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Topological Dynamics of a Finite family

In this chapter, we investigate topological dynamics of a general non-autonomous system
generated by finite family. We relate the dynamics of the non-autonomous system generated by
F = { f1, f2, · · · fk} with the dynamics of the autonomous system (X , fk ◦ . . . f2 ◦ f1). In particular,
we compare properties like topological transitivity, weakly mixing, topological mixing and
topological entropy for two systems. We show that, while topological transitivity is not equivalent
for two systems, (X ,F) is topological mixing if and only if (X , fk ◦ . . . f2 ◦ f1) is topological mixing.
We prove that, if the generating family F is commutative, weakly mixing is equivalent for two
systems. We also derive necessary and sufficient conditions for a non-autonomous dynamical
system to exhibit stronger forms of mixing. Before we move forward, it is worth mentioning that
when the dynamical system generated by a finite family F = { f1, f2, . . . , fk}, the non-autonomous
system is generated by the relation xn = gn(xn−1) where gn = f(1+(n−1) mod k) and n ∈ N.

2.1 PERIODIC POINTS AND TRANSITIVITY

Proposition 2.1.1 For any point x0 ∈ X , x0 is periodic for (X , fk ◦ fk−1 ◦ . . .◦ f1)⇔ x0 is periodic for (X ,F).

Proof. Let x0 be a periodic point for the system (X , fk ◦ fk−1 ◦ . . . ◦ f1). As x0 is periodic, there exist
n0 ∈ N such that ( fk ◦ fk−1 ◦ . . . ◦ f1)n0(x0) = x0 and hence n0k(x0) = x0. Consequently rn0k(x0) =
x0 ∀r ≥ 1 and hence x0 is periodic for (X ,F).

Conversely, let x0 be a periodic point for the system (X ,F) of period n∈N.Hence, rn(x0) =
x0 for all r ∈ N. In particular, we have nk(x0) = x0 or ( fk ◦ fk−1 ◦ . . . ◦ f1)n(x0) = x0 and, hence x0 is
periodic point for the system (X , fk ◦ fk−1 ◦ . . .◦ f1).

Remark 2.1.1 The above result establishes that any point x0 is periodic for the system (X ,F) if and
only if it is periodic for the system (X , fk ◦ fk−1 ◦ . . . ◦ f1). However, the proof establishes only the
periodic behaviour of the point x0 and the period of the point may not be preserved. Further, as
periodic points are preserved between the two systems (X ,F) and (X , fk ◦ fk−1 ◦ . . .◦ f1), (X ,F) has
dense set of periodic points if and only if (X , fk ◦ fk−1 ◦ . . . ◦ f1) has dense set of periodic points.
Hence we get the following corollary.

Corollary 2.1.1 The system (X , fk ◦ fk−1 ◦ . . .◦ f1) exhibits dense set of periodic points if and only if (X ,F)
exhibits dense set of periodic points.

Proof. The proof follows from the discussions in Remark 2.1.1.

Proposition 2.1.2 If (X , fk ◦ fk−1 ◦ . . .◦ f1) is transitive, then (X ,F) is transitive.

Proof. LetU,V be any pair of non-empty open subsets of X . As fk ◦ fk−1 ◦ . . .◦ f1 is transitive, there
exists n ∈N such that ( fk ◦ fk−1 ◦ . . .◦ f1)n(U)∩V = . Consequently nk(U)∩V = and hence (X ,F)
is transitive.
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Remark 2.1.2 The above result establishes the transitivity of the non-autonomous system, in case
the corresponding autonomous system is transitive. However, the correspondence is one-sided
and the converse of the above result does not hold good. We now give an example in support of
our statement.

Example 2.1.1 Let I be the unit interval and let f1, f2 be defined as

f1(x) =






2x+ 1
2 for x ∈ [0, 1

4 ]

−2x+ 3
2 for x ∈ [1

4 ,
3
4 ]

2x− 3
2 for x ∈ [3

4 ,1]

f2(x) =






x+ 1
2 for x ∈ [0, 1

2 ]

−4x+3 for x ∈ [1
2 ,

3
4 ]

2x− 3
2 for x ∈ [3

4 ,1]
Let F= { f1, f2} and (X ,F) be the corresponding non-autonomous dynamical system. As (X , f2 ◦ f1) has an
invariant set U = [ 1

2 ,1], f2 ◦ f1 is not transitive. However, as f1 expands every open set U in [0,1] and f2
expands the right half of the unit interval with f2([0, 1

2 ]) = [1
2 ,1], the non-autonomous system generated by

F is transitive.

