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4 
Expression analysis of NLR gene family members in gliomas 

for identification of novel therapeutic interventions  
 

 
 
4.1 ABSTRACT  
 Inflammation is an important hallmark of cancer. Chronic dysregulated inflammation 
may lead to DNA damage, mutations and epigenetic changes such as those seen in cancer. 
Gliomas are the most prevalent primary brain tumors with immense clinical heterogeneity and 
rapid invasion, making them refractory to treatment and, leading to poor prognosis and low 
survival [Louis, 2006; Furnari, Fenton et al., 2007]. Understanding the role of causative genes 
that drive glioma growth and progression is essential for targeted therapeutics and prolonged 
survival of patients. Infiltrating immune cells form a major component of the tumor 
microenvironment [Charles, Holland et al., 2012; Fathima Hurmath, Ramaswamy et al., 2014]. 
NLRs and AIM2 are crucial for initiation, progression and promotion of several 
cancers[Janowski, Kolb et al., 2013]; however, there are no reports linking NLRs and AIM2 to 
glioma pathology.  Our aim was to investigate the regulation of NLR and AIM2 gene expression 
in glioma pathology (figure 4.1). First, we used a data-driven approach to identify NLRs and 
NLR-associated gene expression and methylation patterns in different grades of glioma, 
namely, high grade glioma: glioblastoma (GBM) and low grade gliomas (LGG). Strong inverse 
correlation for expression and methylation levels signifies the effective control of methylated 
CpG loci over gene expression in glioblastoma. The association of differentially expressed genes 
with patient survival highlights their prognostic significance in high and low grade gliomas. 
Genes including Msr1, Nlrc4, Nlrp6, Casp1 and Nod1 showed high significance with patient 
survival in low grade gliomas. Next, utilizing glioma and microglia cell lines we confirmed the 
role of the candidate prognostic protein NLRP12 in cell proliferation and colony formation. Our 
findings provide novel insights into differential regulation of NLRs and NLR-associated genes 
in LGG and GBM, and clinical importance of innate immune signaling pathways in glioma 
pathogenesis. 
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4.2 INTRODUCTION
Gliomas are highly invasive and heterogeneous group of primary brain tumors with 

dismal prognosis of less than 15 months. Glioma accounts for 80% of primary malignant brain 
tumors[Schwartzbaum, Fisher et al., 2006]. Depending on the degree of malignancy, gliomas 
have been classified into low and high grade glioma[Louis, Perry et al., 2016]. LGG specifically 
represents 40% of all central nervous system (CNS) tumors in children[Sievert and Fisher, 
2009]. While majority of high grade glioma occur de novo, it is common for approximately 70% 
of the well differentiated low grade glioma to progress into more aggressive form of glioma, 
GBM [Furnari, Fenton et al., 2007]. As the name suggests, GBM is multiforme in every aspect; 
grossly (increased necrosis), microscopically (pleomorphic nuclei, microvascular proliferation) 
and genetically (gene deletion, mutation), with a median survival of less than 15 months [James 
and Olson, 1996; Stupp, Mason et al., 2005]. GBM is rapidly lethal and forms 12 15% of all brain 
tumors and 50 60% of astrocytomas [Iacob and Dinca, 2009]. In spite of several multimodal 
treatment approaches (radiation, surgery and chemotherapy) and current therapeutic advances, 
glioma prognosis remains poor with high mortality rate [Stupp, Mason et al., 2005]. Recent 
advances including cancer immunotherapy provide major treatment breakthroughs for a 
number of cancers [Mahoney, Rennert et al., 2015; Gotwals, Cameron et al., 2017] [Huang, Liu et 
al., 2017]. Glioma cells are heavily infiltrated by the circulating innate immune cells, including 
majority of microglia and macrophages [Carvalho da Fonseca and Badie, 2013]. The cellular and 
molecular interactions between innate immune cells and glioma tissue, contributes to the highly 

Figure 4.1: Schematic flow diagram of multidimensional investigation exploring the role of specialized 
nucleotide-binding domain and leucine rich-repeat containing receptors (NLRs) in glioma pathology.  
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enriched microenvironment facilitating tumor growth and progression [Rivest, 2009; Yeh, Lu et 
al., 2012]. Both immune and glioma cells communicate with each other by release of signaling 
molecules in order to promote tumor develoment [Hussain, Yang et al., 2006].  
  
 Nucleotide-binding domain, leucine-rich repeat containing (NLR) proteins are 
cytoplasmic innate immune sensors; providing protection against foreign attacks, cellular 
damage and environmental stress [Ting, Lovering et al., 2008]. NLRs sense several PAMPs and 
DAMPs such as nucleic acids, flagellin and glucose, extracellular ATP, UV radiation and other 
irritants [Davis, Wen et al.]. Hoffman et al. first identified association of a NLR family member, 
NLRP3 dysfunction with a class of cryopyrin-associated periodic syndromes (CAPS) [Hoffman, 
Mueller et al., 2001; Hoffman, Gregory et al., 2003]. Today, dysregulation in NLR genes is 
associated with a wide array of diseases including major pathogen-induced infections, diabetes, 
cardiac and metabolic disorders, autoimmune diseases and cancers [Davis, Wen et al., 2011; 
Freeman and Ting, 2016; Gharagozloo, Gris et al., 2017]. Recent investigations define contrasting 
and cell-specific regulatory roles of NLRs, NLRP3 and NLRC4 in colorectal cancer both in vitro 
and in vivo [Allen, TeKippe et al., 2010; Hu, Elinav et al.; Zaki, Boyd et al.]. Other NLRs, such as 
NLRP6 and NLRP12 serves as negative regulators of canonical NF- and MAPK-dependent 
inflammatory signaling for protection against colorectal cancer [Elinav, Strowig et al.; Allen, 
Wilson et al., 2012; Chen]. NLRC3, a newly characterized NLR family member acts as a negative 
regulator for TLR-mediated signaling via modifications in adaptor, TRAF6 and transcription 
factor, NF- B [Schneider, Zimmermann et al., 2012; Gültekin, Eren et al., 2014]. In addition, 
NLRC3 specifically mediates PI3K-mTOR inhibition to combat colon cancer [Karki, Man et al., 
2016]. In silico studies have further demonstrated the promising role of NLRs in colorectal 
cancer using The Cancer Genome Atlas (TCGA) and other pan-cancer data platforms [Liu, 
Truax et al., 2015]. An alarming increase in cancer incidence, clinical heterogeneity, largely 
affected young population and high patient loss present urgent need for effective glioma 
therapeutics.  
 
