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Generating Functions and Rearrangements of

Non-autonomous Systems

In this chapter, we relate the dynamics of a non-autonomous dynamical system with the
dynamics of its generating functions. We prove that in general there is no direct correspondence
between the dynamical behaviour of a non-autonomous dynamical system and the dynamical
behaviour of its generating functions. In particular, we give examples to prove that the dynamics
of the generating functions need not carry forward to the non-autonomous system generated (and
vice-versa). We also study the dynamics of truncations of a given non-autonomous system. We
prove that if the family F is feeble open, properties like transitivity, mixing and various forms of
sensitivities are equivalent for two systems. We also investigate properties like equicontinuity,
minimality and proximality for the two systems. We use the results obtained to investigate the
dynamics of various possible rearrangements of a given non-autonomous dynamical system. In
particular, we prove that under derived conditions, the dynamics of a system is preserved under
finite rearrangements. We give an example to show that the dynamics of a system need not be
preserved under infinite rearrangement.

5.1 NON-AUTONOMOUS SYSTEMS AND ITS GENERATING FUNCTIONS

We now discuss the relation between the dynamics of non-autonomous system and
dynamics of its generating functions.

Example 5.1.1 Let S1 be the unit circle and let ∈ (0,1) be an rational. Let fn : S1 → S1 be defined as
fn( ) = + 2 3n . As is rational, each map fk has dense set of periodic points. However, as

∞
∑
n=1

3n < 1,

for any ∈ S1, n( ) = ∀n. Hence the non-autonomous system generated by F= { fn : n ∈N} fails to
have any periodic point.

Example 5.1.2 Let S1 be the unit circle and let ∈ (0,1) be an irrational. Let f1, f2 : S1 → S1 be defined
as f1( ) = +2 and f2( ) = −2 respectively and let (X ,F) be the corresponding non-autonomous
dynamical system. As each fi is an irrational rotation, no point is periodic for any fi. However as f1◦ f2 = Id,
the system (S1,F) has dense set of periodic points.

Remark 5.1.1 The above examples shows that, dense periodicity for a non-autonomous dynamical
system cannot be characterized in terms of the dense periodicity of the generating functions. While
example 5.1.2 shows systemmay exhibit dense periodicitywithout any of the generating functions
exhibiting dense periodicity, example 5.1.1 proves that the system may fail to have a dense set of
periodic points even when all its generating functions exhibit the same.

Example 5.1.3 Let I be the unit interval and let (qn) be an enumeration of rationals in I. Let fn : I → I
be defined as fn(x) = qn for all x ∈ I. Then each fn is a constant map but the system (X ,F) generated by
F= { fn : n ∈N} is minimal.

Remark 5.1.2 In example, 5.1.2 the system (X ,F) fails to be minimal as f2 ◦ f1 = id. However, f1
and f2 are minimal as is irrational. Thus, the example shows that even if each of the maps fi are
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minimal, the non-autonomous system generated by F need not be minimal. On the other hand,
example 5.1.3 shows that the non-autonomous system can exhibit minimality without any of the
maps fi being minimal. Hence, minimality of a non-autonomous system, in general, cannot be
characterized in terms of minimality of its generating functions.

Example 5.1.4 Let I be the unit interval and let f1, f2 : I → I be defined as

f1(x) =
2x if x ∈ [0, 1

2 ]
3
2 − x if x ∈ [1

2 ,1]

f2(x) =
1
2 − x if x ∈ [0, 1

2 ]

2x−1 if x ∈ [1
2 ,1]

Let F = { f1, f2} and let (X ,F) be the corresponding non-autonomous system. As [1
2 ,1] and [0, 1

2 ]
are invariant for f1 and f2 respectively, none of the fi are transitive. However, the map

f2 ◦ f1(x) =






1
2 −2x if x ∈ [0, 1

4 ]

4x−1 if x ∈ [1
4 ,

1
2 ]

2−2x if x ∈ [1
2 ,1]

is transitive and hence the non-autonomous system (X ,F) is transitive.

