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Annotation Localization using a Weakly Supervised Model

for Top-down Visual Saliency

This chapter describes the concept ofDiscriminant Saliency, its principles and its suitability
for handwritten annotation extraction in printed documents. Section 6.1 describes Discriminant
Saliency and its computational models. Section 6.2 gives an overview of the dataset created for the
problem. Section 6.3 describes the features used in ourwork. In Section 6.4, further investigates the
threshold protocols adopted for the given problem. The results are illustrated in the subsequent
Section 6.5 on our dataset and two other standard datasets, namely, IAM and PRIma-NHM. We
also present a comparison of our work with a discriminative classifier in the Section 6.6. Finally,
Section 6.7 concludes the chapter.

6.1 INTRODUCTION
We are quickly able to interpret a scene, even if it is highly cluttered. This happens not

because our perceptual system is powerful enough to quickly process the visual sensory input
from the entire scene, but because there are saliency mechanisms deployed by the neural circuitry
which candetect salient regions, which are the regions carrying higher semantic content that ismost
relevant to scene understanding. These salient regions constitute the relevant subsets of sensory
information and are prioritized for further analysis by the visual cortex. The detection of salient
regionshelps in quickly recognizing the important objects and subsequently interpreting the scene.

Research related to attentional/saliency mechanisms has been carried out in psychology
and neurophysiology. Experiments in psychophysics and neural signal recording have
contributed to the understanding of saliency, however, such knowledge cannot be readily
translated into computational models and principles for optimal saliency computation by
computer vision algorithms. For tasks such as object detection, recognition and tracking, many
computer vision algorithms rely on extraction of interest points, which can be considered as salient
points. The purpose of these interest point detectors is to reduce the computational burden on the
subsequent processing stages, which can focus on detailed processing of information around the
interest points. Such interest point detectors can be tied to visual features of two types:

• Features having better stability against transformation and having mathematically
well-defined properties. For example, such as edges, corners, contours, local symmetry,
blobs, etc.

• Features that depend on generic principles pertaining to image complexity. For example,
variance of Gabor filter responses over multiple orientations, entropy of the distribution of
local intensities, values of wavelet decomposition coefficients, etc.

This translates the question of what constitutes optimally salient (or the optimality criteria for
saliency), into optimal detection of specific visual attributes depicting stability or computing
feature values depicting image complexities. Though these salient point detectors give good
saliency judgements and are useful in many applications, these saliency judgements are not
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influenced by the recognition goal. Therefore, the extracted interest points may not help the object
detection/recognition modules. In other words, the extracted interest points are not optimal from
the point of view of recognition. In fact, itmay happen that there are no interest points on the object
to be detected and therefore such interest pointsmay not offer any advantage over dense sampling
or random sampling. Such saliency computation which is stimulus driven, but not aligned with
recognition goal is called as bottom-up saliency.

Attentional mechanisms which are driven by recognition goals contribute to the top-down
component of saliency. Top-downmechanisms areweak classifiers that extract regions of the scene
that are likely to contain the object to be recognized. Computational models for top-down saliency
need to be efficient so that the candidate regions likely to contain the object of interest can be quickly
extracted. Such salient regions deserve attention or further processing by the brain to establish
presence of the desired object.

Optimal saliency, i.e. what (properties) constitute a salient region, now gets tied to the
recognition problem. [Gao et al., 2009] proposed a model for recognition driven top-down saliency
called as discriminant saliency. Themodel allows the design of computationally fast weak classifiers
which can be trained in a weakly supervised setting. The principle of discriminant saliency
specifies two fundamental tasks:

1. Feature selection: This task involves selecting features that best distinguish the object
class to be recognized from other possible objects in the scene. This definition for the
feature selection task translates into a computational principle of classification with minimal
expected probability of error.

2. Saliency detection: This task involves assigning saliency values to the the extracted feature
components and taking a call on which regions on the image are salient.