 Despite 
of NLRs underlying the development and progression of gliomas remains largely unknown 
[Janowski, Kolb et al., 2013]. The lack of knowledge regarding the innate immune mechanisms 
associated with glioma pathology spurred this study. Understanding the cellular and molecular 
basis of transition of well differentiated, low grade glioma towards high grade glioma is critical 
for identification, and development of novel therapeutic targets. Keeping this in mind, the 
current investigation is focused on providing basic insights into NLR and NLR-associated gene 
regulation in low and high grade glioma pathogenesis, using The Cancer Genome Atlas (TCGA) 
pan-cancer datasets. TCGA datasets fulfill the importance of a systematic approach, high 
sample numbers and genome alterations profiling. TCGA database comprises of large 
comprehensive molecular profiles and clinical outcome information coming from multiple 
sources and platforms [Cerami, Gao et al., 2012;  et al., 2015]. Our study 
analyzes TCGA- LGG and GBM patient datasets to understand expression and methylation 
patterns of NLR and NLR-associated genes in glioma pathogenesis. Our findings demonstrate 
significant differential expression and methylation of NLRs in GBM as compared to the LGG. 
Further, in silico and in vitro analysis highlights progonostic importance of NLRs, as we 
observed significant association between NLR gene expression and glioma patient survival. 
 
 
4.3 MATERIALS AND METHODS 
 
4.3.1 Data extraction and sample selection  
 The glioblastoma (GBM) and low grade glioma (LGG) patient samples were selected 
from TCGA using the cBioPortal platform [Cerami, Gao et al., 2012] [Gao, Aksoy et al., 2013]. 
The mRNA (RNA seq V2 RSEM) and gene expression (TCGA, provisional) data was extracted 
and analyzed to obtain gene networks and heat maps. TCGA expression and methylation 
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experimental profiles were downloaded using the UCSC cancer browser [Fujita, Rhead et al., 
2010]. TCGA DNA methylation data, is generated using the Illumina Infinium Human 
Methylation- 450 platform and the RNAseq gene expression data (pancan normalized), is 
acquired by the IlluminaHiSeq. 
  
4.3.2 Gene expression network analysis 
                Gene mRNA expression z-scores (RNA Seq V2 RSEM) profiling was used with z-score 

alterations. The genetic alterations include mutations, copy number alterations and mRNA 
expression. The networks were simplified using Cytoscape, a network generating tool 
[Shannon, Markiel et al., 2003]. The heat maps were constructed using the complete linkage 
clustering method and heatmap.2 function of R platform. The gene ontology and enrichment 
analysis was performed using ClueGO, a Cytoscape application [Bindea, Mlecnik et al., 2009].  
 
4.3.3 Expression and methylation analysis 
                Gene expression and methylation data profiling was performed using R version 3.3.2. 
The differentially expressed genes and methylated CpG loci regions were identified using 
limma and minfi, R packages [Smyth, 2005; Aryee, Jaffe et al., 2014]. Kaplan-Meier survival 
analysis was used to estimate the survival distributions in the gene expression dataset of TCGA 
glioma patients. The survival curves were generated to visualize the association between the 
expression of gene of interest and patient survival.  
 
4.3.4 Cell Culture 
 A172 and LN-18, human glioblastoma cell lines were obtained from ATCC (ATCC® 

, CRL-2610 . RAW264.7 (murine macrophages), C6 (rat glioma), CHO (Chinese 
hamster ovary), A549 (human lung alveolar epithelial cells) and HEK293T (Human embryonic 
kidney fibroblasts) cells were purchased from cell culture repository of National Centre of Cell 
Science (NCCS), Pune, Maharashtra, India. N9 and BV-2, immortalized murine microglial cells 
were a kind gift from Dr. Anirban Basu, National Brain Research Centre, Gurgaon, Delhi, India. 
Cells were grown on 
10% Fetal bovine serum (Himedia, RM10432) and 1% antibiotic antimycotic solution (Sigma-
Aldrich, A5955). Cell lines were cultured as per company instructions in humidified CO2 
incubators.  
 
4.3.5 Bradford assay for protein estimation 
 For protein extraction, 0.25×106 cells were lysed using 0.25 ml RIPA buffer, in the 
presence of protease inhibitor (S8820 Sigma) and incubated for 5 minutes at room temperature 
followed by centrifugation at 13,000 rpm for 20 minutes, as described previously [Mariathasan, 
Newton et al., 2004]. The supernatants were used for further analyses. Protein concentrations 
were determined using a coomassie (Bradford) protein assay kit and Nanodrop 
Spectrophotometer by taking absorbance measured at 595nm. 
 
4.3.6 Fluorescence Microscopy 
 For immunofluorescence, we seeded 5x104 cells per well of a 2-well chamber slide and 
incubated overnight. To simulate inflammation, cells were pre-stimulated with LPS 
Sigma, L4391) for 12 hours. The cell culture media was discarded from the wells and cells were 
washed thrice with 1X PBS (Molecular biology grade, Himedia) for 3 minutes each. Cells were 
fixed with 4% PFA (MB Grade, Himedia) for 10 minutes and washed thrice with 1X PBS for 3 
min each. The fixed cells were permeabilized with 0.1% TritionX-100 (Molecular biology grade, 
Sigma) in 1X PBS for 15 minutes. To avoid non-specific binding, blocking was performed with 
5% Fetal Boveine Serum (Sterile filtered, Himedia) in 0.1% TritonX-100-PBS for 1 hour at 40C. 
Cells were immunolabeled by primary antibody incubation for overnight at 40C. The primary 
antibodies were used in following dilutions  anti-ASC (1:250), anti-AIM2 (1:200), anti-CASP1 
(1:100) and anti-NLRP12 (1:300). Cells were washed 5 times with 1X PBS for 5 minutes each. 
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Followed by, secondary antibody incubation for 1 hour at room temperature (in dark).  Next, 
cells were washed 5 times for 5 minutes each with 1X PBS. Nuclei were stained with 4',6-
diamidino-2-phenylindole (DAPI, Sigma). Immunofluorescence was observed using 
fluorescence microscope (Leica Systems) and analyzed using ImageJ software [Schneider, 
Rasband et al., 2012]. 
 
4.3.7 Colony formation assay 
 The cells were seeded at a cell density of 40 cells per well in a 2-well chamber slide and 
allowed to grow in an incubator (5% CO2; 37oC). We observed few small colonies formed on 
third day. We added 50/100 nM scrambled (Dharmacon) and NLRP12 (Genetex) siRNA as 
suggested by the company protocol. The siRNA containing medium was removed after 6 hours 
and cells were incubated in fresh medium for next 24-48 hours. After media removal, cells were 
washed with 1X PBS for 2-3 minutes and stained with Giemsa (Himedia) for 20 minutes. The 
stain solution was discarded, and slides were washed gently with distilled water and air-dried. 
We then took slides for bright field imaging and captured images using the cell phone camera. 
For colony formation quantification, we performed number of colonies formed per well and cell 
count per colony. 

4.3.8 Cell proliferation assay 
 The effect of AIM2 and NLRP12 inhibition on cell proliferative capacity was assessed 
using the MTT assay. We performed rapid 96-well plate transfections by preparing complexes 
in the plate and plating cells (103 cells per well) directly into the transfection mix. The siRNA 
containing m  media after 6-8 hours and 
incubated cells for 24 hours at 37 C in a CO2 incubator (Model-170S, Eppendorf). For assay, we 

 media and MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-
Diphenyltetrazolium Bromide) solution (M2128, Sigma) was added to each well. The plate was 
kept in incubator for 3 hours. Af
each well. Absorbance was measured at 570nm using multi-mode microplate reader (Synergy 
H1 Hybrid, Biotek Instruments Inc). 
 