Example 5.1.5 Let ∑ = {0,1}N be the collection of two-sided sequences of 0 and 1 endowed with the
product topology. Let 1, 2 : ∑ → ∑ be defined as 1(. . .x−2x−1.x0x1x2 . . .) = (. . .x−2x−1x0.x1x2 . . .) and

2(. . .x−2x−1.x0x1x2 . . .) = (. . .x−2.x−1x0x1x2 . . .). Then 1, 2 are the shift operators and are continuous
with respect to the product topology. Let F= { 1, 2} and let (X ,F) be the corresponding non-autonomous
system. It can be seen that each i is transitive. However as 1 ◦ 2 = id, the system generated is not
transitive.

Remark 5.1.3 The above two examples show that transitivity of a general non-autonomous system
is not equivalent to transitivity of its generating functions. While the example 5.1.4 shows that
the non-autonomous system can exhibit transitivity without any of the generating functions being
transitive, example 5.1.5 shows that the non-autonomous system fails to be transitive even each of
its generating functions exhibits the same.

Example 5.1.6 Let I be the unit interval and let f1, f2 be defined as

f1(x) =






2x+ 1
2 for x ∈ [0, 1

4 ]

−2x+ 3
2 for x ∈ [1

4 ,
3
4 ]

2x− 3
2 for x ∈ [3

4 ,1]

f2(x) =
2x for x ∈ [0, 1

2 ]

−x+ 3
2 for x ∈ [1

2 ,1]

Remark 5.1.4 In example 5.1.6 none of the maps fi are weakly mixing (topologically mixing). But
the system (X ,F) generated by F= { f1, f2} is weakly mixing (topologicallymixing), as for any open
setU , there exists a natural number n such that n(U) = [0,1]. Hence the non-autonomous system
(X ,F) is weaklymixing (topologically mixing). The non-autonomous dynamical system generated
in example 5.1.6 exhibits weakly mixing (topological mixing) without any of its components fi
exhibiting the same. Also example 5.1.5 shows that the non-autonomous system generated
need not exhibit weakly mixing (topological mixing) even if each of the generating functions
exhibit weakly mixing (topological mixing). Hence weakly mixing (topologically mixing) of a
non-autonomous system cannot be characterized in terms of weakly mixing (topologicallymixing)
of its generating components.
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Example 5.1.7 Let I×S1 be the unit cylinder. Let f1, f2 : I×S1 → I×S1 be defined as f1((r, )) = (r, +r)
and f2((r, )) = (r, −r) respectively. Let F= { f1, f2} and let (X ,F) be the corresponding non-autonomous
system. As points at different heights of the cylinder are rotating with different speeds, each of the maps fi
are cofinitely sensitive [Sharma and Nagar, 2010]. However as f2 ◦ f1 = Id, the system (I× S1,F) is not
sensitive.

Remark 5.1.5 Example 5.1.7 shows that the non-autonomous system generated need not be
sensitive even when each of the maps fi are sensitive. Also, example 5.1.4 proves that the
non-autonomous system can exhibit sensitivity without any of the maps fi being sensitive. Hence,
sensitivity of the non-autonomous system in general cannot be characterized in terms of sensitivity
of its generating functions.

Example 5.1.8 Let f1, f2 : R → R be defined as f1(x) = |x| and f2(x) = 2x− 1. Let F = { f1, f2} and let
(X ,F) be the corresponding non-autonomous system. Then f1 and f2 fail to be Li-Yorke chaotic. However,
as f2( f1(− 7

9)) =
5
9 , f2( f1(

5
9)) =

1
9 , f2( f1(

1
9)) =−7

9 , the map f2 ◦ f1(x) : R→ R possesses a period 3 point and
hence is Li-Yorke Chaotic. Consequently, (X ,F) is Li-Yorke chaotic.