6.1.1 Computational principles for top-down saliency
The computational principle for saliency is closely related to some of the previously

proposed principles for the organization of perceptual systems. These principles can be translated
into a computational models for saliency, as follows:

A) Maximization of information transmission across perceptual layers (infomax): This selects
optimal features as the ones which are maximally informative of the presence/absence of
the target class in the field of view.

B) Inference by detection of suspicious coincidences: This selects optimal features as those
whose observation is most suspicious in the absence of the target class. This principle was
contributed by Barlow [Barlow, 1994; Bartlett et al., 2002].

C) Classification with minimal uncertainty: This principle selects features which minimize the
uncertainty about the presence/absence of the target class.

D) Discriminant Saliency: This principle selects features which give the minimum probability
of error. Thus, it specifies a discriminant principle for the design of top-down saliency
computation.

[Gao et al., 2009] asserted that themethods inspired by the first 3 principles can give saliency
measures that are nearly optimal w.r.t. the computational principle of discriminant saliency,
i.e. in the minimum probability of error sense. [Gao et al., 2009] investigated which of these
methods allow a computationally more efficient method and found that the Barlow's principle of
inference by detection of suspicious coincidences gives the most efficientmethod under reasonable
simplifications. By using this method, they developed efficient algorithms for feature selection and
saliency detection.
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The computed saliency value for the interest points helped identify the high saliency value
locations that deserve the focus of attention and the remaining low saliency value locations which
can be pruned out for further processing. Discriminant saliency refers to a decision-theoretic
interpretation of perception. It hypothesizes that perception involves taking a decision regarding
which sensory input from the surrounding environment is salient. Taking optimal decisionswould
correspond to having minimum probability of error. Discriminant saliency refers to making a
decision of classifying the stimuli into two classes: target andnull hypothesis. Saliency refers to the
confidencewithwhich a location in the scene canbe classified as containing the target. The decision
making hypothesis (discriminant saliency) can be applied to top-down as well as bottom-up
forms of attentional mechanisms. For bottom-up saliency detection, the `decision-making' can
be made part of the center-surround image processing. For top-down saliency detection, the
decision-making can be adapted to any specification of target stimuli and null hypothesis. This
translates to learning a one-vs-all classificationmodel, where the object class of interest constitutes
the target stimuli and all the other object classes constitute the stimuli considered as the null
hypothesis.

Vision algorithms translate the visual stimuli into features. Salient features are the features
which can well discriminate the target class from the other object classes (null hypothesis).
Appropriate image attributes are selected depending on the target to be recognized. The saliency
measure corresponds to the confidence of classifying a portion of the scene into the target class.
Salient locations are the ones which compute the highest confidence in classifying the target. It
is worth mentioning that the salient features identified in the previous step will vary in their
confidence while declaring a given location as salient (possibly containing the target). This
variation happens because of the varying recognition context. Features that are effective in
classifying the target in a given context (background) may not remain effective as the recognition
context changes. Instead, another set of features may be able to better discriminate the target from
its changed background.

6.1.2 Optimal feature selection for discriminant saliency
We now review the computational principles that can be used to derive optimality criteria

for feature selection. Given an observation x that lies in the feature space X , the following
problems need to be addressed.

Task 1: How x can be classified as salient or non-salient?
Task 2: What is the confidence value associated with the classification of x ?
Task 3: How to choose the optimal feature space X ?

We now discuss the three computational principles, (i) Bayesian Decision Theory, (ii)
Principle of minimum uncertainty, and (iii) Barlow's principle of suspicious coincidences, for
top-down saliency that guide and specify the mathematical expressions for the 3 tasks.

1. Bayesian Decision Theory: The Bayes classifier models PY |X(i|x) where i ∈ {0,1} denotes
absence of target (i = 0), or presence of target (i = 1).