4.3.8 Statistics 
 -test was performed and p-values below 0.05 (*p-value <0.05; **p-value 
<0.005) were considered statistically significant. For analysis, the 
coefficient was calculated to identify significant correlation between the gene expression and 
methylation data of TCGA glioma patient datasets.  
 
 
4.4 Results and Discussion 
 
4.4.1 Visualising NLR gene expression pattern in gliomas using microarray analysis 
 We analyzed the expression of the 22 NLR gene family members and their associated 
signaling components in LGG and GBM. Microarray gene expression data for LGG and GBM 
was obtained from the TCGA database using cBioPortal, a platform for cancer genomics data 
download, visualization and analysis. The mRNA expression (RNA seq V2 RSEM) z-scores 
profiling data comprised of LGG (527 samples) and GBM (166 samples) tumor samples, with a 
z-score threshold Microarray analysis of NLR gene expression in LGG and GBM was 
performed by generating clustered heat maps, using CIMminer, a bioinformatics tool 
[Weinstein, Myers et al., 1997]. The expression analysis revealed differential expression of NLR 
genes across the GBM and LGG tumor samples (Figure 4.2-4.3). Interestingly, Nod1 shows 
increased expression for almost all GBM samples. Nlrp1, Nod2, CIITA, Nlrc4 and Nlrp3 genes are 
up-regulated and down-regulated in almost half of the patient samples respectively. Nlrp2, 
Nlrp7 and Nlrp4 genes are down-regulated in most of the LGG samples. On contrary, Nlrp11 
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expression is up-regulated throughout the LGG samples. However, the Nlrp5, Nlrp10 and 
Nlrp13 gene expression remained unchanged in both low and high grade glioma.

Figure 4.2 : NLR gene expression pattern in glioblastoma using TCGA database. Microarray expression 
data for GBM was obtained from the TCGA database. Expression (RNA seq V2 RSEM) data comprising 
of GBM (166 samples) tumor samples was used. The mRNA expression profiling was performed with a 

A CIMminer-generated heat map was created for the expression data. Here, low
expression is compared to the mean value which is a negative number and is colored blue whereas, 
high expression is denoted positive and colored red. The color coding is shown in the color bar.
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4.4.2 Network analysis of NLR gene expression in low grade glioma and glioblastoma
The cellular and molecular complexity of glioma and cross-talk within the tumor 

microenvironment brings into focus the dysregulated genomic and epigenetic variations 
occurring in glioma. We need to understand the genomic signature underlying the generation 
of LGG, GBM and sometimes, progression of LGG into GBM. NLRs, are innate immune 
receptors that perform multiple regulatory functions in major inflammation-associated 
pathways, such as NF- regulation as well as anti-inflammatory signaling to maintain 
immune surveillance [Zanotto-Filho, Gonçalves et al., 2017]. As discussed already, NLRs play 
both tumor-promoting and inhibitory roles in cancers [Kent and Blander, 2014]. However, the 
function and regulation of NLRs in glioma pathogenesis remains unidentified. Therefore, to 
understand the importance of NLRs and their interactions in glioma, LGG and GBM patient 
datasets were extracted from the TCGA database [McLendon, Friedman et al., 2008]. We first 
generated glioma networks using the cBioPortal cancer genomics platform [Cerami, Gao et al., 
2012; Gao, Aksoy et al., 2013]. The networks were then simplified using Cytoscape, an open 
source software for integrating biomolecular interaction networks with high-throughput 
expression data into a unified conceptual framework [Shannon, Markiel et al., 2003]. The seed 
genes (genes of interest) included NLRP3, NLRP6, NLRP12, NLRC3, NLRC4, NLRX1, PYCARD, 
CASP-1, AIM2, MSR1 and NOD2. The pathway was found to be altered in 38.9% cases for LGG 
and in 38.5% cases for GBM (Figure 4.4). Along with our seed genes, the networks also included 
other genes that we named as linked genes. Collectively, we termed all these genes as our 
network genes. Most frequently altered genes in LGG were TP53 (54% altered); and EGFR and 

Figure 4.3 : NLR gene expression pattern in low grade glioma using TCGA database. Microarray expression 
data for LGG was obtained from the TCGA database. Expression (RNA seq V2 RSEM) data comprising of 
LGG samples (527 samples) was used. The mRNA expression profiling was done with z-score threshold of 

-generated heat map was created for the expression data. Low expression is 
compared to the mean value which is a negative number and is colored blue whereas, high expression is 
denoted positive and colored red. The color coding is shown in the color bar.
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CDK11B (15 to 20% altered); and AIM2, NLRP6, CASP1, NLRP3, NLRC4, NLRP12, CARD8, 
BCL10, ATN1, NLRX1 and MAVS (5 to 10% altered).  Genes such as MSR1, NOD2, PYCARD and 
NLRC3 were altered in less than 5% of LGGs. Notably, TP53 (53% mutated) and EGFR (6% 
mutated) were the most frequently mutated driver genes across LGG. 
          The GBM network shows EGFR (65% altered), NOD1 (40% altered) and TP53 (35% 
altered) as most frequently altered genes (Figure 4.4). Other frequently altered genes were 
MAVS (15% altered) and PSEN1 (23% altered); and CARD8, PARP1 and BCL2L1 (10-15% 
altered); MAVS, NLRC3, NLRX1, NLRP6, PYACRD, CASP1, NLRP3, NLRP12 and NOD2 (5-10% 
altered). Genes including AIM2 and NLRC4 were altered in less than 5% of GBMs. As expected, 
EGFR (32.6% mutated) and TP53 (31.9% mutated) emerged as the highly mutated driver genes 
for GBMs. Interestingly, TP53 was more frequently altered and mutated in LGG as compared to 
the GBM. Similarly, EGFR was more frequently altered and mutated in GBM as compared to 
the LGG (Figure 4.4). Several genomic alterations in EGFR and TP53 are known to contribute 
significantly in tumors, including glioma [Herbst, 2004; Olivier, Hollstein et al., 2010]. Most of 
the linked genes, emerged through network analysis have important functional roles associated 
with DNA damage repair, cell proliferation, cell death, tumor-suppressor and other core cell 
signaling pathways [Ushio, Tada et al., 2003; Bruey, Bruey-Sedano et al., 2007; Underhill, 
Toulmonde et al., 2010; Kim, Rait et al., 2014; Ismail, Dronyk et al., 2016; Zhang, Zhang et al., 
2016]. Thus, the glioma networks reflect possibility of significant regulatory expression and 
signaling of NLRs and other-associated genes in glioma pathogenesis. 

Figure 4.4 : NLR gene expression networks in low grade glioma and glioblastoma. Networks for LGG and 
GBM were generated using the TCGA database from the cBioPortal platform for cancer genomics. The 
network generation was restricted to genes with alteration greater than 10%. Glioma pathways were found 
to be altered for 38.9% and 38.5% of LGG and GBM cases respectively. Node border, interactions and gene 
legends are specified in the key on the right.