It is known that transitivity of F×F does not imply the transitivity of F×F×F [Balibrea
and Oprocha, 2012]. However, if the non-autonomous system is generated by commutative family
F then the transitivity of F×F implies the transitivity of F×F× . . .×F

n times

for any ≥ 2 hence a result

analogous to the autonomous case, holds good for the non-autonomous system. We now establish
our claim below.

Proposition 2.1.3 If F is a commutative family, then, F×F is transitive if and only if F×F× . . .×F
n times

is

transitive ∀n≥ 2.

Proof. Let F×F be transitive. We prove the forward part with the help of mathematical induction.
LetF×F× . . .×F

k times

be transitive and letU1,U2, . . . ,Uk+1 andV1,V2, . . . ,Vk+1 be a pair of k+1non-empty

open sets in X . As F×F is transitive, there exists r> 0 such that r(Uk)∩Uk+1 = and r(Vk)∩Vk+1 =
. Let U =Uk ∩ −1

r (Uk+1) and V = Vk ∩ −1
r (Vk+1). Then U and V are non-empty open sets in X .

Also as F×F× . . .×F
k times

is transitive, there exists t > 0 such that t(Ui)∩Vi = for i = 1,2, . . . ,k− 1

and t(U)∩V = .

As U ⊂ Uk and V ⊂ Vk, we have t(Uk)∩Vk = . Also t(U)∩V = implies r( t(U))∩
r(V ) = . As fi commute with each other, we have t( r(U))∩ r(V ) = . As r(U) ⊆Uk+1 and
r(V ) ⊂ Vk+1, we have t(Uk+1)∩Vk+1 = . Consequently t(Ui)∩Vi = for i = 1,2, . . . ,k+ 1 and

hence F×F× . . .×F
k+1 times

is transitive.

Proof of converse is trivial as if F×F× . . .×F
n times

is transitive ∀n≥ 2, in particular taking n= 2

yields F×F is transitive.

Remark 2.1.3 For autonomous systems, it is known that f × f is transitive, then f × f × . . .× f
n times

is transitive for all n ≥ 2 [Banks, 2005] and hence the result established above is an analogous
extension of the autonomous case. It may be noted that the proof uses the commutative property
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of the members of the family F and hence is not true for a non-autonomous system generated by
any general family F. However, the proof does not use the finiteness of the family F and hence the
result holds even when the generating family F is infinite.

2.2 STRONGER NOTIONS OFMIXING

Proposition 2.2.1 If F is a commutative family, then (X ,F) is weakly mixing if and only if for any finite
collection of non-empty open sets {U1,U2, . . . ,Um}, there exists a subsequence (rn) of positive integers such
that lim

n→∞ rn(Ui) = X , ∀i= 1,2, . . . ,m.

Proof. Let n ∈N be arbitrary and let {U1,U2, . . . ,Um} be any finite collection of non-empty open sets

of X . As X is compact, there exist x1,x2, . . .xkn such that X =
kn

i=1
S(xi, 1

2n). As (X ,F) is weakly mixing,

by proposition 2.1.3, there exists rn > 0 such that rn(Ui)∩ S(x j, 1
2n) = ∀i, j and hence for any i,

DH( rn(Ui),X)≤ 1
n . As n ∈ N is arbitrary, lim

n→∞ rn(Ui) = X ∀i and the proof for the forward part is
complete.

Conversely, letU1,U2 and V1,V2 be two pairs of non-empty open subsets of X . For i= 1,2,
let vi ∈Vi and let > 0 such that S(vi, )⊂Vi. By given condition, there exists a subsequence (rn) of
natural numbers such that lim

n→∞ rn(Ui)=X for i= 1,2. Thus, there exists rk such thatDH( rk(Ui),X)<

2 , i= 1,2. Consequently rk(Ui)∩Vi = and, hence, (X ,F) is weakly mixing.

Remark 2.2.1 It may be noted that the proof of converse does not need commutativity of the
family F. However, to establish the forward part, we use proposition 2.1.3 and hence use the
commutativity of the family F. Thus, the result may not hold good when considered for a general
non-autonomous system. Also, the result does not use finiteness condition on F and hence is valid
even when the system is generated by an infinite family F.

Remark 2.2.2 It is known that an autonomous system is weakly mixing if and only if for any
non-empty open setU , there exists a subsequence (rn) of positive integers such that lim

n→∞
f rn(U) = X

[Kwietniak and Oprocha, 2007]. Thus for non-autonomous case, the result above establishes a
stronger extension of the result proved in the autonomous case. However, the above result also
holds when the maps fn coincide and, hence, a stronger version of the result in [Kwietniak and
Oprocha, 2007] is true for the autonomous case. For the sake of completeness, we mention the
obtained result below.

