
3
Topological features for representation and retrieval of

similar floor plans

As observed by the detailed literature survey given in Chapter 2, researchers in the area of
analysis of architectural floor plans have mainly explored areas like:

• Symbol spotting: Symbols are described as a set of logically related graphical parts. These
parts are generally visual primitives such as vectors, lines, and arcs or a certain combination
of all of these. These primitives in a certain context denote a symbol instance. In the task
of symbol spotting thus, all the decor symbols present inside a floor plan are localized and
recognized.

• Floor plan Analysis: This pertains to structural and semantic analysis of floor plans. Examples
of various categories of problems addressed in this type of task are: detecting the various type
of walls in a floor plan, segmentation of various rooms in a floor plan, understanding the
relationship between the rooms, identifying various functionalities of various parts of a floor
plan.

From the literature it can be inferred that symbol spotting and analysis in architectural floor
plans have been active research areas in the past. However, a composite framework comprising of
analysing a floor plan structurally as well as semantically, and further retrieving floor plans based
on certain content or categories is a relatively novel problem. Upon closer observation it was found
that a floor plan has various types of meaningful information (content) that can be explored while
retrieval. At the same time, inter-class dissimilarity and intra-class similarity among the samples of
a floor plan dataset are also to be taken into consideration. Some examples for a meaningful content
are, layout information, inner components or decor information, accessibility or approachability of
each room from the entry or exit or from each other, aesthetics information or proper placement of
the rooms inside the layout, and so on.

In this chapter, the primary focus is on the first two types of content namely, the layout
information and the decor information to distinguish between a pair of floor plans. A baseline
global framework comprising of match scores computed based on both the topological and decor
features is proposed, which paves way for a novel framework for the introduction of retrieval in the
area of architectural floor plans. In the subsequent chapters of this thesis, improvement over this
baseline is discussed. The Chapter organization is as follows: Sec. 3.1 gives a brief insight into the
proposed approach. Subsequent sections detail out the methodology of the proposed approach. In
Sec. 3.6 the experimental setup, qualitative and quantitative results of the proposed technique are
presented. Section 3.7 provides an analysis of the results obtained and finally Sec. 3.8 concludes
the Chapter.
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Figure 3.1. : Framework diagram for our structural retrieval based on topology

3.1 BRIEF OVERVIEW

A query by example paradigm has been followed to retrieve similar floor plan images. Figure
3.1 depicts the complete framework of the proposed technique of semantic based architectural
floor plan retrieval. The framework has two phases : A) Feature extraction, and B) Matching
and Retrieval phase. The solid arrows in the framework diagram (Fig. 3.1) correspond to the
feature extraction phase, whereas, the dashed arrows correspond to the retrieval phase. The various
components of the framework, in order of operation, are:

1. Floor plan repository, which in this case are the architectural floor plan databases SESYD
[Delalandre et al., 2010a] and ROBIN [Sharma et al., 2017].

2. The Wall Detection block, which focuses on delineating a floor plan and detecting room
boundaries.

3. Room Layout Segmentation block, which segments the layout into meaningful rooms
discarding all the inner decor components present inside the rooms.

4. Adjacent Room Detection (ARD) block wherein the relationship between the segmented rooms
is established. Here, the relationship pertains to the topological information of the layout.

5. The output of the ARD block is sent to the Layout Graph generation step where, the
topological information of a layout is modelled into a graph for feature representation.
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Considering the adjacencies a graph of the floor plan is generated using the topology graph
idea proposed in [da Fonseca, 2004].

6. The next block is the Spectral Feature Embedding block where, the topology (neighbourhood)
information is embedded into a pattern space as a feature vector. The adjacency matrix
obtained from this layout graph is used to extract the spectral features.

7. The next component, the feature database, stores all the feature vectors extracted from the
floor plans and serves as a feature repository. This procedure is carried out apriori for all the
images present in the floor plan database.