Low grade glioma (LGG) Glioblastoma (GBM)
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4.4.3 Differential expression of NLRs and NLR-associated regulatory components in LGG 
and GBM 
  
The World Health Organization (WHO) has classified glioma into four grades, depending on 
the degree of malignancy [Louis, Perry et al., 2016]. On the basis of histology, the LGG is 
stratified into grade 2 and grade 3 glioma. The grade 2 and 3 glioma, are further divided into 
three histological types  astrocytoma, oligoastrocytoma, and oligodendroglioma.  Grade 4 
glioma is a highly aggressive advanced form of glioma, well known as glioblastoma (GBM). 
However, there is no clear distinction between different grades of glioma, based on their 
histology. Cancer results from genomic alterations, including copy number variation, mutation 
and methylation [Ohgaki and Kleihues, 2009; Project, 2013]. Genes (seed and linked genes) 
obtained through network analysis were investigated further using quantitative genomic 
analysis. The gene expression analysis provides mechanistic insight into the associated 
pathways undergoing alterations across different grades of glioma. We first studied the 
expression of seed and linked genes, including NLRs using heat map representation (Figure 
4.5). We generated heat map to visualize the relative gene expression, between grade 2 and 3 of 
LGG. We could see overlapping gene expression profiling of samples for grade 2 and 3 of LGG 
(Figure 4.5(a)). Next, we performed a comparative analysis of GBM (grade 4) and LGG by 
generating heat maps for, grade 4 vs. grade 2 and grade 4 vs. grade 3 gliomas. Interestingly, we 
observed characteristic gene expression pattern for GBM as compared to both grade 2 and 3 
LGG (Figure 4.5(b, c)). The heat maps highlight overlapping expression profiling for LGG 
samples, but distinct gene expression clusters for GBM as compared to the LGG.  
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Glioma grade:      Grade 4 vs.        Grade 2

Glioma grade:       Grade 4 vs.         Grade 3

PARP1
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Row: Z-Score

(a)

(b) 

(c)  

Figure 4.5 : Heat map clustering for NLR gene expression in glioma. (a) Shows NLR gene expression across grade 
2 (orange) - grade 3 (green) of LGG samples. (b, c) Shows NLR gene expression between grade 4 (GBM, orange) 

grade 2 (LGG, green) and grade 4 (GBM, orange) grade 3 (LGG, green) glioma samples respectively. Each 
row represents specific gene expression across the tumor samples, represented in columns. Here, relative up-
regulated gene expression is shown in red, while down-regulated gene expression is shown in blue. 

Glioma grade:       Grade 2 vs.         Grade 3
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To further understand the pattern of NLR gene expression in LGG and GBM, we performed 
differential gene expression analysis across different grades of glioma; grade 3 vs. grade 2, 
grade 4 vs. grade 2 and grade 4 vs. grade 3 (Table 4.1). The RNAseqV2 (Illumina HiSeq 
platform, pan-can normalized) microarray datasets for LGG and GBM were analyzed for the 
network genes (seed and linked genes) across all TCGA cohorts. Differential gene expression 
was calculated in terms of log2 fold change and adjusted p- values (Table 4.1). We noticed that 
NLRs and other associated genes did not have significant differential gene expression across the 
grade 2 and grade 3 of LGG (shown in Table 4.1). The differential gene expression analysis 
between LGG provided significantly low log2 fold change values. However, we observed 
significant differential gene expression for network genes in GBM with respect to the grade 2 
and 3 of LGG. Genes, such as MSR1, NOD2, NLRP12, NLRC4, PYCARD and CASP1 showed 
most significantly differentially expressed genes (log2 fold change - greater than or equal to 1) in 
GBM with respect to LGG. In fact, in line with the presence of macrophages in glioma, we saw 
increased MSR1 expression. MSR1 (Macrophage scavenger receptor-1) is associated with 
endocytosis of LDLs (low density lipids). MSR1 ranked first amongst most differentially 
expressed genes in GBM, with high fold change (positive) value with respect to LGG. In 
network analysis, TP53 was one of most frequently altered gene across LGG and GBM. TP53 
also emerged as highly differentially expressed gene in GBM as compared to LGG.  Notably, 
NLRP12 and NOD2 show significantly low expression levels in GBM as compared to the LGG 
(Table 4.1). 
  
The data resulting from the differential gene expression analysis provides novel view of altered 
innate immune signaling and other core cell signaling pathways in glioma pathogenesis. The 
increased expression of MSR1, TP53, NOD1, NLRC4, EGFR and MAVS genes in GBM (Table 
4.1), shows increased possibility of these genes being involved in signaling pathways active in 
glioma regulation. Genetic alterations in TP53 and EGFR in cancers have been very well 
researched so far. EGFR overactivation in GBM, leads to subsequent activation of multiple 
downstream signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/Akt/rapamycin-
sensitive mTOR-complex (mTOR) pathway, followed by poor prognosis and drug resistance 
[Li, Wu et al., 2016]. Similarly, NOD1 activation promotes cancer cell growth and metastatic 
potential in colon cancer [Couturier-Maillard, Secher et al., 2013]. TP53, a very well studied 
tumor suppressor gene creates a complex signaling network by contributing to major signaling 
pathways associated with cell cycle, DNA repair, apoptosis, angiogenesis and metabolism, and 
others [Lane and Levine, 2010; Olivier, Hollstein et al., 2010]. As a result of major genetic 
alterations, TP53 is one of the key driver genes in LGG and GBM.  MSR1 is macrophage-specific 
integral membrane glycoprotein, implicated in various macrophage-associated physiological 
and pathological processes including phagocytosis, colon cancer, ovarian cancer and host 
defense [Miller, Zheng et al., 2003; Mathioudaki, Leotsakou et al., 2004; Taylor, Martinez-
Pomares et al., 2005; Leoutsakou, Talieri et al., 2006]. MSR1 expression has been reported in high 
grade gliomas, and glioma cells positively regulate MSR1 expression in macrophages [Zhang, 
Zhang et al., 2016]. Importantly, tumor-associated macrophages gene signature, comprising of 
distinct M2-macrophage related gene - MSR1, are highly enriched in GBM tumors.   
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Table 4.1 : Differential gene expression of NLRs in low grade glioma (LGG) versus glioblastoma (GBM)  
 