Remark 5.1.6 The above example shows that the non-autonomous systemmay be Li-Yorke chaotic
without any of the generatingmembers being Li-Yorke chaotic. Also, example 5.1.5 shows that the
non-autonomous system may not be Li-Yorke chaotic even when all the generating functions are
Li-Yorke chaotic. Hence Li-Yorke chaoticity of a non-autonomous system cannot be characterized
in terms of Li-Yorke chaoticity of its generating functions.

5.2 DYNAMICS OF TRUNCATED SYSTEM

For any k ∈ N, we define the family Fk = { fn : n≥ k+1}.

Proposition 5.2.1 (X ,F) is minimal ⇔ (X ,Fk) is minimal.

Proof. Let (X ,F) be minimal and let x∈ X . As each fk is surjective, −1
k (x) is non-empty. Further, as

(X ,F) is minimal, orbit of any y ∈ −1
k (x) (under F) is dense in X . As orbit of x (under Fk) and orbit

of y (under F) differ by finitely many points (atmost k), denseness of orbit of y (under F) implies
denseness of orbit of x (under Fk) and hence (X ,Fk) is minimal.

Conversely, let x ∈ X and y = k(x). As (X ,Fk) is minimal, orbit of y (under Fk) is dense in
X . Further as orbit of y (under Fk) and orbit of x (under F) differ by finitely many points (atmost
k), denseness of orbit of y (under Fk) ensures denseness of orbit of x (under F) and hence (X ,F) is
minimal.

Proposition 5.2.2 (X ,Fk) is equicontinuous ⇔ (X ,F) is equicontinuous.

Proof. Let (X ,Fk) be equicontinuous and let > 0 be given. As (X ,Fk) is equicontinuous, there
exists > 0 ( < ) such that d(x,y) < implies d( k

n(x),
k
n(y)) < ∀ n ≥ k+ 1. Also as the set

{ f1, f2 ◦ f1, . . . , fk ◦ fk−1 ◦ . . .◦ f1} is finite, there exists > 0 such that d(x,y)< ensures d( fr ◦ fr−1 ◦
. . . ◦ f1(x), fr ◦ fr−1 ◦ . . . ◦ f1(y)) < for r ∈ {1,2, . . . ,k} or d( r(x), r(y)) < for r ∈ {1,2, . . . ,k}. In
particular, d(x,y) < gives d( k(x), k(y)) < which further implies d( k

n( k(x)), k
n( k(y))) <

∀ n ≥ k+ 1 (by equicontinuity of (X ,Fk)) or d( n(x), n(y)) < for all n ∈ N and hence (X ,F)
is equicontinuous.

Conversely, let (X ,F) be equicontinuous and let > 0 be given. As (X ,F) is equicontinuous,
there exists > 0 such that d(x,y) < ensures d( n(x), n(y)) < ∀n ∈ N. Let x ∈ X and let Nx =
{S(x, 1

n) : n ∈ N} be the neighbourhood base at x. As
U∈Nx

−1
k (U) = −1

k ({x}), there exist U ∈ Nx
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such that −1
k (U) ⊂

y∈ −1
k ({x})

S(y, ) or there exist m ∈ N such that −1
k (S(x, 1

m)) ⊂
y∈ −1

k ({x})
S(y, ).

Consequently, if d(x, z) < 1
m for any u ∈ −1

k (z), d(u,y) < for some y ∈ −1
k ({x}) and hence

d( n(u), n(y))< for all n∈N.As k(u) = z, k(y)= x and n
k ◦ k = n,we obtain d( k

n(x),
k
n(z))<

for all n≥ k+1 and hence the truncated system is equicontinuous at x. As the proof holds for any
x ∈ X , (X ,Fk) is equicontinuous and hence equicontinuity is equivalent for the two systems.

Remark 5.2.1 The above proofs establish the equivalence of minimality and equicontinuity for
the two systems. While equivalence of minimality for the two systems follows from the fact that
denseness of a set is not altered by addition or deletion of finitely many points, equivalence of
equicontinuity is established by working on each of the fibres of the inverse function (fibres of f−1

are functions g = f−1|M where M is maximal subset of X such that f |M is injective). The result is
intuitive in nature and establishes the fact that addition of finitely many maps cannot generate
sensitivity in a non-sensitive system.