The blocks mentioned above constitute the Feature Extraction Stage. As soon as the query is fired,
first the features are extracted from the floor plans using the Stage 1 blocks and then the Matching
and Retrieval Stage (Stage 2) comes into picture. The main blocks in Stage 2 are:

1. Room Layout Matching (RLM) block, where, the dissimilarity between the query feature
vector and each of the model feature vectors is computed using Euclidean distance metric.
The model corresponding to the minimum distance of its feature vector from the query feature
vector is chosen as the best match.

2. Room Decor Matching (RDM) block, where the layout from the database to which the query
layout matches the best is then chosen and further in the images of that matching layout
category, the arrangement of furniture is analyzed. A match cost is computed by matching
the room decor of each image of the layout category with the query image and this match
cost is then used to rank order the results for obtaining the best matching floor plan image
to the query floor plan image.

3. Match-cost Computation block helps in calculating the cumulative match cost obtained from
both the Room Layout Matching block and the Room Decor Matching block.

4. Finally, using this cumulative match cost floor plans are fetched from the repository and
rank-ordered on the basis of their similarity with the query floor plan.

The main contributions towards the first attempt for designing a baseline framework for
floor plan retrieval are as follows:

1. A novel approach to perform floor plan retrieval incorporating both symbol spotting and room
level analysis.

2. Performing two level matching for floor plans based on semantics such as layout and decor.

3. Graph spectral embedding of layouts into a pattern space for efficient and fast matching.

All these steps finally complete the retrieval framework for similar floor plans. The details
of each step mentioned in the framework diagram are further discussed in the following sections.

3.2 LAYOUT SEGMENTATION

The first step in the proposed framework is layout image segmentation, which consists of
structural and semantic analysis to segment the floor plans into respective rooms. Figure 3.2 depicts
the various stages of layout segmentation and analysis. Boundary extraction is performed where
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Figure 3.2. : Various stages of structural and semantic analysis on an image from SESYD dataset
[Delalandre et al., 2010a]: (a) unsegmented layout, results of (b) morphological operation
and wall, boundary extraction, (c) Detection of doors and windows (d) Closing gaps in
walls and (e) labelling and segmenting the room structure

the boundary extraction algorithm and morphological operations are carried out detecting the walls
in the layout. Let the input floor image be denoted by I . This floor plan image is first dilated
(⊕) by a disk type structuring element (Sa) of unit radius followed by erosion operation (⊖) by the
same element, according to the following equation:

I = I ⊕Sa ; I = I ⊖Sa (3.1)

These operations lead to segregation of the layout boundary from small unnecessary designs
present inside the layout (Fig. 3.2(b)). This detects the walls in the layout to represent the room
structures and thus, delineates the rooms within the layout from each other. Next gap closing is
performed at the location of doors and window in the floor plan. Floor plans contain doors and
windows that connect each room, therefore, are important for semantic analysis. However, the
presence of these doors and windows doesn’t influence the overall structure of the building. Hence,
these two components are removed for structural analysis. The doors and windows inside the layout
are present in various orientations and their elimination leads to production of gaps in the walls at
their location (refer Fig. 3.2 (c)). The first task therefore, is to detect the doors and windows in
the floor plan and close the gaps at their locations so as to construct definite boundaries for the
rooms (Fig. 3.2(d)). To detect the doors and windows Harris corner detector [Harris and Stephens,
1988] is employed.

It is observed that the door symbol has an arc like structure (triangular structure) and
thus, Harris corner detector detects three corners at the three triangle edges for the door symbol
(refer Fig. 3.3(a)). It is to be noted that only the door symbol out of all the decor symbols in the
symbol library has this type of a unique triangle-bound 3-corner structure. Through this unique
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Figure 3.3. : Detecting doors and windows using Harris corner detector

structure the doors stand out as compared to the rest of the symbols in the symbol library. To
detect whether the obtained corners form a triangle or not, the three corners identified through
Harris corner detector for the door symbol are joined with their adjacent corner point, creating
a closed triangle. Further, length of each side (a,b,c) of this triangle is computed and using the
triangular inequality : “sum of any two sides should be greater than the third side (a+ b > c,
a+c > b, b+c > a)”, the closed structure is determined to be a triangle. Thus, using this approach
doors are detected. The next symbol that needs to be detected in a floor plan for gap closing,
is the window. The windows are observed to have collinear corners (refer Fig. 3.3(b)) and thus,
get detected through the detection algorithm as the only symbol with collinear corners. Again to
identify whether the obtained corners are collinear or not, the co-ordinates of the corner points are
noted (x1,y1, x2,y2 and x3,y3). Further, slope of the line between each pair of points is calculated
as:

slope =
y1− y2

x1− x2
;

y2− y3

x2− x3
;

y3− y1

x3− x1
(3.2)

