List of Figures

Figure	Title	page
1.1	Background of 2ω –ripple: reflection, propagation and injection	3
1.2	Principle of SMC	5
1.3	Principle of ISM control	6
2.1	(a) Background of 2ω -ripple in single-phase inverter (b) Waveform of AC output voltage and DC-link voltage	12
2.2	(a) For the same voltage rating, a large size E-cap decouples more 2ω -ripple (b) Effect of 2ω -ripple on MPPT operation [Shi <i>et al.</i> , 2016a]	13
2.3	Topologies of single-phase inverter for the renewable energy applications	15
2.4	Topographical Arrangements: (a) PPTs at DC link (b) APTs at DC link (c) APTs at AC side or mixed type APTs (d) ZSI, quasi-SBI or two-stage DC-DC-AC converter with CCT only (e) ZSI, quasi-SBI or two-stage DC-DC-AC converter with active power decoupling circuit at DC side (f) ZSI, quasi-SBI or two-stage DC-DC-AC converter with mixed type active power	
	decoupling circuit	16
2.5	Flow chart of classification of 2ω -ripple mitigation techniques	17
2.6	Passive power decoupling techniques (a) Isolated Voltage source inverter (b) Grid-tied- Voltage source converter (c) Flyback-type center-tapped inverter (d) Inverter with front- end dual-bridge converter with high-frequency DC-link (e) Transformer-less buck and boost inverter topology (f) Pulse-link DC-AC converter (g) two-stage DC-DC-AC converter (having a front-end buck or boost or buck-boost DC-DC converter) (h) Z-source inverter (i) quasi-Z source inverter (i) quasi-switched boost inverter (k) Three-level single-phase	
	impedance source inverter	17
2.7 2.8	Three type of voltage waveform buffered by film capacitor [Zhang <i>et al.</i> , 2017] Active power-decoupling circuits at DC-link: (a) CPS-PAF-Boost type [Kyritsis <i>et al.</i> , 2007] (b) ALFRCD with cascaded capacitor [Cai <i>et al.</i> , 2014] (c) Current control loop of ALFRCD with virtual cascaded capacitor [Cai <i>et al.</i> , 2014] (d) Bidirectional-buck type APT [Wang <i>et al.</i> , 2011] (e) FB-RCR circuit [Christidis <i>et al.</i> , 2016] (f) Ripple-port circuit [Krein <i>et al.</i> , 2012] (g) Dual-voltage control decoupling strategy using a symmetric half-bridge circuit with H-bridge [Huang <i>et al.</i> , 2018; Tang <i>et al.</i> , 2015b] (h) Dependent power decoupling with two-phase legs [Qi <i>et al.</i> , 2014; Serban, 2015; Zhang <i>et al.</i> , 2017] and (i) [Tang <i>et al.</i> , 2015a; Zhang <i>et al.</i> , 2017] (j) Series power decoupling technique with two legs [Wang <i>et al.</i> , 2014a] and three legs [Lyu <i>et al.</i> , 2015, 2016]	19 19 20
2.9	Working principle of (a) CPS-PAF [Christidis et al., 2016; Kyritsis et al., 2007] (b) Ripple- port [Krein et al., 2012]	21
2.10	quasi-ZSI with DC-side (a) boost-type active filter [Singh <i>et al.</i> , 2016] (b) bidirectional buck-boost type active filter [Liu <i>et al.</i> , 2017] (c) battery module [Liang <i>et al.</i> , 2018]	23
2.11	Mixed type of APTs without adding extra power electronics (a) proposed in [Serban, 2015] and adding extra pair of switches (b) proposed in [r. Zhu <i>et al.</i> , 2016] (c) proposed in [Chen <i>et al.</i> , 2015] (d) proposed in [Bhowmick and Umanand, 2018] (e) proposed in [Morsy and Enjeti, 2016] (f) Modified version of CPS-PAF scheme based circuit in Fig. 2.8(a) [Kyritsis <i>et al.</i> , 2007] (g) Hybrid filter [Iver and John 2015]	24