Proposition 5.2.3 If F is commutative then, (x,y) is proximal for (X ,Fk)⇒ (x,y) is proximal for (X ,F).
Further if the family F is bijective then (x,y) is proximal for (X ,F)⇒ (x,y) is proximal for (X ,Fk).

Proof. If (x,y) is proximal for (X ,Fk) then there exists a sequence (nr) of positive integers such
that lim

r→∞
d( k

nr(x),
k
nr(y)) = 0. As X is compact, there exists z ∈ X and a subsequence (nrl ) of (nr)

such that lim
l→∞

k
nrl
(x) = lim

l→∞
k
nrl
(y) = z. Thus we get, fk ◦ fk−1 ◦ . . . ◦ f1( lim

l→∞
k
nrl
(x)) = fk ◦ fk−1 ◦ . . . ◦

f1(lim
l→∞

k
nrl
(y)) = fk ◦ fk−1 ◦ . . .◦ f1(z) or lim

l→∞
fk ◦ fk−1 ◦ . . .◦ f1( k

nrl
(x)) = lim

l→∞
fk ◦ fk−1 ◦ . . .◦ f1( k

nrl
(y)) =

fk ◦ fk−1 ◦ . . . ◦ f1(z) (as fk ◦ fk−1 ◦ . . . ◦ f1 is continuous). Consequently, lim
l→∞

nrl
(x) = lim

l→∞
nrl
(y) =

fk ◦ fk−1 ◦ . . .◦ f1(z) (as F is commutative) and hence (x,y) is proximal for (X ,F).

Conversely, let (x,y) be proximal for (X ,F). Thus, there exists sequence (nr) of natural
numbers such that lim

r→∞
d( nr(x), nr(y)) = 0. Consequently, there exists a subsequence (nrl ) of (nr)

and z ∈ X such that lim
l→∞

nrl
(x) = lim

l→∞
nrl
(y) = z. As nrl

= k
nrl

◦ ( fk ◦ fk−1 ◦ . . . ◦ f1) and the family

F is commutative, we obtain lim
l→∞

fk ◦ fk−1 ◦ . . . ◦ f1( k
nrl
(x)) = lim

l→∞
fk ◦ fk−1 ◦ . . .◦ f1( k

nrl
(y)) = z or fk ◦

fk−1 ◦ . . . ◦ f1(lim
l→∞

k
nrl
(x)) = fk ◦ fk−1 ◦ . . . ◦ f1(lim

l→∞
k
nrl
(y)) = z (as fk ◦ fk−1 ◦ . . . ◦ f1 is continuous). As

each fi is bijective, fk ◦ fk−1 ◦ . . . ◦ f1 is bijective and thus we obtain lim
l→∞

k
nrl
(x) = lim

l→∞
k
nrl
(y) or (x,y)

is proximal for (X ,Fk).

Remark 5.2.2 The above proof establishes the equivalence of proximality for the two systems
when the family F is commutative and bijective. While proximality is preserved from (X ,Fk) to
(X ,F) when the family F is commutative, the converse is proved under additional assumption of
bijectivity of the family F. However, the proof uses only injectivity of the maps fk and hence the
result is true even when F is a commutative family of injective maps. Further, both commutativity
and bijectivity (injectivity) are needed to establish the result and the result does not hold goodwhen
either of the conditions imposed is dropped. We now give an example to establish our claim.

Example 5.2.1 Let I be the unit interval and let f : I → I be piecewise continuous linear map such that
f (0) = 0, f ( 1

3) = 1, f (2
3) = 0 and f (1) = 2

3 . Let g : I → I be the defined as

g(x) =
2x for x ∈ [0, 1

2 ]

2−2x for x ∈ [1
2 ,1]

Let (X ,F) be the non-autonomous system generated by F = { f ,g,g, . . .}. It may be noted that f
and g do not commute and hence non-autonomous system generated is non-commutative in nature. As
g(0) = g(1), {0,1} is a proximal set for (X ,Fk) for any k ∈N. However, as f (0) = 0 and f (1) = 2

3 are fixed

30



for g, the pair is not proximal for (X ,F). Thus, commutativity is an essential condition to preserve proximal
pairs from (X ,Fk) to (X ,F).