Corollary 2.2.1 Acontinuous self map f is weaklymixing if and only if for any finite collection of non-empty
open sets {U1,U2, . . . ,Um}, there exists a subsequence (rn) of positive integers such that lim

n→∞
f rn(Ui) =

X , ∀i= 1,2, . . . ,m.

Proof. The proof is a direct consequence of proposition 2.2.1, applied to the case when F =
{ f , f , · · · f}.

Proposition 2.2.2 (X ,F) is topologically mixing if and only if for each non-empty open setU , lim
n→∞ n(U) =

X .

Proof. Let n ∈ N be arbitrary and let U be any non-empty open subset of X . As X is compact,

there exist x1,x2, . . .xkn such that X =
kn

i=1
S(xi, 1

2n). As F is topologically mixing, there exists Mi, i =
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1,2, . . . ,kn such that k(U)∩ S(xi, 1
2n ) = ∀k ≥ Mi. Let M = max{Mi : 1 ≤ i ≤ kn}. Then k(U)∩

S(xi, 1
2n) = ∀k≥M. ConsequentlyDH( k(U),X)< 1

n ∀k≥M. As n∈N is arbitrary, lim
n→∞ n(U) = X

and the proof of forward part is complete.

Conversely, let U,V be a any pair of non-empty open subsets of X . Let v ∈ V and let > 0
be such that S(v, ) ⊂ V . By given condition, lim

n→∞ n(U) = X . Thus, there exists K > 0 such that
DH( k(U),X)< 2 ∀k ≥ K. Consequently, k(U)∩V = ∀k ≥ K and hence (X ,F) is topologically
mixing.

Remark 2.2.3 In [Kwietniak and Oprocha, 2007], the authors establish that an autonomous system
(X , f ) is topologically mixing if and only if for each non-empty open set U , lim

n→∞
f n(U) = X . Once

again, weprove that an analogous result does holdwhen considered for a general non-autonomous
system. However, it may be noted that commutativity or finiteness of the familyFwere not needed
to establish the above result and, hence, the result holds for a general non-autonomous dynamical
system.

Proposition 2.2.3 If F = { f1, f2, . . . , fk} is a finite commutative family, then, (X ,F) is weakly mixing if
and only if (X , fk ◦ fk−1 ◦ . . .◦ f1) is weakly mixing.

Proof. Let U be a non-empty open subset of X . We will equivalently prove that there exists a
sequence (zn) of natural numbers such that lim

n→∞
( fk ◦ fk−1 ◦ . . . ◦ f1)zn(U) = X . As (X ,F) is weakly

mixing, by proposition 2.2.1, there exists sequence (sn) such that lim
n→∞ sn(U) = X . Also the family

F is finite and hence there exists l ∈ {1,2, . . . ,k} and a subsequence (mn) of (sn), mn = l+ rnk such
that lim

n→∞
fl ◦ fl−1 ◦ . . .◦ f1 ◦ rnk(U) = X . As each fi are surjective, lim

n→∞ (rn+1)k(U) = X . Consequently
lim
n→∞

( fk ◦ fk−1 ◦ . . .◦ f1)rn+1(U) = X and (X , fk ◦ fk−1 ◦ . . .◦ f1) is weakly mixing.

Conversely, let U1,U2 and V1,V2 be any two pairs of non-empty open subsets of X . As fk ◦
fk−1 ◦ . . .◦ f1 is weaklymixing, there exists n ∈N such that ( fk ◦ fk−1 ◦ . . .◦ f1)n(Ui)∩Vi = for i= 1,2.
Consequently, nk(Ui)∩Vi = for i= 1,2 and hence (X ,F) is weakly mixing.

Remark 2.2.4 The result establishes the equivalence of the weakly mixing of the non-autonomous
system (X ,F) and the autonomous system (X , fk ◦ fk−1 ◦ . . .◦ f1). It may be noted that as the proof
uses the proposition 2.2.1 proved earlier, commutativity of the family F cannot be relaxed. Further,
it may be noted that the above result uses the surjectivity of the maps fi. Thus, if the maps are not
surjective, the above result does not hold, i.e., the non-autonomous system may exhibit weakly
mixing even if the system (X , fk ◦ fk−1 ◦ . . . ◦ f1) is not weakly mixing. We now give an example in
support of our statement.

Example 2.2.1 Let I be the unit interval and let f1, f2 be defined as

f1(x) =
2x for x ∈ [0, 1

2 ]

−x+ 3
2 for x ∈ [1

2 ,1]

f2(x) =






−2x+ 1
2 for x ∈ [0, 1

4 ]

2x− 1
2 for x ∈ [1

4 ,
1
2 ]

−2x+ 3
2 for x ∈ [1

2 ,
3
4 ]

2x− 3
2 for x ∈ [3

4 ,1]

Let F be a finite family of maps f1 and f2 defined above. As [0, 1
2 ] is invariant for f2 ◦ f1, the map

f2 ◦ f1 does not exhibit any of the mixing properties. However, for any open setU in [0,1], there exists k ∈N
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such that ( f2 ◦ f1)k(U) = [0, 1
2 ]. Consequently, 2k+1(U) = [0,1]. As the argument holds for any odd integer

greater than k, the non-autonomous system is weakly mixing.