2.12	Mixed type active decoupling circuit for the quasi-ZSI [Ge <i>et al.</i> , 2016b]	25

2.13	Two-stage DC-DC-AC converter (a) Stand-alone without active-filter (b) Grid-tied with- out active-filter (c) Stand-alone with active-filter (d) Grid-connected with active-filter	27
2.14	(a) Feed-forward scheme [Kwon et al., 2009] (b) Independent current & voltage loops[Jung	
	et al., 2011] (c) Dual loop control scheme[Liu and Lai, 2007a]	28
2.15	Effect of the bandwidth of voltage-loop: there is trade-off between ripple-reduction	
	and dynamic performance	29
2.16	Two-port network of DC-DC converter: Hybrid parameters	29
2.17	(a) Bode plot of BPF (b) Bode plot of NF (c) NF-CR control scheme [ZhengWei <i>et al.</i> ,	
	2012] (d) Control scheme based on NF proposed in [Khajehoddin <i>et al.</i> , 2013]	30
2.18	(a)-(b)-(c) A BPF based control scheme proposed in [Zhang <i>et al.,</i> 2014] (d) NF-LCFFS	
	and (e) NF-CR-LCFFS proposed in [Zhu <i>et al.,</i> 2015]. In Fig. 2.18 and Fig. 2.19, <i>V_{in}</i> input	
	voltage, i_L inductor current, i_c capacitor current, i_o inverter input current, v_c DC-link	
	capacitor voltage, R_d equivalent series resistance of inductor, R_c capacitor's ESR, G_{pwm}	
	PWM transfer function, i_{Lr} reference inductor current, Z_o, Z_{o1} output impedances	31
2.19	(a)-(b) VMC-LCFFS proposed in [Shi et al., 2016b] (c) CMC-based control scheme pro-	
	posed in [Bojoi et al., 2010] and (d)-(e)-(f) BPF-CVFS proposed in [Zhang et al., 2015].	33
2.20	Back-current gain based scheme with (a) NF (b) BPF	33
2.21	(a) Double input feedback and (b) third-order general integrator proposed in [Liu et al.,	
	2018] (c) MAF based dual-loop control proposed in [Shi <i>et al.</i> , 2018]	34
2.22	(a) Conventional shoot-through duty based-unipolar SPWM proposed (b) Modified shoot-	
	through duty based-unipolar SPWM proposed in [Zhou <i>et al.</i> , 2016] (c) The low-pass fil-	
	ter based control scheme proposed in [Ge et al., 2016a] (d) control scheme proposed in	
	[Nguyen et al., 2018a]	35
2.23	(a) Non-linear compensator technique proposed in [Ahmad et al., 2012] (b) Adaptive-	
	SMC based ripple-mitigation technique proposed in [Gautam et al., 2018]	36
2.24	(a) Active filter proposed in [Wai and Lin, 2010] (b) Active filter proposed in [Mellincov-	
	sky et al., 2017a, 2018] (c) Control scheme for active filter proposed in [Mellincovsky	
	et al., 2018] (d) Active filter proposed in [Zhang et al., 2018a] (e) DALFRCC [Wai and Lin,	
	2011] (f) integrated H-bridge active filter and (g) auxiliary winding based H-bridge ac-	
	tive filter proposed in [Harb et al., 2013] (h) Common-mode operation based technique	
	for half-active bridge proposed in [i. Itoh and Hayashi, 2010] (i) DC to single-phase AC	
	grid-connected converter[Watanabe and Itoh, 2017]	37
2.25	Some other topologies and ripple mitigation techniques:(a) Buck-type differential in-	
	verter (b) Boost-type differential inverter (c) Buck-Boost-type differential inverters (d)	
	Coupled-inductor based PV inverter (e) Six-switch topology (f) Flying capacitor based	
	topology (g) Modified-boost-derived two-stage converter (h) Cuk converter based five-	
	switch single-phase inverter (i) Flyback type single-phase utility interactive inverter	39
