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4.2 QKD in CR and CD noises is shown in (a) and (b), respectively. For CR noise both
B92 and BBM protocols have the same fidelity (in (a)). The smooth (blue) and
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(cyan) and dotted (magenta) lines) with temperature T = 1; and SGAD (in large
dashed (orange) and large dotted dashed (purple) lines) with T = 1 and squeezing
parameters r = 1 and Φ = π
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