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Introduction

Historically, dynamical systems were first used in astronomical investigations by Johannes
Kepler and Galileo Galilei in early seventeenth century, where they performed the qualitative
analysis of planetary motions. Later, Newton formalised the studies mathematically using
ordinary differential equations. Since then, mathematical analysis has been used extensively to
investigate various natural and physical occurring systems. The theory in a topological setting
was first investigated by Poincaré towards the end of nineteenth century where he used the theory
of dynamical systems to investigate the three body problem in celestial mechanics. Birkhoff, in
early twentieth century, used the qualitative theory of dynamical systems to investigate several
problems in ergodic theory. The investigations have motivated further work in this area and the
theory has been used to approximate various natural and physical systems in several branches of
science and engineering.

By a dynamical system, we mean any time evolving system. If the governing rule for the
system (with respect to time) is constant, the system is referred as an autonomous dynamical
system, otherwise the system is referred as a non-autonomous dynamical system. While an
autonomous system can be described by a pair (X , f ) (where X is the phase space and f is a
continuous self map on X ), a non-autonomous system can be described by a pair (X ,F) where
X is the phase space and F is a sequence of continuous self maps on X . In recent times, the theory
of dynamical systems has been used extensively to predict the long term behaviour of various
physical and natural systems occurring around us. Some early studies in population dynamics
used the logistic map to predict population growth of certain species [Elaydi, 2007]. In [Beer, 2000],
the author used the theory of dynamical systems to study the agent environment interaction in the
cognitive setting. In [Hamill et al., 1999], authors used the dynamical systems approach to lower
extremity running injuries. In [Oono and Kohmoto, 1965], authors used the theory of discrete
systems to model the chemical turbulence in a system. Although such studies have resulted in
good approximations of the underlying systems, the theory of autonomous system has been used
to obtain the respective approximations. However, as a time variant governing rule provides a
better insight into the problem, approximating a given system by non-autonomous dynamical
system is expected to provide a better approximation to the original problem. As a result, some of
the studies have used the theory of non-autonomous dynamical system to model their respective
systems. In [Kloeden and Pötzsche, 2012], authors provide a survey of different techniques
used in approximating various problems in medical sciences using non-autonomous dynamical
systems. As any simple chemostat model works under the assumption of fixed availability of
the nutrient and its supply rate, availability of the nutrient in a system is a function of nutrient
consumption rate and input nutrient concentration, which results in approximation of the system
by a non-autonomous dynamical system. In [Caraballo and Han, 2016], authors discuss the
Chemostat Model using non-autonomous system. To study and predict the behaviour of weather
and climate is difficult due to the complexity of atmospheric evolution. In 1984, Lorenz introduced
a model (Lorenz-84) to study the atmospheric circulation. The behaviour of this model has been
studied extensively since its introduction. In [Anguiano and Caraballo, 2014], authors discuss the
Lorenz-84 model in non-autonomous settings.
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These illustrations emphasize the importance of investigating the dynamics of a general
non-autonomous dynamical system. Although the topic has caught attention and some interesting
results have been obtained, some natural questions for the dynamics of the non-autonomous
system need to be answered. For example, what is the relation between the dynamics of a
general non-autonomous dynamical system and its generating functions? If the non-autonomous
dynamical system is generated by finite family F, what is relation between the dynamics
of non-autonomous system (X ,F) and autonomous system (X , fk ◦ · · · ◦ f2 ◦ f1)? In case of
non-autonomous system generated by a uniformly convergent sequence, when can the dynamics
of non-autonomous system be approximated by the limiting (autonomous) system? How does
the dynamics of the system change when generating family is replaced by a rearrangement of
the original family? Such questions arise naturally while investigating the dynamics of a general
non-autonomous dynamical system and need to be answered. In this work, we give answers to
some of the questions raised above. Before proceeding further, we give some basic concepts and
definitions required.