− Task 1: The decision regarding whether a feature x belongs to the class i = 0 or i = 1 is
based on the outcome g∗(x), which is

g∗(x) = arg max
i

PY |X(i|x) (6.1)

− Task 2: The maximum value of PY |X for a class is taken as the confidence measure for
classification

c∗(x) = max
i

PY |X(i|x) (6.2)
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− Task 3: The optimal choice for X is the one that maximizes the expected confidence on
the classification decisions

C∗ = EX [c∗(x)] = EX max
i

PY |X(i|x) (6.3)

The computed value C∗ is the feature selection cost for the Bayesian decision theory.
Maximizing this expected confidence, is equivalent to minimizing the Bayes error

1−EX max
i

PY |X(i|x)

2. Principle of Minimum Uncertainty:

− Task 1: The decision rule gives the outcome g (x) defined as follows

g (x) = arg max
i

logPY |X(i|x) (6.4)

− Task 2: The confidence value c (x) in declaring a feature x as salient is obtained by
relaxing the decision rule to the mean (i.e. taking an expectation)

c (x) =∑
i

PY |X(i|x) logPY |X(i|x) (6.5)

The right hand side expression can be recognized as the negative of entropy, giving

c (x) =−H(Y |X = x) (6.6)

− Task 3: The optimal choice for X is the one that minimizes the expected confidence
EX [H(Y |X = x)] = −H(Y |X) which corresponds to the minimization of the uncertainty
of the classification decision. The feature selection cost is, therefore, −H(Y |X)

We see that the decision rule g (x) is equivalent to g∗(x) and the confidence measure c (x)
can be seen as the relaxation to the mean of the decision rule, i.e., mean of logPY |X(i|x), or
EX logPY |X(i|x) .

3. Barlow's principle of suspicious coincidences

− Task 1: The decision rule proposed for this principle yields the outcome

g (x) = arg max
i

log
PX,Y (i,x)

PY (i)PX(x)
(6.7)

− Task 2: Relaxation of the decision rule to the mean gives the confidence measure c (x)
for classification

c (x) =∑
i

PY |X(i|x) log
PX,Y (i,x)

PY (i)PX(x)
(6.8)

A simplification of the right hand side expression in terms of mutual information yields
c (x) = I(Y ;X = x)

− Task 3: Taking expectation of the confidence measure c (x) gives

∑
i

PY |X(i|x) log
PX,Y (i,x)

PY (i)PX(x)
dx (6.9)

which is the familiar expression for I(X;Y )

I(X;Y ) =∑
i

PY |X(i|x) log
PX,Y (i|x)

PY (i)PX(x)
dx (6.10)

The optimal choice for X is the one that minimizes the expected confidence, i.e. I(Y ;X).
Thus, the feature selection cost for this principle is I(Y ;X).
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Notice that the mutual information I(Y ;X) between the class labelY and the feature vector X
can be also written as

I(Y ;X) = H(Y )−H(Y |X) (6.11)

We see that maximizing I(X;Y ) with respect to X is equivalent to maximizing −H(Y |X).
Therefore, this computational principle gives a feature selection cost that is the same as
the one given by the principle of minimum uncertainty even though the decision rules are
different. This happens because a relaxation to the mean is applied to the Barlow's decision
rule. This criterion for feature selection is referred to as the Infomax criterion.

Out of the given feature selection criteria, we need to adopt the one which is
computationally least expensive.

It is seen that certain simplifications applied to the infomax feature selection criterion
result in a formulation that is computationally parsimonious. Rewriting the feature vector X more
explicitly in terms of its k feature components

X1:k = {X1,X2, ....,Xk},

the selection criterion of Infomax can be rewritten as:

I(Y ;X) =∑
k

I(Y ;Xk)+∑
k
[I(Xk;X1,k−1|Y )− I(Xk;X1,k−1)] (6.12)

Research has shown [Gao et al., 2008] that some statistical properties of band pass filters, such
as wavelet coefficients, extracted from natural images exhibit strongly consistent patterns of
dependency across awide range of natural image classes. However, such dependencies carry little
information about the image class. This implies that the mutual information between features Xk
and X1:k−1 given the knowledge of Y (i.e. I(Xk;X1,k−1|Y )) and the same same mutual information
without the knowledge of Y (i.e. I(Xk;X1,k−1)) are almost similar. Thus the second term of Eq. 6.12,
which signifies the discriminant information is much smaller and can be ignored, thus yielding

