X , f ) be sensitive with constant of sensitivity and letU = S(u, ) any non-empty open
set in X . Choose m ∈ N such that 1

m < 4 . As {(
n
n+k) : k ∈ N} converges collectively to { f k : k ∈ N},

there exists r0 ∈ N such that D( r
r+k, f

k)< 1
m ∀r ≥ r0 and k ∈N and hence d( r0+k(x), f k( r0(x)))<

1
m ∀k ∈N, x ∈ X . As fn’s are feeble open, int( r0(U)) = and hence by sensitivity (of f ) there exists
v1,v2 ∈ int( r0(U)) and k ∈N such that d( f k(v1), f k(v2))> . As v1,v2 ∈ r0(U), there exists v1,v2 ∈U
such that v1 = r0(v1) and v2 = r0(v2). Thus d( f k( r0(v1)), f

k( r0(v2))) > and hence by triangle
inequality d( r0+k(v1), r0+k(v2))> − 2

m > 2 and hence (X ,F) is sensitive.

Conversely, let (X ,F) be sensitive with sensitivity constant and letU be non-empty open
in X . Let m ∈ N such that 1

m < 4 . As {( n
n+k) : k ∈ N} converges collectively to { f k : k ∈ N},

there exists r0 ∈ N such that d( r0+k(x), f k( r0(x))) <
1
m ∀k ∈ N, x ∈ X . As sensitivity of (X ,F)

ensures expansivity of each 1
n -ball in X , the set {k : diam( k(V ))> } is infinite for any non-empty

open set V and thus there exists v1,v2 ∈ −1
r0

(U) and k ∈ N such that d( r0+k(v1), r0+k(v2)) >
. As v1,v2 ∈ −1

r0
(U), there exists v1,v2 ∈ U such that v1 = r0(v1) and v2 = r0(v2) and hence

d( r0
r0+k(v1),

r0
r0+k(v2)) > . Thus by triangle inequality d( f k(v1), f

k(v2)) > − 2
m > 2 and hence

(X , f ) is sensitive.

Remark 4.3.1 The above proof establishes the equivalence of sensitivity for the two systems
(X ,F) and (X , f ) under collective convergence. As the choice of m( 1

m < 4 ) is arbitrary and can
be made finer, sensitivity constant is preserved and hence the two systems are sensitive with the
same constant of sensitivity. Further, the above proof establishes that for any pair of distinct
points x,y ∈ X there exists points x ,y such that the set of times of separation of x and y in the
non-autonomous system contains the translates of set of times of separation of x and y in the
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autonomous system (and vice-versa). Consequently, for any non-empty open set U , there exists
a non-empty open set U such that the set of times of expansivity of U in the non-autonomous
system contains the translates of set of times of expansivity ofU in the autonomous system (and
vice-versa) and hence cofinite sensitivity is equivalent for the two systems. Hence we get the
following corollary.

Corollary 4.3.1 Let (X ,F) be a non-autonomous system generated by a sequence ( fn) of feeble open maps
converging uniformly to f . If {( n

n+k) : k ∈ N} converges collectively to { f k : k ∈ N} (with respect to the
metric D) then, (X , f ) is cofinitely sensitive ⇔ (X ,F) is cofinitely sensitive.

Proof. The proof follows from discussions in Remark 4.3.1.

Remark 4.3.2 The above proofs show that collective convergence along with feeble openness of
the family F is sufficient to establish the equivalence of any notion of mixing and sensitivities for
two systems. However, feeble openness of the family F is needed to establish the above results
and the above results need not be hold good if feeble openness of the family F is relaxed. We now
give an example in support of our claim.

Example 4.3.1 Let I be the unit interval and let f : I → I be defined as

f (x) =
�

2x for x ∈ [0, 1
2 ]

2−2x for x ∈ [1
2 ,1]

and let

g(x) =
�

1 for x ∈ [0, 1
2 ]

2−2x for x ∈ [1
2 ,1]

Let (X ,F) be the non-autonomous system generated by F = {g, f , f , . . .}. It may be noted that as
n
n+k = f k( for n ≥ 2), collective convergence of {( n

n+k) : k ∈ N} is ensured. However, as (X , f ) exhibits
all forms of mixing and sensitivities but (X ,F) does not exhibit any form of mixing or sensitivity, feeble
openness of the family F is indeed required for preserving any notion of mixing or sensitivity.