Between 
groups Grade 3 vs. Grade 2 Grade 4 vs. Grade 2 Grade 4 vs. Grade 3 

Gene log2FC 

Adjusted 

log2FC 

Adjusted 

log2FC 

Adjusted 

p-value p-value p-value 

MSR1 0.79 4.97E-07 3.00 8.41E-69 2.22 2.09E-39 

TP53 0.37 9.35E-06 0.76 1.07E-17 0.39 1.54E-06 

BCL10 0.19 6.29E-05 0.82 1.00E-57 0.63 3.33E-35 

CASP1 0.48 1.48E-04 1.70 2.03E-40 1.23 7.32E-20 

NOD1 0.26 3.02E-04 0.70 1.34E-18 0.43 9.23E-08 

NLRC4 0.27 1.01E-02 0.95 1.28E-20 0.68 2.77E-10 

CARD8 0.16 1.01E-02 0.30 3.50E-07 0.14 1.73E-02 

EGFR 0.45 1.01E-02 0.87 1.22E-05 0.41 7.10E-02 

PSEN1 -0.11 1.01E-02 -0.13 2.38E-03 -0.02 6.90E-01 

MAVS 0.09 1.01E-02 -0.16 4.30E-04 -0.26 6.16E-10 

NLRP12 0.22 1.76E-02 1.16 8.98E-23 0.94 9.18E-16 

PYCARD 0.26 2.68E-02 1.32 3.18E-29 1.06 1.21E-19 

NOD2 0.21 6.57E-02 1.03 3.27E-16 0.82 2.62E-11 

ATN1 -0.07 1.20E-01 -0.67 3.92E-34 -0.60 2.79E-28 

NLRP6 0.17 1.20E-01 0.16 1.67E-01 -0.01 8.98E-01 

CDK11B 0.05 2.53E-01 -0.16 4.30E-04 -0.21 2.11E-06 

BCL2L1 0.04 4.36E-01 0.18 8.77E-05 0.14 3.57E-03 

PARP1 0.02 5.46E-01 -0.23 2.61E-08 -0.26 1.10E-11 

NLRC3 -0.03 5.69E-01 -0.32 7.34E-09 -0.29 3.38E-07 

AIM2 -0.05 6.89E-01 -0.13 3.31E-01 -0.08 6.15E-01 

NLRX1 -0.02 7.48E-01 -0.38 1.14E-12 -0.37 5.35E-11 

NLRP3 -0.03 8.08E-01 -0.10 3.50E-01 -0.07 6.15E-01 

 *NLRs and NLR-associated genes are differentially expressed in glioma. The first column lists NLRs and other 
linked genes, showing differential expression across different glioma grades; low grade glioma (column 2) and 
glioblastoma (column 3 and 4). log2FC represents log fold change (FC). Here, p-value <0.05 is significant. 
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4.4.4 Methylation of NLRs and NLR-associated genes in glioma 
 Methylation, an epigenetic modification holds significant control over gene transcription 
for stable regulation of gene expression. The reversible nature of methylation makes it a 
promising therapeutic approach for effective gene regulation and tumor suppression [Bird, 
1986]. Targeting DNA methylation of specific biomarker gene promoter regions such as MGMT 
methylation has undoubtedly favored glioma prognosis and improved survival [Dunn, Baborie 
et al., 2009]. Keeping in mind, the genome-wide importance of methylation, we looked at the 
methylation levels of CpG loci in network genes (seed genes and linked genes) for LGG and 
GBM using TCGA- GBM and LGG patient datasets. We have identified significant differential 
methylation of CpG loci corresponding to the network genes using R packages. Table 4.2 shows 
differentially methylated CpG loci for specific gene expression, comparing GBM and LGG 
glioma grades, grade 4 vs. grade 2 and grade 4 vs. grade 3 respectively. The influence of 
methylation over expression was calculated u
gene expression and methylation levels. Notably, we observed highly significant negative 
correlation between gene expression and methylation levels for most of the network genes, in 
case of GBM (Table 4.2).  
TP53, a tumor suppressor gene is highly altered in GBM and TP53 association with poor 
prognosis and overall survival of GBM patients, making it a potential therapeutic target [Kim, 
Rait et al., 2014]. Despite of higher fold change expression of TP53 gene in GBM as compared to 
LGG, we did not find any significant correlation between TP53 methylation and expression in 
GBM (Table 4.2). Probably, here methylation does not have significant control over silencing of 
TP53 transcription and expression, raising possible involvement of other epigenetic 
mechanisms associated with genes involved in the TP53 pathway.  
 Several studies have proved methylation-associated PYCARD silencing across multiple 
cancer types. Stone et al., first identified aberrant methylation of CpG Island in the PYCARD 
promoter region methylation, resulting in reduced or complete loss of PYCARD expression in 
human glioblastoma cell lines. PYCARD, also known as apoptosis-associated speck-like protein 
containing CARD (ASC) is involved in several cell death-associated pathways [Stone, Bobo et 
al., 2004]. ASC/PYCARD also mediates inflammasome formation upon activation through 
various sterile, environment-derived and cellular damage associated stimuli [Davis, Wen et al.]. 
Our findings confirm high inverse correlation between PYCARD expression and methylation 
levels in case of glioblastoma.  
 
We found differential expression and significantly methylated CpG loci for NLRP3 (cg21991396, 
cg07313373) and CASP1 (cg21002651, cg13802966) in GBM. Recently published research from 
Paugh et al., shows significantly higher expression of CASP1 and its activator NLRP3 in 
glucocorticoid resistant leukemia cells, due to significantly low somatic methylation of 
CASP1(cg13802966) and NLRP3 (cg21991396) promoters [Paugh, Bonten et al., 2015]. The 
authors have also elucidated a novel mechanism by which NLRP3/CASP1 inflammasome 
modulates cellular levels of the glucocorticoid receptor and makes leukemia cell sensitive to 
glucocorticoids [Paugh, Bonten et al., 2015]. Interestingly, we also found significant inverse 
correlation between methylated CpG loci and expression in GBM, for genes - AIM2, ATN1, 
BCL2L1, CASP1, EGFR, MSR1, NLRC3, NLRC4, NLRP3, NLRP12, NLRX1, NOD1, NOD2, 
PYCARD, CDK11B and PSEN1(Table 4.2). Highly significant inverse correlation of gene 
expression and methylation for some differentially expressed genes is also depicted through 
box-plots (Figure 4.6). 
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Table 4.2: Differentially methylated genes in low grade glioma (LGG) and glioblastoma (GBM) 

Gene CpG loci 

Grade 4 vs. Grade 
2 Grade 4 vs. Grade 3 

Dist. 
from 
TSS 

Grade 4 

log2FC 

adjusted  

log2FC 

adjusted Corr. 
coeff. 
( ) p-value p-value p-value 

AIM2 
cg11003133 -0.23 3.96E-56 -0.25 6.88E-64 256 -0.26 4.42E-02 
cg00490406 -0.09 2.29E-25 -0.09 1.92E-27 -126 -0.34 6.52E-03 

ATN1 
cg09215316 0 1.36E-02 -A - 3 -0.24 5.90E-02 
cg11831988 - - 0 1.48E-01 53 -0.36 3.74E-03 

BCL2L1 
cg08619561 0 7.40E-07 - - 47 -0.24 6.12E-02 
cg02457826 - - 0 4.10E-02 -77 -0.27 3.05E-02 

BCL10 cg06913958 -0.33 3.15E-53 -0.33 3.82E-57 -2054 -0.43 4.76E-04 

CASP1 
cg21002651 -0.32 5.56E-47 -0.35 3.20E-56 -49 -0.68 1.49E-09 
cg13802966 -0.2 1.28E-42 -0.24 6.10E-58 6 -0.39 1.94E-03 

EGFR cg18809076 -0.25 2.35E-23 -0.32 8.60E-37   -0.76 1.21E-12 
cg14344486 -0.06 1.91E-18 -0.07 2.96E-22 -25141 -0.81 1.38E-15 