If the slope is the same between any pair of corner points, then they are identified to be
collinear, hence belonging to the window structure. Thus, uptil now the door and the window
locations have been identified.

Upon identifying and eliminating the doors and windows from the floor plan, the next task
is to close the gaps in the walls (as shown in Fig. 3.2 (c)). Closing of the gaps is achieved by joining
the detected co-ordinates of the doors (in this case the co-ordinates forming 0◦ angle with each
other) and windows setting the values of the pixel location between them as 0, with a thickness
of about 40 pixels. Hence, creating a closed wall-structure as in Fig. 3.2 (d). Next, connected
component analysis using 8-neighbourhood criterion is performed, to label each room in the layout
separately. By this step, the rooms are segmented and are surrounded with walls separating each
one of them 3.2(e)). The segmented room layout is sent to the Adjacent Room Detection block for
adjacency graph creation.

3.3 ADJACENT ROOM DETECTION

In this step the segmented image is passed through an Adjacent Room Detection (ARD)
module to determine the adjacencies between the rooms in the layout. As the segmented rooms are
still divided by walls surrounding them, a threshold corresponding to the wall width of about 40
pixels is taken along both vertical and horizontal directions to detect the differently labelled pixels in
the image corresponding to the adjacent room. By determining the adjacencies the topology graph
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for the layout is created, according to the technique mentioned in [da Fonseca, 2004]. Figure 3.4(c)
depicts an example of a topology graph created from the room adjacencies (Fig. 3.4(b)) determined
from a given floor plan (Fig. 3.4(a)). The parent node (the one at the centre) represents the layout
and the child nodes represent the rooms in the layout. The solid edges between the parent node and
the child nodes represent inclusion and dashed edges between the child nodes represents adjacencies.
This graph creation further, aids in constructing an adjacency matrix for the rooms detected in the
layout which is then used for feature extraction.

However, topology graphs are not directly used for searching similar drawings, since graph
matching is a NP-complete problem. Instead of that, the corresponding graph spectrum is used.
For each topology graph to be indexed in a database, the descriptors are computed on the basis
of its spectrum. In this way, the problem of isomorphism between topology graphs is reduced to
computing distances between descriptors. The next section details out the steps to identify the
decor components inside the floor plan which are also used for matching purposes.

3.4 FURNITURE DETECTION AND CATEGORIZATION

Algorithm 1 depicts the steps involved in furniture categorization. Firstly, the walls are
detected in the floor plan image using a morphological operation as walls are thicker than the other
objects inside a floor plan. Then both, the original floor plan image and the image containing only
walls are subtracted to obtain only the furniture present inside the floor plan. The decor present
inside the whole floor plan is counted on the basis of the application of morphological fill operation
applied to the image. Blobs obtained are taken as the decor components inside the floor plan.
Further, to categorize the obtained blobs, area-ratio of the individual connected components inside
the blob is taken and a unique signature for each furniture component is established by considering
the area-ratio of three largest components in each blob. Prior to this, such an area-ratio feature
taking the three largest connected components in a furniture symbol is obtained for all the 12
symbols in the symbol library and stored. Signature obtained of all the components inside a floor
plan image is finally compared with the signature of the components present in the symbol library
and thus, the type of the furniture is assigned to each decor item in the floor plan. Figure 3.5 shows
how a furniture in the furniture set is assigned a signature according to Algo. 1.

