Contents

	page
Abstract	I
Acknowledgements	iii
Contents	v
List of Figures	vii
List of Tables	ix
List of Abbreviations	xi
List of Symbols	xii

Chapter 1: INTRODUCTION

1.1	Need for Protection Relaying	1
1.2	Relays	2
	1.2.1 Electromechanical Relays	2
	1.2.2 Static Relays	3
	1.2.3 Digital/Numerical Relays	3
1.3	Wavelet Transform	4
	1.3.1 Continuous Wavelet Transform	4
	1.3.2 Discrete Wavelet Transform	5
	1.3.3 Applications of Wavelet Transform	6
1.4	Alienation Coefficients	7
	1.4.1 Samples based Alienation Coefficients	7
	1.4.2 Approximate Coefficients based Alienation Coefficients	8
1.5	Artificial Neural Network	8
	1.5.1 Applications of ANNs in Transmission Line Protection	9
1.6	Objectives of Thesis	10
1.7	Contribution of Thesis	10
1.8	Thesis Outline	10

Chapter 2: Review of Literature

2.1	Introduction to Transmission Line Fault Analysis	13
	2.1.1 Fault Detection	14
	2.1.2 Fault Classification	14
	2.1.3 Fault Location	14
2.2	Techniques used for Transmission Line Protection	14
2.3	Detailed Literature Review on Transmission Lines Protection	16
	2.3.1 Protection Algorithms for Two-Terminal Transmission Systems	16
	2.3.2 Protection Algorithms for Multi-Terminal Transmission Systems	18
	2.3.3 Protection Algorithms for FACTS-Compensated Transmission Systems	19
2.4	Identified Research Gap	22

Chapter 3: Two-Terminal Transmission System

3.1	Introduction	23
3.2	System Model and Parameters	23
3.3	Wavelet-Alienation based Algorithm	24
3.4	Detection and Classification of Faults	24
3.5	Case Studies	28
	3.5.1 Variation of Fault Location	28
	3.5.2 Variation of Fault Incidence Angle	29
	3.5.3 Variation of Fault Impedance	32
	3.5.4 Effect of Noise Contamination	32
3.6	Estimation of Fault Location	34
3.7	Conclusion	38

Chapter 4: Multi-Terminal Transmission System

4.1	Introduction	39
4.2	System Model and Parameters	39
4.3	Proposed Algorithm	39
4.4	Detection and Classification of Faults	41
4.5	Case Studies	44
	4.5.1 Variation of Fault Location	44
	4.5.2 Effect Fault Incidence Angle Variation	45
	4.5.3 Performance with High Impedance Faults	47
	4.5.4 Performance in Noisy Environment	49
4.6	Detection of Faulty Section and Estimation of Fault Location	49
4.7	Generalization of Algorithm	52
	4.7.1 Fault Detection and Fault Classification	53
	4.7.2 Detection of Faulty Section and Location of Fault	53
4.8	Conclusion	55

Chapter 5: FACTS-Compensated Transmission System

5.1	Introduction	57
5.2	Proposed Algorithm	57
5.3	STATCOM-Compensated Transmission System	57
	5.3.1 System Model and Parameters	57
	5.3.2 Fault Detection and Classification	59
	5.3.3 Case Studies	61
	5.3.4 Location of Fault	70
	5.3.5 Comparison of Performances	73
5.4	TCSC-Compensated Transmission System	73
	5.4.1 System Model and Parameters	73
	5.4.2Detection and Classification of Faults	73
	5.4.3 Case Studies	77
	5.4.4Location of Fault	85
	5.4.5 Performance in Absence of TCSC	86
5.5	UPFC-Compensated Transmission system	88
	5.5.1 System Model and Parameters	88
	5.5.2 Simulation Results	88
	5.5.3 Case Studies	90
	5.5.4 Location of Fault	98
	5.5.5 Performance in Absence of UPFC	100
5.6	Conclusion	100
Chap	ter 6: Conclusion	103

105