MSR1 cg16303562 -0.19 2.36E-36 -0.2 3.81E-39 -33 -0.25 5.12E-02 

NLRC3 
cg00011564 -0.04 1.70E-12 -0.04 1.76E-14 -7473 -0.28 2.66E-02 
cg04082551 -0.04 6.82E-08 -0.04 1.39E-08 -7605 -0.28 3.05E-02 

NLRC4 
cg22805603 -0.12 1.35E-29 -0.12 4.41E-34 46 -0.45 2.67E-04 
cg07055315 -0.19 2.27E-17 -0.22 2.38E-24 -23 -0.26 4.45E-02 

NLRP3 
cg07313373 -0.23 2.55E-43 -0.25 2.52E-49 -326 -0.36 4.15E-03 
cg21991396 -0.11 1.47E-23 -0.12 2.14E-25 63 -0.35 5.64E-03 

NLRP12 
cg07042144 -0.1 9.73E-23 -0.11 4.23E-26 244 -0.6 2.62E-07 
cg22337438 -0.08 6.47E-13 -0.08 3.46E-14 211 -0.66 4.55E-09 

NLRX1 cg26863308 -0.14 3.99E-10 -0.18 6.10E-16 611 -0.44 3.17E-04 
cg24516766 - - 0 1.68E-01 - -0.57 1.56E-06 

NOD1 
cg04071779 -0.35 4.10E-48 -0.38 4.23E-59 766 -0.35 5.61E-03 
cg09579281 -0.07 9.46E-17 -0.08 1.16E-23 3107 -0.32 1.05E-02 

NOD2 
cg16771652 -0.1 1.81E-22 -0.1 1.02E-26 -664 -0.6 2.70E-07 
cg04172533 -0.06 7.52E-12 -0.07 1.11E-13 -1441 -0.68 1.39E-09 

PYCARD 
cg05907835 -0.11 5.31E-17 -0.11 1.10E-17 -249 -0.54 6.28E-06 
cg12100791 -0.06 1.30E-10 -0.06 3.08E-12 -320 -0.56 1.93E-06 

CDK11B 

cg21921584 -0.03 1.00E-05 -0.04 4.81E-08 3891 -0.35 5.23E-03 

cg09283376 0.01 3.04E-03 0.02 5.56E-05 - -0.43 4.83E-04 

PSEN1 

cg13173405 -0.01 9.07E-02     -191 -0.39 1.61E-03 

cg26376566 - - 0 5.11E-02 - -0.38 2.36E-03 
*Significantly differentially methylated CpG loci for NLRs and NLR-associated genes. Here, the table shows genes 
with their differentially methylated CpG loci in LGG and GBM. We calculated correlation coefficients and their 
value of significance of NLRs and other linked genes in case of glioblastoma. log fold change is represented as 
log2FC. Here, p-value <0.05 is significant. Distance from transcription start site is abbreviated as Dist. from TSS. 
Correlation coefficient (Corr. coeff.) abbreviated as . ADash denotes CpG loci not being significant for that 
grade. 
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4.4.5 Gene ontology analysis 
To develop a better understanding of the cellular and molecular interactions between

highly altered genes in glioma, gene enrichment analysis (GEA) was performed using available 
data and knowledge bases. The gene ontology (GO) analysis was carried out using publicly 
available collection of gene functions and interactions. The set of highly altered genes (seed and 
linked genes) obtained through network analysis was then subjected to function and interaction 
analysis (Figure 4.7). For gene set enrichment analysis (GSEA), we used ClueGO, a Cytoscape 
application to delineate gene ontology [Bindea, Mlecnik et al., 2009], and differentiate genes 
with respect to their functional association with the biological processes and molecular 
reactome. Here, the nodes represent gene functions and edges represent interactions. Figure 
4.8a shows most enriched biological processes associated with the highly altered gene set. 
Similarly, complete reactome associated with the altered gene set and their interactions is 
shown in figure 4.8b. The gene enrichment analysis provided a comprehensive view and 
understanding of highly altered genes, their functions, interactions and associated-genomic 
pathways and interactions.

Figure 4.6 : Negative regulation of NLR gene expression by methylation in glioblastoma. The box plots 
show significant inverse correlation between expression of NLRs and NLR-associated genes and 

ion coefficient - p-value <0.05.  
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Figure 4.7 : Gene ontology (GO) analysis of significantly altered genes and associated biological processes. 
GO analysis performed for the network genes with respect to their association with biological processes. 
Here, each node represents a biological process for enriched set of genes. The edges represent different 
interaction types between genes involved in two biological processes. Genes have been categorized 
functionally into apoptosis, nuclear transport and NLR-regulated pathways including PAMPs/DAMPs 
recognition, inflammasome activation, cytokines & chemokine transcription and release, and major 
inflammatory pathways.

Nuclear 
TransportApoptosis

PAMPs/DAMPs recognition and NLR activation
NLR regulated inflammatory pathways

Cytokine and chemokine synthesis & release
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(a)

(b)

Apoptosis
AIM2 

Inflammasome

Figure 4.8: Gene set enrichment analysis (GSEA) delineates gene ontology (GO) of significantly altered genes 
and their interactions within the biological reactome. (a, b) GSEA provides comprehensive view of all 
biological processes associated with the seed and linked genes. Each node here represents an interaction 
for an enriched set of genes. The edges represent different interactions occurring within the pathways. The 
GSEA results have been divided into figure (a) and (b) for simplicity. 

