List of Figures

Figures	Title	page
2.1	General representation of ubiquitin proteasome pathway and its enzymes	8
2.2	An illustration of orchestration of factors involved in neurodevelopment and neurodegeneration	10
2.3	Overview of current understanding of amyloids	15
2.4	An overview of orchestration of cellular proteolytic machinery to reestablish homeostasis	19
3.1	Lanosterol treatment upregulates cellular autophagy and induces co-chaperone CHIP expression	22
3.2	Treatment of lanosterol enhances the mRNA expression level of CHIP	23
3.3	Time-dependent treatment of lanosterol increases cellular level of CHIP protein	24
3.4	Lanosterol modulates CHIP levels in concentration-dependent manner	24
3.5	Expression of GFP-wtCAT plasmid constructs	25
3.6	Effect of chloroquine treatment on the expression of GFP-wtCAT	25
- 3.7	Lanosterol enhances the clearance of a mutant bona-fide misfolded proteins	26
3.8	Chloroquine treatment enhances the aggregation propensity of modeled misfolded protein	26
3.9	Lanosterol reduces the intracellular perinuclear accumulation of heat-denatured luciferase protein	27
3.10	Effect of lanosterol on the degradation of heat-denatured luciferase protein	28
3.11	Effects of lanosterol treatment on overall cellular health	29
3.12	Expression of SOD1-WT plasmid constructs	30
3.13	Effects of autophagy inhibition on the aggregation of ubiquitinated cellular proteins	30
3.14	Lanosterol suppresses the mutant SOD1 aggresomes formation in cells	31
3.15	Higher accumulation of mutant SOD1-G37R protein following autophagy inhibition	31
3.16	Wild-type alpha-synuclein expression analysis	32
3.17	Effects of administration of chloroquine on the expression of α -synuclein	32
3.18	Treatment of lanosterol reduces aggregation of mutant $lpha$ –synuclein	33
3.19	Inhibition of autophagy overturns the anti-aggregatory effects of lanosterol	33
3.20	Representation of interaction of lanosterol with CHIP TPR domain	34
3.21	Lanosterol stabilizes co-chaperone CHIP	35
3.22	Expression of ataxin-3(Q28) plasmid constructs	35
3.23	Inhibition of autophagy leads to increased accumulation of normal ataxin-3(Q28) containing proteins	36
3.24	Lanosterol induces suppression of pathogenic ataxin-3 polyglutamine protein aggregation in cells	36
3.25	Administration of chloroquine ameliorates the cytoprotective effects of lanosterol	37
3.26	Visualization of normal huntingtin protein expression in Cos-7 cells	38
3.27	Effects of inhibition of cellular autophagic flux on the expression of normal huntingtin protein	38
3.28	Treatment of lanosterol results in decrease of cytoplasmic misfolded inclusions of expanded huntingtin polyglutamine aggregates	39
3.29	Monitoring of impact of chloroquine treatment on the formation of perinuclear inclusions of polyglutamine-containing huntingtin inside the cells	39
3.30	Lanosterol reduces misfolded protein aggregation	40
3.31	Lanosterol alleviates stress-induced cytotoxicity	41
3.32	Suppression of overall cytoplasmic aggregate formation following lanosterol treatment	42
4.1	Ibuprofen treatment causes accumulation of ubiquitinated proteins	48
4.2	Visualization of morphological changes caused by ibuprofen treatment	48
4.3	Treatment of ibuprofen disturbs proteasome function and induces cytotoxicity	49
4.4	Exposure of ibuprofen induces loss of chymotrypsin-like proteasome activity in dose- dependent manner	50
4.5	Time-dependent loss of chymotrypsin-like proteasomal activity in response to ibuprofen administration	50
4.6	Ibuprofen also suppresses post-glutamyl peptide hydrolase-like activity of proteasome	51

4.7	Time-dependent inhibition of post-glutamyl peptide hydrolase activity of 20S proteasome	51
4.8	Ibuprofen treatment leads to stabilization of misfolded proteins in cells	52
4.9	Effect of ibuprofen treatment on soluble fraction of pathogenic huntingtin protein	53
4.10	Ibuprofen treatment stabilizes ubiquitinated proteins inside the cells	54
4.11	Concentration-dependent cytotoxicity conferred by ibuprofen	54
4.12	Ibuprofen presents in silico interaction with proteasomal subunits	55
4.13	Enhanced accumulation of cytoplasmic ubiquitinated proteins following ibuprofen- mediated proteasomal inhibition	56
4.14	Bright-field image micrographs of ibuprofen treated cells	56
4.15	Formation of aggresomes of misfolded proteins response to ibuprofen treatment in cells	57
4.16	Ibuprofen mediates stabilization of I κ B- $lpha$	58
4.17	Downregulation of NF-кВ transcriptional activity in response to ibuprofen treatment	58
4.18	Ibuprofen causes stabilization of aggregation-prone misfolded protein species	59
4.19	Treatment of ibuprofen accelerates the accumulation of proteasome and ubiquitin- positive protein aggregates	59
4.20	Proteasomal inhibition by ibuprofen leads to increased accumulation of cell cycle regulatory proteins p53 and cyclin-dependent kinase inhibitor p27	60
4.21	Ibuprofen induces cytoplasmic accumulation of pro-apoptotic proteasomal target proteins	60
4.22	Ibuprofen treatment induces apoptosis and causes nuclear morphological changes	61
4.23	Time-dependent assessment of apoptosis by flow cytometry using annexin V-FITC and propidium iodide double staining	62
4.24	Representation of DNA fragmentation following treatment of inbuprofen	63
4.25	Ibuprofen treatment induces cytochrome c release during apoptosis	64
4.26	Higher accumulation of cytochrome c following the treatment of cells with ibuprofen	64
4.27	Ibuprofen treatment leads to mitochondrial depolarization	65
4.28	Analysis of ibuprofen-mediated mitochondrial alterations using JC-1 staining and fluorescence analysis	65