I(X;Y )≈ ∑
k

I(Y ;Xk) (6.13)

Reverse analysis reveals that this approximated feature selection cost corresponds to the
expectation of a new confidence measure c (x) given as

c (x) =∑
k

I(Y |Xk = xk) (6.14)

Further reverse analysis shows that the confidence measure c (x) corresponds to relaxation to the
mean of the following decision rules:

gk (x) = argmax
i

log
PY,Xk(i,x)

PXk(x)PY (i)
, k ∈ {1, ...,K} (6.15)

Each feature channel Xk gives its individual decision rule using gk(x). The decision rule
applied to the individual channels is considered as the marginal decision rule. Maximizing the
approximated feature selection criterion I(X;Y ) ≈ ∑k I(Y ;Xk) is easier because each term being a
mutual information is positive. Therefore we can select k features having the highest values of
I(Xk;Y ). Computing Y (Y ;X = x) using Eq.6.8 is simple for bandpass filters extracted from natural
images.

This kind of computationally parsimonious feature selection is applicable for only the
Barlow's principle. If a similar simplification is applied to the Bayes rule for feature selection,
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then the approximation would be poor. For example, the feature selection cost for the minimum
uncertainty principle cannot be well approximated as H(Y |X)≈ ∑k H(Y |Xk) and therefore does not
allow marginal Bayes decision rules such as

g∗k(x) = argmax
i

logPY |Xk(i|x), k ∈ {1, ....,K} (6.16)

Therefore, it can be concluded that the principle of suspicious coincidences yields
computationally parsimonious feature selection cost and marginal decision rules. An interesting
observation is that these marginal decision rules are more consistent with the psychophysics of
human saliency, since humans find it easier to distinguish between target and background along
a single feature, but not along conjunction of features, such as color and orientation. The holistic
confidence measure (Eq.6.14) is the sum of the marginal confidence measures for the features.

6.1.2.1 Implementation of discriminant saliency
Deploying the discriminant saliency model requires addressing first the task of choosing

the optimal features (Task 3), formulating a saliency measure for a feature (Task 2), and finally
taking a decision on whether a feature is salient or not (Task 1).

Task 3: How to choose the optimal feature space X ? (feature selection task)

Salient features are the ones which pass the following test:

Sk = {xk | H(Xk|Y = 1)> H(Xk|Y = 0)} (6.17)

This follows from the observation that discriminant saliency selects features which are
present in the class of interest (Y = 1) and mostly absent in the null hypothesis(Y = 0). This
translates into a distribution of features which is narrower and centered around 0 if the
feature is absent from the null hypothesis (Y = 0), and leads to a broader distribution if the
feature is present in the target class (Y = 1). A broader distribution contributes a higher value
of entropy than a narrower distribution and therefore H(Xk|Y = 1) is larger than H(Xk|Y = 0)
for the salient features. Eq.6.17 can be written as

Sk = xk
PY,Xk(1,xk)

PY (1),PXk(xk)
>

PY,Xk(0,xk)

PY (0)PXk(xk)
(6.18)

which can be simplified as

Sk = x PXk|Y (x|1)> PXk|Y (x|0) (6.19)

Algorithmically, this task requires as input a set of images T1 that belong to the target class,
a set of images T0 that belong to the null hypothesis, and a set of N features Xk,k ∈ {1, ....,N}.
The target number of features to be selected is given as K. Selection is based on the value
computed for I(Xk,Y ) for certain features Xk, as follows:

1. For each feature, compute PXk|Y (xk|i) and PXk(xk)
2. Features which pass the test given by Eq.6.17 or 6.19 are retained and others are

discarded.
3. For the retained features, compute I(Xk,Y )
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4. The K features that give the largest values for I(Xk,Y ) are selected.

Task 2: What is the confidence value associated with the classification of x ? (Saliency computation
task)

The saliency value for the kth feature x is computed as:

Sk(xk) =
I(Y |Xk = xk), if xk ∈ Sk
0, otherwise (6.20)

The overall saliency measure SD(x) is the sum of the saliency measure over all the feature
channels.