Let (X ,d) be a compact metric space and let F = { fn : n ∈ N} be a family of continuous
self maps on X . For a fixed initial seed x0 ∈ X , any such family F generates a non-autonomous
dynamical system via the relation xn = fn(xn−1). Throughout this thesis, such a dynamical system
will be denoted by (X ,F). For any x ∈ X , { fn ◦ fn−1 ◦ . . . ◦ f1(x) : n ∈ N} defines the orbit of x. For
notational convenience, let n

n+k = fn+k ◦ fn+k−1 ◦ . . . ◦ fn+1 and −1
n (y) = f−1

1 ◦ f−1
2 ◦ . . . ◦ f−1

n (y). It
may be noted that −1

n (y) traces the point n units back in time and n(x) = fn ◦ fn−1 ◦ . . .◦ f1(x) is the
state of the system after n iterations.

A family F = { fn : n ∈ N} is said to be commutative if fi ◦ f j = f j ◦ fi for all i, j ∈ N. A family
F is bijective if each map f ∈ F is bijective. A map f is said to be feeble open if int( f (U)) = /0 for any
non-empty open setU (in X). The family F= { fn : n∈N} is said to be feeble open if each f ∈F is feeble
open. A point x is called periodic for (X ,F) if there exists n ∈N such that nk(x) = x for all k ∈N. The
least such n is known as the period of the point x. The system (X ,F) is transitive (or F is transitive)
if for each pair of open sets U,V in X , there exists n ∈ N such that n(U)

�
V = . The system

(X ,F) is said to be weakly mixing if for any collection of non-empty open sets U1,U2,V1,V2, there
exists a natural number n such that n(Ui)

�
Vi = , i= 1,2. Equivalently, we say that the system is

weakly mixing if F×F is transitive. The system is said to be topologically mixing if for every pair of
non-empty open setsU,V there exists a natural number K such that n(U)

�
V = for all n≥K. The

system is said to be sensitive if there exists a > 0 such that for each x ∈ X and each neighbourhood
U of x, there exists n ∈N such that diam( n(U))> . If there exists K > 0 such that diam( n(U))>
∀n≥ K, then the system is cofinitely sensitive. A set S is said to be scrambled if for any distinct x,y∈ S,
limsup
n→∞

d( n(x), n(y))> 0 but liminf
n→∞

d( n(x), n(y)) = 0. A system (X ,F) is said to be Li-Yorke chaotic

if it contains an uncountable scrambled set. The system (X ,F) is equicontinuous if for each > 0,
there exists > 0 such that d(x,y)< implies d( n(x), n(y))< for all n ∈ N, x,y ∈ X . The system
(X ,F) is said to be minimal if orbit of each x in X is dense in X . A pair (x,y) ∈ X ×X is proximal for
(X ,F) if liminf

n→∞
d( n(x), n(y))= 0 . A pair (x,y)∈X×X is distal if it is not proximal. For any x∈X , the

set ProxF(x) = {y ∈ X : (x,y) is proximal for (X ,F)} is called the proximal cell of x in (X ,F). A system
(X ,F) is said to exhibit dense set of proximal pairs if the set of pairs proximal for (X ,F) is dense in
X×X . A set S is said to be -scrambled in (X ,F) if for any distinct x,y ∈ S, limsup

n→∞
d( n(x), n(y))>

but liminf
n→∞

d( n(x), n(y)) = 0. A system (X ,F) is Li-Yorke sensitive if there exists > 0 such that for
each x ∈ X and each neighbourhood U of x there exists y ∈U such that {x,y} is a -scrambled set.
For any x ∈ X , let LYF(x) = {y ∈ X : (x,y) is a Li-Yorke pair for (X ,F)} is called the Li-Yorke cell of x.

We now define the notion of topological entropy for a non-autonomous system (X ,F).