NLR-regulated pathways
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4.4.6 Prognostic value of NLRs and NLR-associated genes in glioma 
 Identification of gene signature, comprising of genes associated with different cellular 
components, functions and pathways to predict behavior of heterogeneous GBM tumors is of 
high research interest. The microarray-based gene expression profiling helped us in 
identification of the differentially expressed genes and their association with the early prognosis 
and clinical outcome of GBM patients. We investigated whether the elevated expression of 
NLRs and other network genes was related to the prognosis of patients with glioma. 
Differentially expressed NLRs and other-associated genes were evaluated for understanding 
their clinical importance using Kaplan-Meier survival curve analysis. For survival analysis, we 
calculated 
survival R package. To evaluate the biomarker in several conditions, the dataset was chosen to 
reflect patients suitable for the test. Hence, we selected relevant TCGA LGG (grade 2 & 3) and 
GBM (grade 4) glioma patient samples and corresponding clinical information of TCGA RNA-
seq gene expression data (pan-can normalized). We used Kaplan-Meier method to assess the 
prognostic value of the corresponding gene in different grades of glioma. We performed the 
analysis based on gene expression profiles and stratified patients based on mortality (Figure 
4.9). To understand dysregulation of NLRs during both LGG and GBM, we considered the 
grade 2 and grade 3 (LGG) as first and second category, and grade 4 (GBM) in third category. 
           Patient samples were divided into two categories based on the median expression value 
of the corresponding gene. For grade 2 category of LGG, patients (n = 225) defined by high 
expression values for the gene of interest were grouped into high-expression group (black 
colored curve) and remaining are grouped into low-expression group (red colored curve). 
Similarly, for grade 3 category of LGG, patients (n = 248) having high expression values for the 
gene of interest were grouped into high-expression group (black colored curve) and remaining 
are grouped into low-expression group (red colored curve). For GBM, most aggressive grade of 
glioma category (Grade 4), the patients (n = 156) having high expression values for the specific 
gene were grouped into high-expression group (black colored curve) and remaining were 
grouped into low-expression group (red colored curve). For all the survival curve analysis, p-
value <0.05 was considered significant. From the figure 4.9 (grade 2), it is clear that BCL10 
(P<0.04), BCL2L1 (P<0.009), CARD8 (P<0.009), CDK11B (P<0.009), MSR1 (P<0.02), NLRP6 
(P<0.03), NOD1 (P<0.03) and PYCARD (P<0.01) genes significantly separates the two risk 
groups characterized by differences in their gene expression with p-value of log-rank test. From 
the survival curves, it is seen that higher expression of these genes leads to poor overall survival 
of the glioma patients. We also identified ATN1 (P<0.0008), CASP1 (P<0.005), EGFR (P<0.04), 
MSR1 (P<0.05), NLRC4 (P<0.04) and TP53 (P<0.04) genes, contributing significantly to low 
overall survival rate of the grade 3 glioma patients (Figure 4.10(a)). EGFR, TP53 and other 
important genes with high genomic alterations in glioma networks and significant differential 
expression across different grades of glioma, did not show any prognostic value for grade 4, 
GBM patients. Differentially expressed genes showing significant association with overall 
survival, emerge as promising biomarkers for prognostically significant molecular sub-typing 
of low and high grade glioma. Interestingly, for GBM, NLRP12 significantly separates the two 
risk groups characterized by differences in their gene expression with p-value of log-rank test of 
0.03 (Figure 4.10(b)). Based on its high significance level, we suggest NLRP12 as a possible 
prognostic marker for GBM.  
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CDK11B MSR1 NLRP6

PYCARDNOD1

Figure 3.9: Kaplan-Meier (KM) survival curves of TCGA LGG (grade 2) stratified by the expression of NLRs. The KM 
curves show significant association of NLRs and other related genes with the patient survival outcome. The black 
and red curves indicate high and low gene expression respectively. The p values from log-rank tests comparing 
the two KM curves are mentioned for each figure. 

BCL2L1BCL10 CARD8

Grade 2 (Low grade glioma)
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(b) Grade 4 (Glioblastoma)

(a) Grade 3 (Low grade glioma)

ATN1 CASP1 EGFR

TP53NLRC4MSR1

NLRP12

Figure 4.10 : Kaplan-Meier (KM) survival curves of TCGA LGG and GBM patients stratified by the expression levels 
of NLRs. (a, b) shows the survival curve for genes having significant association with the glioma survival 
outcome in the LGG (grade 3) and GBM (grade 4) patient samples. The p values from log-rank tests comparing 
the two KM curves are mentioned for each figure.
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4.4.7 Kaplan-Meier survival analysis for TCGA LGG and GBM using REMBRANDT platform 

 To gain more confidence from our analyses and results, we assessed previously 
identified differentially expressed genes for glioma using an additional glioma database 
platform, REMBRANDT. The impact of CARD8, CASP1, MSR1, PYCARD and PARP1 gene 
expression on overall survival was found to be statistically significant for LGG patient 
datasets (Figure 4.11). The results obtained for association between differentially expressed 
genes and overall survival using the REMBRANDT glioma dataset, were quite similar to the 
TCGA glioma datasets. Comparative analysis across two data platforms and similarity 
within the findings supports the selection of above identified genes as important prognostic 
biomarkers for different grades of glioma.   
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GBM Astrocytoma Oligodendroglioma

CARD8

CASP1

EGFR

PYCARD

MSR1

Figure 4.11 : Kaplan-Meier (KM) survival curves for GBM and LGG stratified by the expression of NLRs and 
NLR-associated genes using REMBRANDT. Here, LGG has been divided into two categories astrocytoma 
and oligodendroglioma. Figure shows CARD8, CASP1, EGFR, MSR1 and PYCARD genes having significant 
association with the glioma survival outcome. The P values from log-rank tests comparing the two KM 
curves are mentioned for each figure.
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4.4.8 Kaplan-Meier survival analysis for differentially expressed genes in other TCGA 
cancer types 

 To confirm, if the above identified genes association with patient survival is specific to 
LGG and GBM, we did similar survival curve analysis on other TCGA cancer datasets- 
Colon adenocarcinoma (COAD), Lung adenocarcinoma (LUAD) and, Head and neck 
squamous cell carcinoma (HNSC) (Table 4.3). However, we did not find any significant 
association between differentially expressed GBM genes and patient survival for all the 
three cancer types. The pan-cancer survival analysis further confirms that the differential 
expression and methylation, as well as the clinical relevance of NLRs and other associated 
genes, is specific to LGG and GBM. 

 
 
       Table 4.3:  P-values for Kaplan-Meier survival curve analysis of multiple TCGA cancer datasets 
 

Gene 
P-values of Log  Rank Test (Kaplan-Meier survival curve) 
Colon 
Adenocarcinoma 

Lung 
Adenocarcinoma 

Head and Neck 
Squamous Carcinoma 

NOD1 0.2 0.4 0.6 

PYCARD 0.7 0.5 0.8 

CARD8 0.4 0.1 0.1 

NLRP12 1 0.5 0.5 

CASP1 0.4 0.4 0.2 

BCL2L1 *0.01 1 0.8 

ATN1 0.7 1 0.1 

NLRC4 0.1 0.4 0.6 

EGFR 0.9 0.6 *0.04 

BCL10 0.08 0.4 *0.04 

TP53 0.6 0.9 1 

PARP1 0.1 0.8 0.3 

CDK11B 0.4 0.6 0.6 

NLRP6 0.5 0.5 0.06 

MSR1 0.9 0.5 0.3 
            *KM survival curves of pan-cancer TCGA data analysis for colon adenocarcinoma, lung adenocarcinoma  

and, head and neck squamous cell carcinoma patients. The expression data was stratified by the 
expression levels of NLRs and NLR-associated genes. Level of significance: P-value <0.05 (log - rank 
test). 

 
 
4.4.9 NLRs and NLR-associated gene expression in normal and glioma cell population using 
immunofluorescence. 

 TCGA database provides a comprehensive genome profiling of patients with different 
cancer types. The data comes from multiple medical sources and platforms contributed to 
the TCGA data portal, and gathered from analysis performed using the whole 
tumor/normal tissue. The multi-platform data collection and analyses, neglects individual 
tissue or cell population effects. Growing evidences suggest cell and tissue-specific roles of 
NLRs in cancer [Hu, Elinav et al., 2010; Chen, Liu et al., 2011]. Therefore, to better 
understand the cellular profiling of NLRs contributing to the glioma tumor 
microenvironment, we looked at the expression of differentially expressed NLRs and NLR-
associated genes, namely ASC /PYCARD, AIM2 and CASP1 in multiple innate immune and 
glioma cell population. We have used A172 and LN-18, human GBM-derived cell lines as in-
vitro glioblastoma study models. Additionally, we have used RAW264.7 macrophages, 
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Human umbilical vein endothelial cells (HUVECs), N9 and BV2 microglial cells, and C6, rat 
glioma cells as control. 
We have identified cellular expression of ASC, AIM2 and CASP1 at the protein level under 
normal and inflammatory (LPS-primed) conditions using immunofluorescence (Figure 4.12-
4.17). We observed significantly higher intensity/expression of NLRP12, AIM2 and CASP1
genes in microglia and human GBM cell lines. The high expression levels suggest intact 
gene regulation of NLRs and associated mediators during glioma pathogenesis.