SD(x) =
K

∑
k=1

Sk(xk) (6.21)

From the marginal decision rules given in Eq.6.15, the saliency measure for the individual
features xk can be interpreted as the (log) degree of suspicion

Sk(xk) = log
PY,Xk(i,xk)

PY (i)PXk(xk)
(6.22)

where f (x) = ∑i PY |X(i|x) f (x)

Consider a set of interest points I1, ....IM extracted from a test imageI . The task of computing
the saliency values for the interest points involves computing SD(xm)where xm is the feature
extracted for each location Im. Algorithmically, this involves evaluating the selected features
Xk at the given locations as per the following steps:

1. Given the feature value xkm of feature component Xk computed at location Im, compute
PXk|Y (xkm|i) for i ∈ {0,1}.

2. Compute Sk(xkm) using Eq.6.20

Task 1: How x can be classified as salient or non-salient? (Declaring salient regions)

Instead of making a hard classification for the mth region/interest point characterized by
feature xm as salient or non-salient, we can simply order the regions/interest points by
decreasing discriminant saliency values SD(xm). Otherwise a suitable threshold value can
be adopted to classify regions as salient or non-salient.

6.1.2.2 Estimating themodels
An implementation for Task 3 requires constructing models for PXk|Y (xk|i), PXk(xk) and

I(Xk,Y ), and also a way to do the condition check H(Xk|Y = 1) > H(Xk|Y = 0). An implementation
of Task 2 requires constructing models for I(Y |Xk = xk).

1. Computing PXk|Y (xk|i), PXk(xk)

We make an assumption that the extracted features Xk have a probability distribution that
can be well approximated by a Generalized Gaussian Distribution (GGD). A GGD can be
defined using two parameters and as follows:

PX(x; , ) =
2 Γ(1/ )

exp − |x|
(6.23)
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where the Gamma function Γ(z) = ∞
0 e−t tz−1dt, t > 0. More specifically, the parameter

governs the scale of the function and governs the shape (rate of decay from the peak value)
of the distribution. Setting = 1 gives the the Laplacian subfamily of GGD and setting = 2
gives the Gaussian subfamily. The parameters and can be estimated usingmethods such
as the method of [Sharifi and Leon-Garcia, 1995], maximum likelihood [Do and Vetterli,
2002], and minimummean square error [Huang and Mumford, 1999]. Following [Gao et al.,
2009] we adopt themethod ofmoments that exploits the relations of , with two quantities:
variance and kurtosis of the distribution of X .

2 =

2Γ( 3 )

Γ( 1 )
and =

Γ( 1 )Γ( 5 )

Γ2( 3 )
(6.24)

The quantities and are estimated from image data, as follows:

2 = EX (X −EX [X ])2 and =
EX (X −EX [X ])4

4 (6.25)

2. Computing I(Xk,Y )

I(X;Y ) =∑
i

PY (i) KL PX|Y (x|i)||PX(x)) (6.26)

yielding,

I(Xk;Y ) =∑
i

PY (i) KL PXk|Y (xk|i)||PX(xk)) (6.27)

where KL[p||q] = p(x) log p(x)
q(x)dx is the Kullback-Leibler (KL) divergence between the

distributions p(x) and q(x)

The KL divergence between two GGD distributions PX(x; 1, 1) and PX(x; 2, 2) can be
written as:

KL [PX(x; 1, 1)||PX(x; 2, 2)] = log 1 2Γ(1/ 2)

2 1Γ(1/ 1)
+

1

2

2 Γ(( 2 +1)/ 1)

Γ(1/ 1)
− 1

1

(6.28)

3. Computing I(Y |Xk = xk)

The closed form expression for I(Y |Xk = xk) is given as

I(Y ;Xk = xk) = s [g(xk)] log
s [g(xk)]

PY (1)
+ s [−g(xk)] log

s [−g(xk)]

