Contents

Abeta	rect.	page i
	Abstract Acknowledgements	
Contents		iii V
	f Figures	vii
	fTables	viii
	f Symbols	xiii
LISCO	fAbbreviations	xv
Chap	oter 1: Introduction	1
1.1	Principle of SMC control	5 5
1.2	Principle of ISM control	5
1.3	Motivation and Research Objectives	7 9
1.4 1.5	Organization of Thesis Publications	9 10
,		10
-	oter 2: Literature Review	11
2.1	Minimum Size of Capacitance Required at the DC-link to Absorb 2ω -Ripple and Consequences	11
	of 2ω – Ripple on System 2.1.1 Minimum Size of Capacitance Required at the DC-link to Absorb 2ω – Ripple	11
	2.1.2 Consequences of 2ω -Ripple on System	
2.2	Single-phase Inverter Topologies and Associates 2ω –Ripple Problem	13 15
2.3	Classification of Ripple Mitigation Methods	16
	2.3.1 Passive power-Decoupling Techniques	16
	2.3.2 Active Power-Decoupling Techniques	18
	2.3.3 Control-Oriented Compensation Techniques (CCTs) for Inverters with Front-end Convert-	
	ers or Control Circuits 2.3.4 Some Other Topologies and Techniques	27 38
2.4	Conclusive Discussion and Open Challenges	30 41
Chap	oter 3: Mitigation of SHC-ripple in Two-Stage DC-DC-AC Converter: An Adaptive-	
	Sliding Mode Control Approach	<u>49</u>
3.1	Concept of the Output Impedance Shaping	50
3.2	Proposed Controller and its Role in the Output Impedance Shaping 3.2.1 Proposed Adaptive Switching Function	51 51
	3.2.2 Control Law	53
	3.2.3 Output Impedance Shaping of Front-End Converter	53
3.3	Stability and Transient Response Analysis	54
	3.3.1 Existence of Sliding Mode	54
	3.3.2 Stability of the Sliding Mode	54
	3.3.3 Transient Response Analysis	56
74	3.3.4 System Robustness Analysis	57 58
3.4 3.5	Simulation Results Experimental Results	62
3.6	Summary	66
	oter 4: Mitigation of SHC-ripple in q-SBI: A Modified Adaptive-SMC Approach	69 71
4.1	Quasi-Switched Boost Inverter and Its Modeling 4.1.1 Development of Average State Space Model	71 72
	4.1.2 Average Dynamic Model	73
	4.1.3 Calculation of the Reference Inductor Current	73
4.2	Output Impedance Shaping	73 73
	4.2.1 Proposed Controller	75
	4.2.2 Control Law	76
	4.2.3 Shaping of $Z_{out_{A-B}}$ using Control Parameter α	76
	4.2.4 Existence of the Sliding Mode	77
	4.2.5 Stability of the Sliding Mode4.2.6 Robustness Analysis	78 70
4.3	Simulation Results	79 81

	4.3.1 Steady-State Operation	81
	4.3.2 Transients Response	82
4.4	Experimental Results	84
4.5	Summary	88
Chap	oter 5: Mitigation of SHC-ripple in the DC-DC-AC Converter: An ISM Based Control Approach	89
5.1	Dynamic Model of the System	90
5.2	Dual-Loop Control for SHC Ripple Minimization	91
	5.2.1 Dual-loop PID Controller Design	91
5.3	Proposed ISM Based Controller	<u>9</u> 3
	5.3.1 Adaptive PID Controller	93
	5.3.2 ISM based Controller (The Overall Control)	94
	5.3.3 Existence of Sliding Mode	94
	5.3.4 Stability 5.3.5 Design Example	95 95
5.4	Simulation Results	95 98
J.4	5.4.1 Analysis on Ripple-Reduction and System Dynamics Using Conventional Control	98
		100
5.5		102
5.6	Summary	105
Char	oter 6: Second-order Ripple in a DC Microgrid	107
6.1		107
6.2		108
		108
		108
		109
6.3		111
	6.3.1 Ripple Injected into DC Bus by Down Stream Inverter loads 6.3.2 Ripple Injected into DC Sources by DC Bus	113 114
6.4		115
6.5		115
0.)	6.5.1 Simulation Results	119
6.6		121
Chapter 7: Discussion and Conclusion		123
Refe	References	