Proposition 2.2.4 If F = { f1, f2, . . . , fk} is a finite family, then, (X ,F) is topologically mixing if and only
if (X , fk ◦ fk−1 ◦ . . .◦ f1) is topologically mixing.

Proof. LetU be a non-empty open subset of X . We will equivalently prove that lim
n→∞

( fk ◦ fk−1 ◦ . . .◦
f1)n(U) = X . As (X ,F) is topologically mixing, by proposition 2.2.2, lim

n→∞ n(U) = X . In particular
lim
n→∞ kn(U) = X or lim

n→∞
( fk ◦ fk−1 ◦ . . . ◦ f1)n(U) = X and hence (X , fk ◦ fk−1 ◦ . . . ◦ f1) is topologically

mixing.

Conversely, let U be a non-empty open subset of X . We will equivalently prove that
lim
n→∞ n(U) = X . As fk ◦ fk−1 ◦ . . . ◦ f1 is topologically mixing, lim

n→∞
( fk ◦ fk−1 ◦ . . . ◦ f1)n(U) = X .

Consequently, lim
n→∞ kn(U) = X . As each fi are surjective, by continuity we have for each l ∈

{1,2, . . . ,k}, fl ◦ fl−1 ◦ . . . ◦ f1( lim
n→∞ kn(U)) = lim

n→∞
( fl ◦ fl−1 ◦ . . . ◦ f1 ◦ kn(U)) = X . Consequently

lim
n→∞ n(U) = X and (X ,F) is topologically mixing.

Remark 2.2.5 The result once again is an analogous extension of the autonomous case. The
result proves that the identical conclusion can be made for the non-autonomous case without
strengthening the hypothesis. It is worth noting that the result does not use commutativity of
F and hence asserts the complex nature of topological mixing in a general dynamical system.

2.3 TOPOLOGICAL ENTROPY

In [Kolyada and Snoha, 1996], authors prove that if F= { f1, f2, . . . , fk} is a finite family, then,
h(F) = 1

k h( fk ◦ fk−1 ◦ . . .◦ f1). However, as the authors were not aware of the result while addressing
the problem, for the sake of completion, proof is included here.

Proposition 2.3.1 IfF= { f1, f2, . . . , fk} is a finite family, then, h(F)≥ 1
k h( fk◦ fk−1◦. . .◦ f1). Consequently

if the associated autonomous system has positive topological entropy, the non-autonomous system also has
a positive topological entropy.

Proof. For any open cover U of X , the entropy of the system with respect to the open cover U is
defined as

hF,U = limsup
n→∞

H(U ∨ −1
1 (U )∨ −1

2 (U )∨...∨ −1
n−1(U ))

n = limsup
n→∞

H(U ∨ −1
1 (U )∨ −1

2 (U )∨...∨ −1
nk−1(U ))

nk

Also asU ∨ −1
k (U )∨ −1

2k (U )∨ . . .∨ −1
k(n−1)(U )≺U ∨ −1

1 (U )∨ −1
2 (U )∨ . . .∨ −1

nk−1(U ), we have

H(U ∨ −1
k (U )∨ −1

2k (U )∨ . . .∨ −1
k(n−1)(U ))≤ H(U ∨ −1

1 (U )∨ −1
2 (U )∨ . . .∨ −1

nk−1(U ))

Therefore,
limsup
n→∞

H(U ∨ −1
k (U )∨ −1

2k (U )∨...∨ −1
k(n−1)(U ))

nk ≤ limsup
n→∞

H(U ∨ −1
1 (U )∨ −1

2 (U )∨...∨ −1
nk−1(U ))

nk

Consequently,
1
k limsup

n→∞

H(U ∨( fk◦ fk−1◦...◦ f1)−1(U )∨( fk◦ fk−1◦...◦ f1)−2(U )∨...∨( fk◦ fk−1◦...◦ f1)(−n+1)(U ))
n
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≤ limsup
n→∞

H(U ∨ −1
1 (U )∨ −1

2 (U )∨...∨ −1
nk−1(U ))

nk

or 1
kH( fk ◦ fk−1 ◦ . . . ◦ f1,U ) ≤ H(F,U ). As U was arbitrary, h(F) ≥ 1

k h( fk ◦ fk−1 ◦ . . . ◦ f1) and the
proof is complete.

…

12