PY (0)
(6.29)

where s(x) = (1+ e−x)−1 is a sigmoid function, and

g(xk) =
|xk|

0

0

− |xk|
1

1

+ log 0 1PY (1)Γ(1/ 0)

1 0PY (0)Γ(1/ 1)
(6.30)
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4. Evaluating H(Xk|Y = 1)> H(Xk|Y = 0)

Using the closed form expression for H(Xk|Y = i), which is

H(Xk|Y = i) =
1

i
+ log

2 iΓ 1
i

i
, (6.31)

we can simplify the condition check H(Xk|Y = 1)> H(Xk|Y = 0) as

log 1

0
>

1

0
− 1

1
+ log

Γ 1
0 1

Γ 1
1 0

(6.32)

6.2 DATASET
To evaluate the method of Discriminant Saliency (DS) for annotation localization we use

the same dataset of images as mentioned in the previous chapter 5 in Section 5.3.

6.3 FEATURE EXTRACTION
We use the same feature set as mentioned in the previous chapter 5 in Section 5.4.

6.4 SALIENCY THRESHOLD DETAILS
In order to generalize the detection system for a variety of documents we compute the

threshold according to the statistics of the input image as:

ThresholdSaliency = Thresholdscalar ×mean(Sk)

This Thresholdscalar is dependent on the number of annotations present in the document. It
is usually varied from 1 ≤ Thresholdscalar ≥ 5. For pages with lesser number annotations the
Thresholdscalar must be high.

6.5 EXPERIMENTS AND RESULTS
We have defined four sets of training and testing experiments:

Set 1: The objective of this set of experiments is to localize all annotations. In this setting, the
model is trained with the images comprising all the annotations.

Set 2: The objective of this set of experiments is to localize the individual annotations in a
multi-annotated document. In this setting, themodel is trainedwith the images comprising
only individual annotations.

Set 3: The objective of this set of experiments is to localize textual annotations in a test document
consisting symbolic annotations. In this setting, the model is trained with the images
comprising only textual annotations with printed text as background.

Set 4: The objective of this set of experiments is to localize individual annotations in a test
document not consisting other types of annotations. In this setting, the model is trained
with the images comprising only individual annotations.
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6.5.1 Accuracy metrics for performance evaluation
In order to evaluate the DSmodel for annotation localization we use the same performance

measures as described in the previous chapter 5 in Section 5.6.1.

6.5.2 All Annotation vs Printed Text
To localize all annotations together in a document, discriminant saliency method produces

a recall of 0.58 for annotations and0.82 precision for printed text. Table 6.1 and Figure 6.1 elaborates
the results.

Table 6.1 : Set 1: Annotation localization when the dictionary is trained on images comprising all
annotations and the testing is performed on similar images.

Annotation
Category

Threshold
Scalar Accuracy Recall Precision F1 Score Execution

Time (sec)
All (Fig. 6.1) 2.5 80.23% .58 .82 .68 26.86

(a) Highlighted all Categories of Annotations
Regions as Salient Objects

(b) Original Image

Figure 6.1 : Set 1: All kinds of Annotation Localization in Documents using DS.

6.5.3 Category-wise Annotation vs Printed Text
To localize specific annotations in a multi-annotated document each discriminant saliency

model is trained with the images comprising only individual annotations. For underlined
annotations, ourmodel achieves a recall of 0.81 and precision of 0.47. Formarginal text annotations,
it produces 0.79 and 0.70 as recall and precision rates. In a similar manner, for encircled
annotations, our model produces the recall and precision as 0.84 and 0.63 respectively, while for
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inline annotations, recall of 0.18 andprecision of 0.16 is produces. Table 6.2 illustrates the results for
localizing individual annotations in a multi-annotated document. In the third set of experiments,

Table 6.2 : Set 2: Annotation localization when the dictionary is trained on individual annotations and
the testing is performed on the images containing all the annotations.