LetX be a compact space and letU be an open cover ofX . ThenU has a finite subcover. Let
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L be the collection of all finite subcovers and let U ∗ be the subcover with minimum cardinality,
say NU . Define H(U ) = logNU . Then H(U ) is defined as the entropy associated with the open
cover U . If U and V are two open covers of X , define, U ∨V = {U

�
V :U ∈ U ,V ∈ V }. An open

cover is said to be refinement of open cover i.e. ≺ , if every open set in is contained
in some open set in . It can be seen that if ≺ then H( ) ≤ H( ). For a self map f on X ,
f−1(U ) = { f−1(U) :U ∈ U } is also an open cover of X . Define,

hF,U = limsup
k→∞

H(U ∨ −1
1 (U )∨ −1

2 (U )∨...∨ −1
k−1(U ))

k

Then suphF,U , where U runs over all possible open covers of X is known as the topological
entropy of the system (X ,F) and is denoted by h(F). In case the fn’s coincide, the above definitions
coincide with the known notions of an autonomous dynamical system. See [Block and Coppel,
1992; Brin and Stuck, 2002; Devaney, 1986; Elaydi, 2007] for details.

Let X be a compact metric space and let K (X) denote the collection of all non-empty
compact subsets ofX . For anyA,B∈K (X)defineDH(A,B)= inf{ > 0 :A⊂ S(B, ) and B⊂ S(A, )}
where S(A, ) =

�
x∈A

S(x, ) is the -ball around A. Then DH defines a metric on K (X) and is known

as the Hausdorff metric. It is known that a system (X , f ) is a weakly mixing (topological mixing) if
and only if for any compact set K with non-empty interior limsup

n→∞
f n(K) = X ( lim

n→∞
f n(K) = X) with

respect to the metric DH .

Let (X ,d) be a compact metric space and let C(X) denote the collection of continuous self
maps on X . For any f ,g ∈C(X), define,

D( f ,g) = sup
x∈X

d( f (x),g(x))

It can be easily seen thatD defined above is ametric onC(X) and is known as the Supremum
metric. It can be seen that a sequence ( fn) in C(X) converges to f in (C(X),D) if and only if ( fn)
converges to f uniformly on X and hence the topology generated by the metric defined above is
known as the topology of uniform convergence. A collection of sequences {( f ij) : i ∈ I} converges
collectively to {gi : i ∈ I}with respect to the metric D if for each > 0, there exists n0 ∈ N such that
D( f ij,g

i)< ∀ j ≥ n0, i ∈ I.

The above definitions generalize the known concepts for the autonomous system to amore
general non-autonomous setting. Some investigations for such a setting in the discrete case have
been made and interesting results have been obtained. In [Kolyada and Snoha, 1996], authors
investigate the topological entropy of a general non-autonomous dynamical system generated
by a equicontinuous family of continuous self maps on compact topological space. They also
investigate topological entropy when the non-autonomous system generated by a finite family.
In [Kolyada et al., 2004], authors discuss minimality conditions for a non-autonomous system on
a compact Hausdorff space, while focussing on the case when the non-autonomous system is
defined on a compact interval of the real line. In this work, authors derive conditions ensuring
non-minimality for a non-autonomous system. In [Dvořáková, 2012], the author proved that if a
sequence ( fn) of surjective continuous self maps on interval converges uniformly, in general there
is no relation between chaotic behaviour of the non-autonomous system generated by sequence
( fn) and the chaotic behaviour of limit map. Moreover, it is shown that even the full Lebesgue
measure of a distributionally scrambled set of the non-autonomous system does not guarantee the
existence of distributional chaos of the limit map. Conversely, the author proves the existence of
a non-autonomous system with arbitrarily small distributionally scrambled set which converges
to a map distributionally chaotic almost everywhere. In [Balibrea and Oprocha, 2012] authors
investigate properties like weakly mixing, topological mixing, topological entropy and Li-Yorke
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chaos for the non-autonomous system. In particular, they prove that positive topological entropy
does not imply the chaos in sense of Li and Yorke. They also give a few techniques to study the
qualitative behaviour of a non-autonomous system.

Before moving further we give some of the terminologies used in literature. In recent
studies, while (X , f1,∞), is used to denote the non-autonomous discrete dynamical systems (X ,F),

i−1
i+(n−1) is denoted by f ni . Also fn,∞ is used to denote the family Fn−1 = { fn, fn+1 . . .} in literature.

We now give some of the known results for the non-autonomous dynamical systems.

Proposition 1.0.1 [Kolyada and Snoha, 1996] Let f1,∞ be a sequence of continuous selfmaps of a compact
topological space X . Let f1,∞ be periodic with period n then h( f n1,∞) = n.h( f1,∞).