Figure 3.4. : Topological graph for the segmented room layout
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Algorithm 1 Furniture detection and categorization
Input: Room image without outer walls (Iw), Furniture Template Signatures (F)
Output: Furniture Count (C), Furniture Type Set (T )

1: C=0, T ={}
2: B=Morphological fill operation(Iw)
3: C = |B| ▷ | · | : Cardinality
4: for j = 1 to C do
5: C =CC(B j) ▷ CC()=Connected Component
6: for k = 1 to |C| do
7: Ak = Area(ck), where ck ∈C
8: end for
9: A = Sortdesc(A )

10: S(B j) = {(A1/A3),(A2/A3),1)} ▷ S(·) : Signature
11: for k = 1 to |F | do
12: if S(B j) == Fk then
13: T (B j) = T (Fk) ▷ T (·) : Type of Furniture
14: end if
15: end for
16: T = {T ∪ (T (B j)}
17: end for

Figure 3.5. : Example showing how a sink symbol in the furniture set is assigned a unique signature.

Figure 3.6(b) depicts an example of the semantic layout graph, consisting of both room
adjacencies as well as, room decor representation, corresponding to a layout shown in Fig. 3.6(a)
from the SESYD [Delalandre et al., 2010a] dataset. The uncoloured nodes labelled with numbers
correspond to the number of rooms present in the layout. The adjacencies between these rooms
are depicted by dashed edges. The coloured nodes in the graph correspond to the furniture inside
each room. A 360◦ colour wheel is quantized into uniform bins of value 30◦ each. According to the
orientation of the furniture inside the rooms, a corresponding colour value from the colour wheel is
assigned to the furnitures. After obtaining the graph depicting the adjacencies between the rooms
and also the decor components, the next task is graph spectral embedding that helps in mapping
all graphs to pattern space for retrieval purposes.
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Figure 3.6. : Room layout and corresponding graph consisting of both room adjacencies as well as
room decor representation

3.5 GRAPH SPECTRAL EMBEDDING

Graph Spectral Embedding [Luo et al., 2003] approach is adopted to represent the room
layout graphs created in the previous stage in a pattern-space. Such a spectral embedding
helps to map similar floor plans closer in the pattern space and thus while retrieval all similar
plans are clustered together for efficient matching. Using this technique one can map graphs
containing a number of nodes to a feature vector of uniform size for all the floor plans in the
database. To overcome the problem of how to map the structure of a graph onto a vector of fixed
length, the graph-spectral decomposition methods are explored. Leading Eigenvectors of the graph
adjacency matrix are used to define Eigenmodes of the adjacency matrix. Thereafter, the spectral
decomposition of the adjacency matrix is performed. The use of graph spectrum as an indexing
method is beneficial as (1) it captures local topology, (2) it is invariant to subgraph re-order,
and (3) it is stable, since small changes in the graph produce little changes in its spectrum. The
graph obtained in the previous step is further represented as an adjacency matrix for spectral
decomposition as shown in the next subsection.

3.5.1 Spectral Feature representation

Given N images in the database, their graphs are represented as G1,G2...,GN . The kth graph
is denoted as Gk = (Vk,Ek), where Vk is the set of vertices and Ek ∈ Vk×Vk is the edge-set. For each
graph Gk, an adjacency matrix Ak of size |Vk|× |Vk| is computed, where | · | denotes the size of the
set.

From the calculated adjacency matrices Ak,k = 1 . . .N, where, N is the total number of graphs
for the images in the database, the Eigenvalues λk are computed by solving the equation

|Ak−λkI|= 0 (3.3)

and the associated Eigenvectors ϕ⃗k by solving the system of equations,

Akϕ i
k = λ i

kϕ i
k (3.4)
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Figure 3.7. : Embedding features from the topological graphs into spectral space. Adjacency matrices
with varying sizes are reduced to fixed length vectors in the pattern space. Kindly note,
in the right hand side, similar vectors are clustered closely in the feature space.

, where, i is the Eigenmode index.