Annotation
Category

Threshold
Scalar Accuracy Recall Precision F1

Score
Execution
Time (sec)

Underline
(Fig. 6.2) 5 94.02% .81 .47 .60 17.05
Marginal Text
(Fig. 6.3) 5 95.04% .7920 .7045 .7456 8.87
Encircled
(Fig. 6.4) 5 95.81% .84 .63 .72 17.11
Inline
(Fig. 6.5) 6 82.03% .18 .16 .17 8.61

(a) Highlighted Underlined Regions as Salient
Objects

(b) Original Image

Figure 6.2 : Set 2: Underlined Region Localization in Multi-annotated Images using DS

we localized textual and symbolic annotations separately in a multi-annotated document. In this
setting, the model is trained with the images comprising only individual annotations. For such set
of experiments discriminant saliency shows impressive results and produces a recall and precision
of 0.57 and 0.78 to locate textual annotations. It also produces a recall of 0.71 and precision 0.83
of to locate symbolic annotations on a multi-annotated document. Table 6.3 depicts the results for
localizing only textual and symbolic annotations in a test document.

In the fourth set, specific annotations in a single-class annotated document are localized.
For underlined annotations, discriminant saliency achieves a recall of 0.68 and precision of 0.94
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(a) Highlighted Marginal Annotated Textual
Regions as Salient Objects

(b) Original Image

Figure 6.3 : Set 2: Marginal Annotation Region Localization in Multi-annotated Images using DS.

for annotations and printed text respectively. For marginal text annotations, it produces 0.91 and
0.87 as recall and precision rates. In a similar manner, for encircled annotations, a recall of .87 and
precision of .70 is obtained for annotations and printed text. For inline annotations, our model
obtains a recall of 0.49 and precision of 0.52 for annotations and printed text. Table 6.4 presents the
results for localizing individual annotations in a single-class annotated test document.

6.5.4 Results on Standard Datasets
It must be noted that there is a non-availability of a multi-annotated dataset. Therefore,

likewise as stated in previous Chapter 5 in Section 5.6.4 we apply the DS method on IAM and
PRImA-NHM datasets.

Our method shows impressive results on IAM dataset with a recall of .98 for handwritten
text and a precision of .99 for the printed text. Similarly, we achieve a recall of .77 for handwritten
text and precision of .66 for printed text in PRImA-NHM dataset. Table 6.5 presents the result for
both the dataset using weakly supervised visual saliency. Figures 6.12 and 6.13 pictorially presents
the results of DS learning for IAM dataset and PRImA-NHM dataset.

6.6 COMPARISONWITH SVM
Table 6.6 and 6.7 along with Figure 5.17 presents the effect of applying SVM on image

patches. We applied RBF kernel and used two-class SVM. From the results it is clear that SVM is
unable to capture the difference among the closed overlapping feature space among the printed
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(a) Highlighted Encircled Regions as Salient
Objects

(b) Original Image

Figure 6.4 : Set 2: Encircled Region Localization in Multi-annotated Images using DS

text and annotations. The most probable reason could be the presence of variety of annotations in
a document rather than only text.

6.7 CONCLUSION
Discriminant saliency has been demonstrated to identify specific annotations in a

multi-oriented cluttered document. Our experimental results corroborate that discriminant
saliency produces better results in comparison to a discriminative classifier such as SVM. It
shows comparable results with the CRF based supervised saliency model. It is observed that the
overall recall produced for all the experiments is high for supervised saliency model mentioned in
previous Chapter 5. Ourweakly supervised learnedmodel for annotation extraction performswell
fordensely annotated documents. While dealingwith unconstrained handwriting environment for
annotations, in the subsequent chapter 7wepropose amethod to detect baseline for unconstrained
handwritten word. This allows to separate the core zone from the ascenders and descenders and
therefore leads to effective extraction of features for preprocessing and writer identification.

…
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(a) Highlighted Inline Annotation Regions as
Salient Objects

(b) Original Image

Figure 6.5 : Set 2: Inline Annotation Region Localization inmulti-annotated Images using DS

Table 6.3 : Set 3: Annotation localization when the dictionary is trained on images comprising only
textual annotations and the testing is performed on similar images, and vice versa.