Example 5.2.2 Let S1 be the unit circle and let f : S1 → S1 be defined as f ( ) = + . Let g : S1 → S1 be
defined as

g( ) =
for x ∈ [0, ]

2 −2 +2 for x ∈ [ ,2 ]

Let (X ,F) be the non-autonomous system generated by F = { f ,g,g, . . .}. It may be noted that both
f and g are bijective and hence the non-autonomous system generated is bijective (but non-commutative) in
nature. Further, as f ([0, ]) = [ ,2 ] and is fixed point (attracting from the right) for g, any two points in
[0, ] are proximal for (X ,F). However, as g fixes every point in [0, ], the truncated system (X ,Fk) (k≥ 1)
does not exhibit any proximal pair in [0, ].

Example 5.2.3 Let I be the unit interval and let f ,g : I → I be defined as

f (x) =






x for x ∈ [0, 1
2 ]

4
3x−

1
6 for x ∈ [1

2 ,
7
8 ]

1 for x ∈ [7
8 ,1]

g(x) =






−2x+ 1
2 for x ∈ [0, 1

4 ]

2x− 1
2 for x ∈ [ 1

4 ,
1
2 ]

x for x ∈ [ 1
2 ,1]

Let (X ,F) be the non-autonomous system generated by F = { f ,g,g, . . .}. Then, f and g commute
and hence non-autonomous system generated is commutative (but not bijective) in nature. As f ([7

8 ,1]) = 1
and g(x) = x for x ∈ [ 7

8 ,1], any pair of distinct points in [7
8 ,1]) is proximal for (X ,F) but fails to be proximal

for any truncated system.

Remark 5.2.3 The above examples validate the necessity of the conditions imposed in proposition
5.2.3. While Example 5.2.1 establishes the necessity of the commutativity condition for the
proposition to hold good, Examples 5.2.2 and 5.2.3 prove that commutativity or injectivity alone
cannot preserve the proximal pairs in the converse direction. Consequently, both commutativity
and injectivity of the maps fk are needed for the converse to hold good and hence cannot be
dropped.

Proposition 5.2.4 (X ,F) is transitive ⇒ (X ,Fk) is transitive. If the family F is feeble open then (X ,Fk) is
transitive ⇒ (X ,F) is transitive.

Proof. Let (X ,F) be transitive and let U,V be any pair of non-empty open subsets in X . As (X ,F)
is transitive, for the pair U = −1

k (U),V of non-empty open sets in X , there exists r ∈ N such that
r(U )∩V = . Also, transitivity of (X ,F) ensures that the set {r ∈ N : r(U )∩V = } is infinite.

Consequently there exists r > k such that r(U )∩V = or k
r (U)∩V = and hence (X ,Fk) is

transitive.

Let (X ,Fk) be transitive and let U,V be any pair of non-empty open subsets in X . As the
family F is feeble open k(U) has a non-empty interior. Thus, for open setsU = int( k(U)),V in X ,
there exists r ∈N such that k

r (U )∩V = . Consequently, k
r ( k(U))∩V = or r(U)∩V = and

hence (X ,F) is transitive.