Proposition 4.3.2 Let X be compact and let (X ,F) be a sensitive non-autonomous system generated by a
family F. Then for any x ∈ X , ProxF(x) is dense in X ⇔ LYF(x) is dense in X .

Proof. For any x ∈ X , it may be noted that if (X ,F) is sensitive with sensitivity constant , then for
any y ∈ X and any Uy of y, there exists y ∈Uy and n ∈ N such that d( n(y), n(y )) > . By triangle
inequality, d( n(x), n(y)) > 2 or d( n(x), n(y )) > 2 and hence the set of points 2 -sensitive to x
are dense in X .

Let > 0 be fixed. For any x ∈ X and any non-empty open subset U of X , let V be
non-empty open such that V ⊂ V ⊂U . As ProxF(x) is dense in X , there exists y ∈ V such that the
pair (x,y) is proximal and hence there exists n1 ∈ N such that d( n1(x), n1(y)) < . By continuity,
there exists a neighbourhood U1(⊂ V ) of y such that d( n1(x), n1(u1)) < for all u1 ∈ U1. As
the set of points 2 -sensitive to x are dense in X , there exists y1 ∈ U1 and m1 ∈ N such that
d( m1(x), m1(y1))> 2 and once again by continuity there exists a neighbourhood V1(⊂U1 ⊂V ) of
y1 such that d( n1(x), n1(v1))< and d( m1(x), m1(v1))> 2 for all v1 ∈V1. Hence for > 0 and any
pair x,U (where x ∈ X andU is non-empty open subset of X) there exists n,m ∈N and a non-empty
open subsetU of X (satisfyingU ⊂U ⊂U) such that d( m(x), m(u))> 2 and d( n(x), n(u))<
for all u ∈U .

Let x ∈ X and U be any non-empty open subset of X . By argument above there
exists non-empty open set U1, U1 ⊂ U1 ⊂ U and n1,m1 ∈ N such that d( m1(x), m1(y)) > 2 and
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d( n1(x), n1(y)) <
1
2 for all y ∈ U1. Repeating the process for the pair (x,U1), there exists U2

satisfyingU2 ⊂U2 ⊂U1 and n2,m2 ∈N such that d( m2(x), m2(y))> 2 and d( n2(x), n2(y))<
1
4 for all

y ∈U2. Inductively, we obtain a decreasing sequenceUk of non-empty open subsets of X such that
Uk ⊂Uk ⊂Uk−1 and sequences (nk),(mk)∈N such that d( mk(x), mk(y))> 2 and d( nk(x), nk(y))<

1
2k

for all y ∈Uk. As X is compact
∞�

k=1
Uk = . Then for any u ∈

∞�
k=1

Uk, we have d( mk(x), mk(u)) > 2

and d( nk(x), nk(u) <
1
2k for all k and hence (x,u) is a Li-Yorke pair. As the argument holds good

for any non-empty open setU , LYF(x) is dense in X .

As every Li-Yorke pair is proximal, proof of the converse part is trivial.

Remark 4.3.3 The above result shows that for sensitive systems, proximal cells are dense in X for
(X ,F) if and only if Li-Yorke cells are dense for (X ,F). It may be noted that the result does not
use the compactness of the space X completely and holds good for locally compact spaces also.
Further, the proof does not use denseness of the proximal cell completely and establishes that for
a sensitive system, if the proximal cell of a point x is dense in a neighbourhood of x then Li-Yorke
cell is dense in the neighbourhood of x. Consequently, a similar argument establishes that for a
sensitive system, if the proximal cell of a point x is dense in a neighbourhood of x then x is a point
of Li-Yorke sensitivity. The result is a natural extension of the result established in [Akin and
Kolyada, 2003] for the autonomous systems.