Annotation
Category

Threshold
Scalar Accuracy Recall Precision F1 Score Execution

Time (sec)
Textual
(Fig. 6.6) 4 88.30% .57 .78 .66 20.25
Symbolic
(Fig. 6.7) 5 92.89% .71 .83 .77 17.54

Table 6.4 : Set 4 : Annotation localization when the dictionary is trained on individual annotations and
the testing is performed on the images containing individual annotations.

Annotation
Category

Threshold
Scalar Accuracy Recall Precision F1

Score}
Execution
Time (sec)

Underline
(Fig. 6.8) 2.5 92.39% .68 .93 .79 18.02
Marginal Text
(Fig. 6.9) 5 94.03% .91 .87 .89 15.61
Encircled
(Fig. 6.10) 6 92.12% .87 .70 .77 20.56
Inline
(Fig. 6.11) 6 80.13% .49 .52 .51 8.61
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(a) Highlighted Textual Regions as Salient Objects (b) Original Image

Figure 6.6 : Set 3: Textual Region Localization in Documents comprising both Textual and Symbolic
Annotations using DS

Table 6.5 : Annotation localization on IAMandPRImAdatasetbyDS textual annotation detectionmodel

Dataset Testset Accuracy Precision Recall F1-score Execution
Time (sec)

IAM
Dataset

100 images 98.73% .99 .98 .98 .20

PRImA
NHM
Dataset

100 images 75.95% .66 .77 .71 .23

Table 6.6 : Comparison of SVMwith DS on multi-annotated documents.

Annotation
Category

All
Annotations Underline Marginal

Text Encircled Inline
DS SVM DS SVM DS SVM DS SVM DS SVM

Accuracy (%) 80.23 44.09 94.02 89.09 95.04 55.89 95.81 87.17 82.03 49.19
Precision .82 .50 .47 .23 .70 .21 .63 .46 .16 .42
Recall .58 .41 .81 .36 .79 .13 .84 .06 .18 .06
F1
Score .68 .45 .59 .28 .75 .16 .72 .11 .17 .10
Execution
Time (sec) 26.86 14.49 17.05 8.17 8.87 .41 17.11 17.15 8.61 18.49
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(a) Highlighted Symbolic Annotated Regions as
Salient Objects

(b) Original Image

Figure 6.7 : Set 3: Symbolic Region Localization in Documents comprising both Textual and Symbolic
Annotations using DS

Table 6.7 : Comparison of SVM with DS on single-class annotated documents.

Annotation
Category

Underline Marginal
Text Encircled Inline

DS SVM DS SVM DS SVM DS SVM
Accuracy (%) 92.39 84.97 94.03 80.59 92.12 84.19 80.13 74.09
Precision .94 .91 .87 .96 .70 .92 .52 .82
Recall .68 .30 .91 .04 .87 .01 .49 .01
F1
Score .79 .45 .89 .08 .77 .01 .51 .02
Execution
Time (sec) 18.02 18.35 15.61 24 20.56 21.49 8.61 19.23
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(a) Set 3: Highlighted Underlined Regions as
Salient Objects

(b) Original Image

Figure 6.8 : Set 4: Underlined region localization in single-class annotated images using DS
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(a) Highlighted Marginal Text Regions as Salient
Objects

(b) Original Image

Figure 6.9 : Set 4: Marginal annotations localization in single-class annotated images using DS
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(a) Highlighted Encircled Regions as Salient
Objects

(b) Original Image

Figure 6.10 : Set 4: Encircled annotation localization in single-class annotated images using DS
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(a) Highlighted Inline Annotated Regions as Salient
Objects

(b) Original Image

Figure 6.11 : Set 4: Inline annotation localization in single-class annotated images using DS
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(a) Highlighted Textual Annotated Regions as
Salient Objects

(b) Original Image

Figure 6.12 : Textual region localization in IAM images using DS.

(a) Highlighted Textual Annotated Regions as
Salient Objects

(b) Original Image

Figure 6.13 : Textual region localization in PRImA images using DS.
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