(a)

(b)

Figure 3.12 : Immunocytochemistry for ASC protein expression in microglia and macrophages. (a, b) Above 
panel shows ASC / PYCARD protein visualization in untreated and lipopolysaccharide cell lines. Scale bar:
50 m.
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(a)

(b)

Figure 4.13 : Immunocytochemistry for ASC protein expression in gliomas. (a, b) Above panel shows ASC
protein visualization in untreated and LPS-primed LN-18 and A172 glioma cell lines. Scale bar: 50 m.
Nuclei are stained blue with DAPI. Insets show antibody control.
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(a)

(b)

Figure 4.14 : Immunocytochemistry for AIM2 protein expression in microglia and macrophages. (a,b) Above 
panel shows AIM2 protein visualization in untreated and LPS-primed RAW macrophages and BV-2 
microglia cell lines. Scale bar, 50 m (a,b). Nuclei are stained blue with DAPI. Inset shows antibody control.
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Figure 4.15 : Immunocytochemistry for AIM2 protein expression in gliomas. (a,b) Above panel shows AIM2
protein visualization in untreated and LPS-primed LN-18 and A172 glioma cell lines. Scale bar, 50 m (a,b). 
Nuclei are stained blue with DAPI. Inset shows antibody control.  

(a)

(b)
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(a)

(b)

Figure 4.16 : Immunocytochemistry for ASC and AIM2 protein expression in primary endothelial cells. (a,b) 
Above panel shows ASC and AIM2 protein expression in RCA1 stained endothelial cells (HUVECs). Scale 
bar, 50 m . Nuclei are stained blue with DAPI. Inset shows antibody control.  
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4.4.10 NLRP12 regulates cellular proliferation in glioblastoma
The NLRP12 gene regulates non-inflammasome and anti-inflammatory signaling by 

inhibiting both canonical and non-canonical NF- B pathways [Zaki, Man et al., 2013; Chen, 
2014]. NLRP12 performs negative regulation of non-canonical NF- B to suppress colon 
inflammation and tumor formation in experimental colitis-induced mice [Allen, Wilson et al., 
2012]. Recently, NLRP12 inflammasome-induced IL-1 and IL-18 signaling has been linked to 
host resistance against specific pathogens such as Yersinia pestis [Vladimer, Weng et al., 2012].
From the TCGA glioma findings, we show significant differential gene expression and 
methylation of NLRP12 in GBM with respect to LGG. We found significantly high negative 
correlation between the NLRP12 expression and methylation levels for GBM. In survival curve 
analysis, NLRP12 showed high prognostic value for GBM, which motivated us to examine the 
expression and functional association of NLRP12 with glioma, using microglial (BV2 and N9)
and GBM (LN18) cell lines.

(a)

(b)

Figure 4.17 : Immunocytochemistry for Caspase-1 protein expression in glioma and microglial cells. (a,b) 
Above panel shows Caspase-1 (CASP-1) expression in untreated and LPS-primed LN-18, human glioma 
and BV-2, microglial cell lines. Scale bar, 50 m (a,b). Nuclei are stained blue with DAPI. Inset shows 
antibody control.  
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Using immunofluorescence, we were able to characterize high NLRP12 expression in untreated 
and LPS-primed BV2 (Figure 4.19a), LN18 and N9 cells (Figure 4.18 (a, b)). To understand the 
role of NLRP12 in glioma cell proliferation, we utilized NLRP12si RNA and performed colony 
formation assay on microglial cells. The bright-field image analysis of Giemsa-stained 
microglial cells shows the increase in colony formation upon NLRP12 inhibition (Figure 4.19b). 
The results were quantifed for each sample, by counting the number of colonies formed per 
well and number of cells present per colony. As observed, NLRP12 inhibition leads to an 
increased number of cell colonies (Figure 4.19c). Based on current findings, we suggest NLRP12
inhibition leads to increased cellular proliferation in vitro. However, further experimental 
analysis needs to be done, to confirm these preliminary findings and determine other functions 
and pathways associated with NLRP12 gene in GBM.      

                                                     
[

(a)

(b)

Figure 4.18 : Immunocytochemistry for NLRP12 protein expression in glioma and microglial cells. (a, b) 
Panel shows NLRP12 protein visualization in untreated and LPS-primed LN-18, glioblastoma and N9, 
microglial cells. Scale bar: 50 m. Nuclei are stained blue with DAPI. Inset shows antibody control.  
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Figure 4.19 : NLRP12 inhibition increases cellular proliferation in vitro. (a) NLRP12 expression was 
observed in microglial cells using immunofluorescence. (b) Colony formation assay (CFA) was performed 
to visualize the effect of NLRP12 gene inhibition. Bright-field images indicate increased cellular 
proliferation in the NLRP12 siRNA treated microglia. (c) CFA results were quantified by counting cells per 
colony as well as the number of colonies formed for each of the sample. BF images were captured at 40X 
magnification, using a cell phone camera.

(a)

(b)

(c)
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4.4 CONCLUDING REMARKS 
 
Gliomas are the most aggressive type of primary brain tumors with poor prognosis and high 
mortality. Glioma tissue microenvironment is heavily infiltrated by the innate immune cells. 
The cellular and molecular interplay between the immune cells and glioma tissue forms the 
highly enriched tumor niche. NLRs are highly conserved cytoplasmic sensors regulating innate 
immunity, inflammation and inflammation-induced tumorigenensis. Despite their dual tumor-
promoting and -inhibitory roles, the functional significance of NLRs in glioma remain 
unexplored. Our study utilized a multimodal data-driven approach to characterize the 
expression of NLRs and NLR-associated genes for low grade glioma and glioblastoma. We 
found significant differential methylation and expression of NLRs and other important genes 
associated with inflammation, cell death and DNA repair mechanisms in glioblastoma. Strong 
inverse correlation between expression and methylation levels of NLRs was found in GBM with 
respect to the LGG. NLRs and other associated genes showed significantly high coorelation 
with patient survival, in low and high grade glioma, reflecting their promising therapeutic 
significance. Notably, cell and tissue-specific roles of NLRs has been reported in cancer. 
Therefore, we characterized the expression of NLRs in innate immune and glioma cell 
population using different cell lines. Based on our TCGA  Glioma findings, we characterized 
the expression of NLRP12 in glioma cell population. Interestingly, we found NLRP12 as 
negative regulator of cellular proliferation in vitro. Current research provides novel insights into 
the differential regulation of NLRs and NLR-associated genes in LGG and GBM, and the 
prognostic importance of NLRs such as NLRP12 and other NLRs-mediated innate immune 
signaling pathways in glioma pathology. 
 