Corollary 4.3.2 Let (X , f ) be a compact sensitive system. Then for any x ∈ X , Proxf (x) is dense in X ⇔
LYf (x) is dense in X.

We now give some conditions under which uniform convergence of ( fn) ensures collective
convergence of {( n

n+k) : k ∈ N}.

Proposition 4.3.3 Let (X ,F) be a non-autonomous system generated by a family F and let f be any
continuous self map on X . If f is an isometry and

∞
∑
n=1

D( fn, f ) < ∞ then {( n
n+k) : k ∈ N} converges to

{ f k : k ∈ N} collectively (with respect to the metric D).

Proof. It may be noted that It may be noted that D( n
n+r+1, f

r+1) = D( fn+r+1(
n
n+r), f ( f

r)) ≤
D( fn+r+1(

n
n+r), f (

n
n+r)) + D( f ( n

n+r), f ( f
r)) ≤ D( fn+r+1, f ) + D( n

n+r, f
r). Thus D( n

n+k, f
k) ≤

k
∑
i=1

D( fn+i, f ) ensures D( n
n+r+1, f

r+1) ≤
r+1
∑
i=1

D( fn+i, f ) and hence by induction, D( n
n+k, f

k) ≤
k
∑
i=1

D( fn+i, f ) for any k ∈ N. Further, if
∞
∑
n=1

D( fn, f ) < ∞, for any > 0, there exists n0 ∈ N such that
∞
∑
i=1

D( fn0+i, f )< . Consequently,D( n
n+k, f

k)< ∀k∈N,n≥ n0 and hence the family {( n
n+k) : k∈N}

converges collectively to { f k : k ∈ N} (with respect to the metric D).

Proposition 4.3.4 Let (X ,F) be a non-autonomous system generated by F and let f be any continuous
self map on X . If the family F commutes with f and

∞
∑
n=1

D( fn, f ) < ∞ then {( n
n+k) : k ∈ N} converges to

{ f k : k ∈ N} collectively (with respect to the metric D).

Proof. Let x ∈ X and n be a natural number. As fk’s commute with f , d( f2 ◦ f1(x), f 2(x)) ≤
d( f2 ◦ f1(x), f ◦ f1(x))+d( f ◦ f1(x), f ◦ f (x)) = d( f2 ◦ f1(x), f ◦ f1(x))+d( f1 ◦ f (x), f ◦ f (x))≤D( f2, f )+

D( f1, f ). Proceeding inductively, if d( n(x), f n(x)) ≤
n
∑
i=1

D( fi, f ), then, d( n+1(x), f n+1(x)) ≤

d( fn+1( n(x)), f ( n(x)))+ d( n( f (x)), f n( f (x))) ≤ D( fn+1, f )+
n
∑
i=1

D( fi, f ) (by induction) and hence
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for any k ∈N, d( k(x), f k(x))≤
k
∑
i=1

D( fi, f ). Further, as
∞
∑
n=1

D( fn, f )< ∞, observing the conclusion for

y = n(x) and family F = { fn+i : i ∈ N} yields d( n+k(x), f k( n(x))) ≤
k
∑
i=1

D( fn+i, f ) or D( n
n+k, f

k) ≤
k
∑
i=1

D( fn+i, f ) and hence {( n
n+k) : k ∈ N} converges collectively (with respect to the metric D).

Remark 4.3.4 The above propositions provide sufficient conditions under which uniform
convergence of ( fn) ensures collective convergence of {( n

n+k) : k ∈ N}. While proposition 4.3.3
establishes collective convergence of {( n

n+k) : k ∈ N}, if the sequence ( fn) converges at sufficiently
fast rate when the limit map is an isometry, proposition 4.3.4 establishes the collective convergence
of {( n

n+k) : k ∈N}, if sequence ( fn) converges at sufficiently fast rate and limit map commutes with
the sequence ( fn).