2.26	Algorithm for the selection of suitable $2\omega-$ ripple compensation technique in a broader sense	43
3.1	SHC ripple in (a) single stage DC-AC converter (b) two-stage DC-DC-AC converter	49
3.2	SHC ripple:(a) uncompensated and (b) compensated systems	50
3.3	Circuit of two-stage DC-DC-AC converter	50
3.4	Typical profiles of (a) $lpha$ versus per unit bus output voltage, x_2 (p.u.) and (b) output	
	impedance (per unit), $Z_{out}(p.u.)$ versus $lpha$	52
3.5	Locus of Eigen values with variations in $lpha$	56
3.6	Schematic of the proposed control scheme	58
3.7	Simulation results of Test Case-I for $lpha=0.9, 0.5, 0.001$	59
3.8	(a) Schematic of dual loop control (b) Bode plot	60
3.9	Simulation results for Test Case-II	61
3.10	Experimental setup	62
3.11	Experimental results of Test Case-I using proposed controller	63
3.12	FFT diagram for compensated system: (a) x_1 (b) x_0 and (c) V_{ac}	63

3.13	Experimental results of Test Case-II using proposed controller	64
3.14	Experimental results of Test Case-II for load variation from 0.6 kW to 1 kW and vice-versa	64
3.15	Experimental results of Test Case-III: Variation in input voltage	65
3.16	Experimental results for Test Case-II with Solar PV as source	65
4.1	Real-Time PWM pulses generation scheme as proposed in [Nguyen and Choi, 2018];	
	$T_0 - T_1$ non – shoot – through period ₁ , $T_1 - T_2$ shoot – through period and $T_2 - T_3$ non –	
	shoot – through period ₂	70
4.2	Input current of inverter, x_o (with $100 Hz$ ripple) and AC voltage of inverter, v_{ac} (at 50 Hz)	71
4.3	Circuit diagram of the q-SBI	71
4.4	Modes of operation of q-SBI under modified control method: (a) Inductor stores energy	
	during non-shoot-through-1 $[T_0,T_1]$ or $T_0-T_1=0.5(1-D_{st})T$ (b) Shoot-through $[T_1,T_2]$	
	or $T_1 - T_2 = D_{st}T$ (c) Inductor transfers energy during non-shoot-through-2 [T_2, T_3] or	
	$T_2 - T_3 = 0.5(1 - D_{st})T$ (see Fig. 4.1 for time intervals)	72
4.5	(a) Actual q-SBI circuit and (b) and (c) are equivalent circuits at steady-state	74
4.6	Plots of $Z_{out_{A-B}}(p.u.)$ vs $D_{st_{ss}}$ and k vs $D_{st_{ss}}$	75
4.7	A plot of $lpha$ with respect to per unit bus output voltage, x_2 (p.u.)	75
4.8	Per unit $Z_{out_{A-B}}(p.u.)$ versus $lpha$	77
4.9	Eigen value plot:(a) Variation in $lpha$ and v both (b) variation in $lpha$ only (c) variation in v only	78
4.10	Phase-plane:(a) Region of attraction in red color (b) closer view	79
4.11	The proposed control scheme	81
4.12	Steady-state waveform of x_1 and x_2 with fixed-duty (open-loop)	81
4.13	Impact of the $lpha$ on the SHC ripple: steady-state operation with variations in the value of $lpha$	82
4.14	Plot of σ vs time	82
4.15	Simulation results for 100% to 20% load-transients	83
4.16	Simulation results for 100% to 50% load-transients	83
4.17	(a) Waveform of output AC voltage (v_{ac}) (b) FFT analysis of V_{ac}	84
4.18	Simulation results for line-transients	84
4.19	Experimental setup	85
4.20	Steady-state results: the ripple in the input current x_1 is negligible for $\alpha = 0.001$	85
4.21	Effect of α on the SHC ripple in input current of q-SBI: ripple reduces with decrease in	
	the value of α ; for $\alpha = 0.9$, the ripple in input current is 30% which reduces to < 5% for $\alpha = 0.001$	07
	$\alpha = 0.001$.	86
4.22	Load transients test with 80% load variation change: 80% or load is added to pre-	96