Spectral feature vector representing the spectrum of the graph Gk is constructed from the
top n Eigenvalues of Ak taken in decreasing order. For the kth graph, this vector is represented as :

F⃗k = (λ 1
k ,λ

2
k ....λ

n
k )

T . (3.5)

Figure 3.8 (a) represents a floor plan image and its corresponding segmentation into rooms.
Figure 3.8 (b) represents the topological graph for this segmented layout depicting adjacencies and
relationships between the rooms. Node colours correspond to the rooms in the floor plan. Figure
3.8 (c) is an adjacency matrix representation of this topological graph. This adjacency matrix is
spectrally analysed and broken down into it’s leading Eigen values arranged in a decreasing order
as shown in Fig. 3.8 (d). This further forms the feature vector for each layout.

3.5.2 Spectral feature embedding

Once a feature vector is obtained as mentioned in Sec. 3.5.1 the next task is to analyse this
feature vector and reduce it into a uniform size vector representing the layout information from each
floor plan (refer Fig. 3.7, where due to feature extraction all graphs have been projected on a space
of uniform dimension). Uniformity in the feature size is needed as floor plans in the dataset have
different number of rooms leading to different sizes of adjacency matrices. Hence, to compare all
the adjacency matrices for similarity there was a need to reduce them to a same size feature vector.
To achieve this, principal components analysis is performed, following the parametric Eigenspace
idea of [Murase and Nayar, 1994]. Rationale behind using this approach is to organise graphs into
a pattern-space in which similar structures are close to one-another, and dissimilar structures are
far apart. The graphs extracted from each image are vectorised in the way outlined in the Sec.
3.5.1. Principal components analysis (PCA) of the feature vector F⃗k is performed next. For the N
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Figure 3.8. : Topological feature extraction from a room layout in a floor plan

different graph representations of the layouts in the database their spectra are arranged in a matrix
as:

R = [F⃗1, F⃗2, . . . , F⃗N ]. (3.6)

The Covariance matrix, Cv for R is computed as,

Cv = RRT . (3.7)

A spectral decomposition of Cv results in Eigenvalues ρ upon solving the Eigenvalue equation

|Cv−ρI|= 0 (3.8)

and the corresponding Eigenvectors ψ⃗ are found by solving the Eigenvector equation.

Cvψ⃗i = ρiψ⃗i. (3.9)

The Principal components directions are obtained by using the first three leading Eigenvectors of
C. The three leading Eigenvectors give a wholesome estimation of the adjacencies in the layout
[Luo et al., 2003]. Three orthogonal vectors span the co-ordinate system of the Eigenspace as
Φ = (ψ⃗1, ψ⃗2, ψ⃗3). This aids in projecting the individual graphs represented by the vectors F⃗k;k =
1,2, . . . ,N on the pattern space as

x⃗k = ΦT F⃗k. (3.10)

Hence, each graph obtained from the layouts is represented as a three-component vector x⃗k in the
Eigenspace as x⃗k = (x′k,x

′′
k ,x
′′′
k )

T . After the computation of the features, in the next section, the
matching technique is described.

3.5.3 Feature Matching and Retrieval

A two phase matching and retrieval, Room Layout Matching (RLM) and Room Decor
Matching (RDM) is proposed. Feature matching and retrieval of similar layouts (RLM) is performed
by determining the proximities between all the layouts. The distance (d) between query graph’s
feature vector x⃗q = (x′q,x

′′
q ,x
′′′
q )

T and that of the model graph’s feature vector x⃗m = (x′m,x
′′
m,x
′′′
m )

T is
calculated as:

d =
√

(x′q− x′m)2 +(x′′q− x′′m)2 +(x′′′q − x′′′m )2 (3.11)
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.

The smaller the distance more similar the graphs are. Thus, this similarity measure helps
us to order the architectural layouts represented as graphs. Rank ordering of the images helps in
generating the most similar images to the query input and can efficiently retrieve exactly matched
or approximately similar layouts from the database to suit the application.