4.4 PROXIMAL PAIRS AND PROXIMAL CELLS

Proposition 4.4.1 Let (X ,F) be a non-autonomous system generated by a family F commuting with f . If
∞
∑
n=1

D( fn, f )< ∞ then, (x,y) is proximal for (X , f )⇒ (x,y) is proximal for (X ,F).

Proof. Let > 0 be given and let (x,y) be proximal for (X , f ). As (x,y) is proximal, there exists a
sequence (nk) in N such that lim

k→∞
d( f nk(x), f nk(y)) = 0. As

∞
∑
n=1

D( fn, f ) < ∞, there exists r0 ∈ N such

that
∞
∑

n=r0

D( fn, f )< 3 . As (x,y) is proximal for (X , f ), there exists nk ∈N such that d( f nk(x), f nk(y))<

and hence d( r0( f
nk(x)), r0( f

nk(y))) < 3 (by continuity of r0). Further, as ( fn) commutes with f ,

d( r0+nk(u), f
nk( r0(u)))<

nk
∑
i=1

D( fr0+i, f )< 3 for any element u in X and hence by triangle inequality,

d( r0+nk(x), r0+nk(y))< . As the proof works for any > 0, (x,y) is proximal for (X ,F).

Proposition 4.4.2 Let X be compact and let (X ,F) be a non-autonomous system generated by a family F
commuting with f . If

∞
∑
n=1

D( fn, f ) < ∞ then, proximal cell of each x is dense for (X , f ) ⇔ proximal cell of

each x is dense for (X ,F).

Proof. As every pair proximal for (X , f ) is proximal for (X ,F), if Prox(x) is dense for (X , f ) then
Prox(x) is also dense for (X ,F) and the proof of forward part is complete.

Conversely let ProxF(x) be dense for each x ∈ X . Fix x ∈ X and let U be a non-empty open
subset of X . LetU1 be non-empty open such thatU1 ⊂U . As

∞
∑
n=1

D( fn, f )< ∞, for each m ∈ Z+ there

exists rm ∈ N such that
∞
∑

n=rm
D( fn, f ) < 1

3.2m . Fix m = 1 and let Vm = −1
rm (Um). Then Vm is open in X .

Pick any xm ∈ −1
rm (x). As ProxF(xm) is dense for (X ,F), there exists a zm = −1

rm (ym) ∈Vm (ym ∈Um)
such that (xm, zm) is proximal for (X ,F). Thus, there exists a sequence (nk,m) in N such that

lim
nk,m→∞

d( nk,m+rm(xm), nk,m+rm(zm)) = 0. Choose sm ∈ N such that d( sm+rm(xm), sm+rm(zm)) <
1

3.2m .

Also, by proposition 4.3.4, d( sm+rm(w), f
sm( rm(w)))<

sm
∑
i=1

D( frm+i, f )< 1
3.2m for any w ∈ X and hence

by triangle inequality, we have d( f sm( rm(xm)), f
sm( rm(zm))) <

1
2m or d( f sm(x), f sm(ym)) < 1

2m . By
continuity, there exists neighbourhood Um+1 of ym such that Um+1 ⊂Um and d( f sm(x), f sm(y)) < 1

2m

for all y ∈Um+1.
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Repeating the process for pair (x,Um) (for eachm), we obtain a open setUm+1,Um+1 ⊂Um ⊂U
and sm ∈N such that d( f sm(x), f sm(y))< 1

2m for all y∈Um+1. AsUm+1 is a nested decreasing sequence

of closed sets in a compact metric space and hence
∞�

m=1
Um = . Then, for any u ∈

∞�
m=1

Um ⊂U , as

u ∈Um for all m, we have d( f sm(x), f sm(u)) < 1
2m for all m and hence the pair (x,u) is proximal for

(X , f ). As the proof holds good for any non-empty open setU in X , Proxf (x) is dense in X .