4.22	connected 20% load at $t = 0.23$ and removed at $t = 0.883$	00
4.23	Load transients with 50% load change: 50% of load is removed at $t = 0.52$ s and added	97
4.24	Line transients test: variation in input volatge (E) manually from $125 V - 58 V$ and vice-versa.	87 87
F 4	(a) Circuit of two stage DC DC AC converter (b) oquivalent circuit	00
5.1	(a) Circuit of two-stage DC-DC-AC converter (b) equivalent circuit	90
5.2	Block diagram of (a) current loop gain and (b) voltage loop gain for $G_1(s) = G_2(s) = 1$	91 07
5.5	Bode plot of overall system $T(s)$	92
5•4 5 5	Effect of f or k on the SHC ripple and system dynamics: SHC ripple-reduction and	90
5.5	Effect of f_{ν} of k_{ν} of the ShC hpple and system dynamics. ShC hpple-reduction and dynamic performance have a trade-off	90
F 6	Results with adaptive PID (ontrol alone with (a) nominal size of L_{C} (b) reduced size of L_{C}	100
5.0	Steady-state results of (a) adaptive PID-Controller alone and (b) proposed ISM based	100
5.1	controller in the presence of a $500 H_Z$ sinusoidal disturbance in duty and reduced size of L C	100
5 8	Load transient operation results with proposed ISM based controller	100
5.0	Plot of the switching function, σ	107
ン・フ 5,10	Experimental setup of Boost-derived DC-DC-AC converter for the validation of proposed	104
J.10	ISM based controller	102

	5.11	Steady-state results with nominal size of the L and C : (a) with adaptive-PID controller	100
		alone (b) with ISM based controller	103
	5.12	Steady-state results with reduced size of L and C : (a) with adaptive-PID control alone	
		(b) with ISM based control	103
	5.13	With $500 Hz$ - sinusoidal disturbance in control input: (a) with adaptive-PID controller	
		alone (b) with ISM based controller	104
	5.14	Load transient test: load changes from 100% to 10% at $t = 1 s$ and 10% to 100% at $t = 3.08 s$.	104
1	5.15	Load transient test: load is varied form 100% to 50% at $t = 0.2 s$ and from 50% to 100%	
		at $t = 0.64 s$ again.	104
	5.16	Line transient test: input voltage is varied form 80 V to 150 V at $t = 4 s$ and from 150 V	
		to 80 V at $t = 11 s$ again.	105
	6.1	Two-stage DC-DC-AC boost converter	109
	6.2	(a) canonical form of linear boost converter model (b) equivalent circuit (c) reduced	
		circuit at fixed duty, $ ilde{d}(s)=0$ (d) single port model	110
	6.3	(a) A typical Island DC microgrid (b) linear small signal circuit (c) single port network	112
	6.4	Bode diagram of (6.23)	115
	6.5	Principle of phase-adjustment based ripple control: (a) for $\phi = 0$ (2 ω -ripples add to	
	-	give large 2 ω -ripple at the DC bus) (b) for $\phi = \pi/4$ (c) for $\phi = \pi/3$ (d) for $\phi = \pi/2$ (ripples	
		cancel each other to minimum value)	117
	6.6	Circuit Diagram	118
	67	Effect of phase-shift (ϕ) on 2ω -ripple for unity power factor inverter loads keeping	110
	0.7	Line is phase sime (ψ) on 2ω input for any power factor inverter folds keeping	120
	6 8	$T_{max} = T_{max}$ and $M_1 = M_2$ Effect of phase shift (ϕ) on 2 ϕ , ripple for an inductive load at first inverter and resistive	120
	0.0	Effect of phase-shift (ψ) of 2w-hpple for all inductive load at first inverter and resistive	120
	C -	Induction of the second difference of the sec	120
	6.9	Effect of phase-shift (φ) and change in modulation index on 2ω -ripple	121