Proposition 1.0.2 [Kolyada and Snoha, 1996] If f1,∞ is a sequence of equicontinuous selfmaps of a compact
metric space (X , ) then h( f n1,∞) = n.h( f1,∞) for all n≥ 1.

Proposition 1.0.3 [Kolyada et al., 2004] Let (X , ) be a compact metric space and let (X , f1,∞) be a
non-autonomous dynamical system. Then the following assertion are equivalent
1. (X , f1,∞) is not minimal
2. there is a non-empty open set B⊂ X such that (X , f1,∞) has arbitrarily long finite trajectories disjoint with
B.

Proposition 1.0.4 [Dvořáková, 2012] There is a surjective non-autonomous system (I, f1,∞) such that for
every n ∈ N, (I, fn,∞) is distributionally chaotic almost everywhere(the scrambled set is whole (0,1)) and
such that (I, f1,∞) uniformly converges to a non-chaotic map f ∈C(I).

Proposition 1.0.5 [Balibrea and Oprocha, 2012] There is NDS ([0,1], f1,∞) such that
1. htop( f1,∞)≥ log2
2. points 0,1 are fixed points and all others are asymptotic to 0.

A brief summary of work done in subsequent chapters of the thesis is included below.

In chapter 2, we investigate the topological dynamics of non-autonomous generated by
finite family. In the process, we compare the dynamics of the non-autonomous system (X ,F) (F=
{ f1, f2, · · · fk}) with the dynamics of autonomous system (X , fk ◦ · · · f2 ◦ f1). We prove that, while
topological transitivity is not equivalent for two systems, weakly mixing is equivalent for two
systems for the commutative family F. We also establish the equivalence of topological mixing
for two systems. We also derive necessary and sufficient conditions for a system to exhibit strong
forms of mixing.

In chapter 3, we study the metric related dynamical properties of the non-autonomous
dynamical system generated by finite family F = { f1, f2, · · · fk}. In the process, we relate the
dynamical behaviour of non-autonomous system (X ,F)with the dynamics of autonomous system
(X , fk ◦ · · · f2 ◦ f1). We prove that minimality is equivalent for two systems, when the space X is
connected. We also derive conditions under which properties like equicontinuity, proximality
and various forms of sensitivities are equivalent for two systems.

In chapter 4, we investigate the non-autonomous dynamical system generated by a
uniformly convergent sequence of continuous self maps on a compact metric space. We relate
the dynamical properties of such a non-autonomous dynamical system with the dynamics of
its limiting system. We prove that the collective convergence of {( n

n+k) : k ∈ N} is sufficient to
establish the equivalence of properties likeminimality and equicontinuity for the system (X ,F) and
limiting system (X , f ). However, feeble openness is essential along with collective convergence
to prove the equivalence of various notion of mixing and sensitivities for two systems. We
derive conditions under which uniform convergence of ( fn) ensures the collective convergence
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of {( n
n+k) : k ∈N}. We prove that if f is an isometry, convergence (of ( fn)) at a sufficiently fast rate

ensures the collective convergence of {( n
n+k) : k ∈ N}. We show that if ( fn) commutes with f and

( fn) converges to f at a ”sufficiently fast rate”, many of the dynamical properties for the systems
(X ,F) and (X , f ) coincide. In particular, we prove that the proximal pairs (cells) are equivalent for
two systems (under stated conditions).

In chapter 5, we relate the dynamical behaviour of the non-autonomous dynamical
system with the dynamics of its generating functions. In the process, we show that dynamics
of the generating functions, in general, is not carried over to the non-autonomous dynamical
system (X ,F) (and vice-versa). Further, we discuss the dynamical behaviour of various possible
rearrangements of a non-autonomous system. We prove that if the non-autonomous system
is generated by feeble open maps then, any finite rearrangement of the system preserves the
dynamics of the original system. We also prove that the dynamics need not be preserved
under infinite rearrangements. We extend our investigations to properties like equicontinuity,
minimality and proximality for the two systems.

…
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