Remark 4.4.1 The above result proves that proximal cell of each x is dense for (X , f ) if and only if
the proximal cell of each x is dense for (X ,F) and hence the dynamical behaviour of two systems is
equivalent in this regard. It may be noted that Example 4.3.1 establishes that proximal pairs need
not be carried over (from (X , f ) to (X ,F)) and hence the above conclusions may not hold good
under the weaker assumption of collective convergence. However, the proof does not exploit the
denseness condition and establishes that denseness of proximal cells in some neighbourhood is
equivalent for the two systems. Further, by proposition 4.3.2, if a system is sensitive then denseness
of proximal cells is equivalent to the denseness of Li-Yorke cells. Equivalently, if proximal cells are
dense for a system then the system is sensitive if and only if it is Li-Yorke sensitive. As sensitivity
is equivalent for feeble open systems (under collective convergence), we obtain the following
corollary.

Corollary 4.4.1 Let (X ,F) be a non-autonomous system generated by a family F of feeble open maps
commuting with f satisfying

∞
∑
n=1

D( fn, f ) < ∞. If Prox(x) is dense in X for each x ∈ X , then (X , f ) is

Li-Yorke sensitive ⇔ (X ,F) is Li-Yorke sensitive.

Proof. The result is a direct consequence of proposition 4.3.1 and Remark 4.4.1.

Proposition 4.4.3 Let X be compact and let (X ,F) be a non-autonomous system generated by a family F
commuting with f . If

∞
∑
n=1

D( fn, f )< ∞ then, set of proximal pairs is dense for (X , f )⇔ set of proximal pairs

is dense for (X ,F).

Proof. As every pair proximal for (X , f ) is proximal for (X ,F), if (X , f ) has dense set of proximal
pairs then (X ,F) has dense set of proximal pairs.

Conversely, let (X ,F) exhibit dense set of proximal pairs and letU1 ×U2 be any non-empty
open set in X×X . LetUi be non-empty open such thatUi ⊂Ui. As

∞
∑
n=1

D( fn, f )< ∞, for each m ∈ Z+

there exists rm ∈N such that
∞
∑

n=rm
D( fn, f )< 1

3.2m . Fixm= 0 and letU1,m =U1 andU2,m =U2. For i= 1,2,

letVi,m = −1
rm (Ui,m). ThenV1,m×V2,m is open in X×X . Consequently there exists a (x1,m,x2,m)∈V1,m×

V2,m such that (x1,m,x2,m) is proximal for (X ,F) and hence there exists a sequence (nk,m) inN such that
lim

nk,m→∞
d( nk,m+rm(x1,m), nk,m+rm(x2,m))= 0. Choose sm ∈N such that d( sm+rm(x1,m), sm+rm(x2,m))<

1
3.2m .

Also, by proposition 4.3.4, d( sm+rm(xi,m), f
sm( rm(xi,m)))<

sm
∑
i=1

D( frm+i, f )< 1
3.2m and hence by triangle

inequality, we have d( f sm( rm(x1,m)), f sm( rm(x2,m))) <
1

2m . Note that rm(xi,m) ∈Ui,m and assuming
ui,m = rm(xi,m) yields d( f sm(u1,m), f sm(u2,m)) <

1
2m . Thus, there exists neighbourhoods Ui,m+1 of ui,m

such thatUi,m+1 ⊂Ui,m and d( f sm(x), f sm(y))< 1
2m for all x ∈U1,m+1,y ∈U2,m+1.

Repeating the process for each m, we obtain a nested sequence of open setsUi,m+1,Ui,m+1 ⊂
Ui,m ⊂Ui such that d( f sm(x), f sm(y))< 1

2m for all x∈U1,m+1,y∈U2,m+1. AsUi,m+1 is a nested decreasing

sequence of closed sets in a compact metric space and hence
∞�

m=0
Ui,m = (i = 1,2). Then, for any
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u1 ∈
∞�

m=0
U1,m ⊂U1, u2 ∈

∞�
m=0

U2,m ⊂U2, as ui ∈Ui,m for all m, we have d( f sm(u1), f sm(u2))<
1

2m for all m

and hence (u1,u2) is proximal for (X , f ). As the proof holds good for any pair of non-empty open
setsU1,U2 in X , the set of pairs proximal for (X , f ) is dense in X×X .

…
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