Remark 5.2.4 The above proof establishes the equivalence of transitivity for the two systems (X ,F)
and (X ,Fk). Though the property is preserved from (X ,F) to (X ,Fk) unconditionally, the proof of
the converse holds good when the family F is feeble open. As absence of feeble openness destroys
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the topological structure of an open set over iterations, feeble openness is needed for the converse
to hold good. Further, as the proof does not use the structure of open sets explicitly, if U1,U2
interact with V1,V2 for (X ,F) (or (X ,Fk)) at r-th iterate then U1,U2 and V1,V2 interact at r− k-th (or
r+ k-th) iterate for (X ,Fk) (or (X ,F)) and hence weakly mixing is equivalent for the two systems
under identical conditions. Further, as the set of times of interaction between open sets U and V
for the two systems (X ,F) and (X ,Fk) are translate of each other (by constant k), the similar proof
gives equivalence of topological mixing under identical conditions. Hence we get the following
corollary.

Corollary 5.2.1 (X ,F) is weakly mixing (topological mixing) ⇒ (X ,Fk) is weakly mixing (topological
mixing). If the family F is feeble open then (X ,Fk) is weakly mixing (topological mixing)⇒ (X ,F) is weakly
mixing (topological mixing).

Proof. The proof follows from discussions in Remark 5.2.4 and proposition 5.2.4.

Example 5.2.4 Let I be the unit interval and let f ,g : I → I be defined as

f (x) =
0 for x ∈ [0, 1

2 ]

2x−1 for x ∈ [1
2 ,1]

g(x) =
2x for x ∈ [0, 1

2 ]

2−2x for x ∈ [1
2 ,1]

Let (X ,F) be the non-autonomous system generated by F = { f ,g,g, . . .}. For any k ∈ N, (X ,Fk)
is the autonomous system generated by tent map and hence exhibits all forms of mixing and sensitivities.
However for any open setU ,U ⊂ [0, 1

2 ], r(U) = {0} for any r ∈N. Thus the non-autonomous system does
not exhibit any form of mixing or sensitivity and hence feeble openness is needed to preserve any form of
mixing or sensitivity (from (X ,Fk) to (X ,F)).

Remark 5.2.5 The above example establishes the necessity of feeble openness of the family F to
exhibit any of the dynamical property like topological transitivity, weakly mixing (topological
mixing) and sensitivity. Now we show that sensitivity is also equivalent for two systems, when
the family F is feeble open.

Proposition 5.2.5 (X ,F) is sensitive ⇒ (X ,Fk) is sensitive. If the family F is feeble open then (X ,Fk) is
sensitive ⇒ (X ,F) is sensitive.

Proof. Let (X ,F) be sensitivewith as constant of sensitivity. For any open setU , continuity of each
fi impliesU = −1

k (U) is open and hence there exists r ∈N such that diam( r(U ))> . As the set of
times of expansion is infinite for a sensitive system, there exists m> k such that diam( m(U )) >
which implies diam( k

m(U))> and hence (X ,Fk) is sensitive.

Conversely let (X ,Fk) be sensitive with as constant of sensitivity and letU be a non-empty
open set in X . As the family F is feeble open, U = int( k(U)) is non-empty and hence sensitivity
of (X ,Fk) yields m ∈ N such that diam( k

m(U )) > . Consequently, diam( k
m( k(U))) > or

diam( m(U))> and hence (X ,F) is sensitive.

Remark 5.2.6 The above proof establishes equivalence of sensitivity for the two systems (X ,F) and
(X ,Fk) under stated conditions. Once again, while sensitivity of (X ,F) implies sensitivity of (X ,Fk)
unconditionally, the converse is true when the family F is feeble open. As noted in Example 5.2.4,
feeble openness is required for the converse to hold good and hence cannot be dropped. It may be
noted that if one of the systems is sensitive with sensitivity constant , then the proof establishes
the sensitivity of the other system with the same constant of sensitivity and hence the two systems
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are sensitive with same sensitivity constant. Further as the times of expansion (of an open set
U) for the two systems are translate (by constant k) of each other, a similar proof establishes the
equivalence of cofinite sensitivity for the two systems. Hence we get the following corollary.

Corollary 5.2.2 (X ,F) is cofinitely sensitive⇒ (X ,Fk) is confinitely sensitive. If the family F is feeble open
then (X ,Fk) is cofinitely sensitive ⇒ (X ,F) is cofinitely sensitive.

