List of Figures

Figures	Title	Page
1.1	Innate immune sensing is mediated via germline-encoded pattern recognition receptors	1
2.1	Crosstalk between cancer cells and innate immune cells forms the highly enriched tumor microenvironment.	4
2.2	Inflammasome activation pathways.	5
2.3	Current therapeutic advances present NLRs as promising drug targets for fostering host innate immune responses against cancer.	23
3.1	Amorphous nanosilica induces ASC-mediated inflammation in human lung cell population.	26
3.2	Characterization of amorphous silica nanoparticles by transmission electron microscopy.	29
3.3	Schematic for experimental design	30
3.4	MTT Assay for assessment of cell viability following nanosilica exposure.	31
3.5	Amorphous nanosilica dependent cytotoxicity is Caspase-1 and NLRP3 independent.	32
3.6	ASC expression in nanosilica treated cells was analysed by immunofluorescence.	33
3.7	Confocal Microscopy for ASC speck quantification in epithelial cells	34
3.8	Characterization of nanosilica internalization and subsequent cell death	35
3.9	Cytokine expression analysis in response to nanosilica exposure	36
4.1	Schematic flow diagram of multidimensional investigation exploring the role of specialized nucleotide-binding domain and leucine rich-repeat containing receptors (NLRs) in glioma	39
4.5	pathology.	(2)
4.2	NLR gene expression pattern in glioblastoma using TCGA database.	43
4.3	NLR gene expression pattern in low grade glioma using TCGA database.	44
4.4	NLR gene expression networks in low grade glioma and glioblastoma.	45
4.5	Heat map clustering for NLR gene expression in glioma.	47
4.6	Negative regulation of NLR gene expression by methylation in glioblastoma.	52
4.7	Gene ontology (GO) analysis of significantly altered genes and associated biological processes.	53
4.8	Gene set enrichment analysis (GSEA) delineates gene ontology (GO) of significantly altered genes and their interactions within the biological reactome.	54
4.9	Kaplan-Meier (KM) survival curves of TCGA low grade glioma (grade 2) stratified by the expression of NLRs.	56
4.10	Kaplan-Meier (KM) survival curves of TCGA low grade glioma (grade 3) and glioblastoma (grade 4) patients stratified by the expression levels of NLRs.	57
4.11	Kaplan-Meier (KM) survival curves for glioblastoma and low grade glioma stratified by the expression of NLRs and NLR-associated genes using REMBRANDT.	59
4.12	Immunocytochemistry for ASC protein expression in microglia and macrophages.	61
4.13	Immunocytochemistry for ASC protein expression in gliomas.	62
4.14	Immunocytochemistry for AIM2 protein expression in microglia and macrophages.	63
4.15	Immunocytochemistry for AIM2 protein expression in gliomas.	64
4.16	Immunocytochemistry for ASC and AIM2 protein expression in primary endothelial cells.	65
4.17	Immunocytochemistry for Caspase-1 protein expression in glioma and microglial cells.	66
4.18	Immunocytochemistry for NLRP-12 protein expression in glioma and microglial cells.	67
4.19	NLRP12 inhibition increases cellular proliferation in vitro	68
5.1	Analytic workflow for study of fenugreek-induced anti-inflammatory effects and possible interactions with ASC protein targeting in vitro and in silico approaches.	71
5.2	Fenugreek increases ASC speck formation in nanosilica treated cells.	72
5.3	Fenugreek seed extract inhibits nanosilica-induced cytotoxicity.	73
		-