5.3 ALTERATIONS AND REARRANGEMENTS

We sayG to be an alteration of F ifG can be obtained by inserting or deleting finitelymany
maps from the family F. In the previous section, it is established that for a feeble open family F,
(X ,F) exhibits any form of mixing (sensitivity) if and only if (X ,Fk) also exhibits the same. It may
be noted that if (X ,G) is an alteration of (X ,F), there exist k ∈ N such that Gk = Fk. Consequently,
for a feeble open family F, as (X ,F) and (X ,Fk) (and similarly (X ,G) and (X ,Gk)) exhibit identical
notions of mixing (sensitivity), (X ,F) exhibits any form of mixing (sensitivity) if and only if (X ,G)
exhibits similar form of mixing (sensitivity) and hence different notions of mixing (sensitivity) are
preserved under alterations. Also, as minimality and equicontinuity are equivalent for the two
systems unconditionally, the properties are also preserved under alterations. Further, as any finite
rearrangement of a system (X ,F) can be viewed as an alteration of (X ,F), the derived results hold
good for any finite rearrangement of the system (X ,F). Thus we obtain the following results.

Proposition 5.3.1 Let (X ,F) be a non-autonomous system and letG be an alteration (finite rearrangement)
of F. Then, (X ,F) is minimal (equicontinuous) ⇔ (X ,G) is minimal (equicontinuous).

Proposition 5.3.2 Let F be feeble open and let G be an alteration (finite rearrangement) of F. Then, (X ,F)
exhibits any form of mixing (sensitivity) if and only if (X ,G) exhibits identical form of mixing (sensitivity).

Proposition 5.3.3 Let F be commutative family of bijective maps and let G be an alteration (finite
rearrangement) of F. Then, (x,y) is proximal for (X ,F) if and only if (x,y) is proximal for (X ,G).

Remark 5.3.1 The above results provide sufficient conditions under which a dynamical notion is
preserved under a finite rearrangement. Consequently, while minimality and equicontinuity are
preserved unconditionally, various notions of mixing (sensitivity) are preserved when the family
F is feeble open. However, the results derived hold good when G is a finite rearrangement of F
and the dynamical behaviour of the system need not be preserved (under the stated conditions)
when the rearrangement G is an infinite rearrangement. We now an give example in support of
our claim.

Example 5.3.1 Let X = {0,1}Z be the collection of two-sided sequences of 0 and 1 endowed with the product
topology. Let : X → X be defined as (. . .x−2x−1.x0x1x2 . . .) = (. . .x−2x−1x0.x1x2 . . .). The map is the
shift operator and is continuous with respect to the product topology. Let F= { , −1, , , −1, −1, . . .}.
Thus, the family F is defined by defining fi = when n(n+ 1) + 1 ≤ i ≤ (n+ 1)2 and fi = −1 when
(n+1)2 +1 ≤ i ≤ (n+ 1)(n+2). Then, as n(n+1)(x) = x and n(n+1)+r(x) = r(x) for 1 ≤ r ≤ n+1, for
any open set U we obtain, n(n+1)+r(U) = r(U) for 1 ≤ r ≤ n+ 1 and hence the system (X ,F) exhibits
all forms of mixing and sensitivity. However, as there are equal number of and −1 between fn(n+1)
and f(n+1)(n+2) (n+1 each), the family F can be rearranged to obtain G = { , −1, , −1, . . .}. As (X ,G)
does not exhibit any form of mixing or sensitivity, any form of mixing or sensitivity need not be preserved
under infinite rearrangement. Further, it may be noted that (X ,F) is strongly sensitive and hence is not
equicontinuous. However, as orbit of any x in (X ,G) is {x, (x)}, the system (X ,G) is equicontinuous and
hence equicontinuity is not preserved under infinite rearrangements even when the maps fi are bijective.
Hence the conditions under which the dynamical behaviour is preserved for finite rearrangements strictly
work when G is a finite rearrangement and need not preserve the dynamics when the family F is infinitely
rearranged.
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