After the first level matching of the layouts the next level match to find the semantic
difference between the layouts (RDM) is done. An algorithm to compare the number and type
of the objects inside the room (see Alg.2) is proposed, where T represents type of furniture, C u

represents number of unique furniture in the whole floor plan. After determining the closest layout,
the unique furnitures present in each room are identified. To compute the semantic difference,
between a pair of layouts, the number and type of the objects present inside the rooms of the
query layout is compared with the model layout. Further a matching cost (costqm) is assigned which
increments if there is an object level matching between the layouts and decrements otherwise. The
final costqm obtained from Alg.2 is used to rank order retrieved results based on semantic difference.
A flowchart for Room Decor Matching is also provided in Fig. 3.9 to depict the various steps
involved in the RDM framework.

Algorithm 2 Calculate semantic difference between layouts
Input: Query Image (Iq), Model Image (Im)
Output: Matching Cost (costqm)

1: Tq = {T i
q };1≤ i≤ |C u

q | ▷ C u: No. of unique items
2: Tm = {T j

m};1≤ j ≤ |C u
m| ▷ T : type of furniture

3: costqm = 0
4: if (|Cq| ̸= |Cm|) then ▷ C : No. of items
5: costqm =−1
6: else
7: for all i, j do
8: if T i

q = T j
m then

9: costqm← costqm +1
10: else
11: costqm← costqm−1
12: end if
13: end for
14: end if

return costqm

3.6 EXPERIMENTS AND RESULTS

The experiments are performed on the SESYD dataset [Delalandre et al., 2010a] and the
ROBIN dataset [Sharma et al., 2017]. The SESYD dataset has 10 different types of layouts, each
with 100 images varying in their arrangement of furnitures inside the rooms. The image sizes in
the database vary from 6775× 2858 to 2056× 1837. On the other hand, the ROBIN dataset has
about 510 floor plans each divided into 3 broad categories based on the number of rooms present
inside them and varying in the global structure. All floor plans are binarized to ensure that only
structural information of the floor plans is used for the analysis.
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Figure 3.9. : Framework for Room Decor Matching

Figure 3.10. : Top 5 retrieved results corresponding to a query from the SESYD dataset.

3.6.1 Qualitative Results

The framework starts off with segmenting the architectural layouts into rooms followed by,
detecting the various furnitures present in each room. A semantic representation of the layout
graph (see Sec. 3.3) is obtained, by connecting the furniture nodes with the room node that they
belong to using dash-dot edges.

The proposed RLM and RDM techniques, helped in rank ordering of the matched layouts
based on the semantic difference i.e. differences in the arrangement and number of furniture inside
the rooms. Figure 3.10, shows qualitative retrieval result corresponding to a query from the SESYD
dataset. The red bounding boxes depict a change of decor between the query layout and the
retrieved layouts, thus leading to dissimilar layouts being retrieved later than the similar ones
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Figure 3.11. : Retrieval results for two different query architectural floor plans taken from the SESYD
dataset. The top row shows the query image, the corresponding room layout and the
semantic graph generated from the floor plan image. For the given query images only
the top six retrieval results are shown.

during matching. As the result is demonstrated on SESYD dataset and it is observed that within
a category in SESYD dataset only the decor arrangement differs, and the layout remains the same.
Hence, the first rank ordered result is the query layout itself. The subsequent results differ in the
placement, position, type and number of the furniture present inside the floor plan. For example,
the Rank 5 result differs from the query floor plan in terms of a table’s orientation as well as
lacks a small table in comparison to the query. Hence, is retrieved later. To elaborate further,
the rank ordered retrieval results along with their corresponding semantic graphs for two such
queries, are shown in Fig. 3.11. The first row in Fig. 3.11 represents the query image, its room
level segmentation, and the corresponding semantic graph. The following rows correspond to the
top six rank ordered results along with their semantic graphs. It can be observed that the layout
category in the rank ordered results is the same as that of the query and thus, ensures high retrieval
accuracy. The first rank ordered result obtained from the layout database is the query image itself
due to minimum distance from the query. The subsequent results differ in the type, number and
orientation of furnitures inside each room.

After explanation of how the retrieval results differ in their layout/ decor arrangement,
further, more qualitative results on both SESYD dataset and ROBIN dataset are shown in Fig.
3.12. In Fig. 3.12, the subfigures 1. (a) and (b) correspond to the query given from SESYD dataset
and the subsequent rank-ordered results. While, 2. (a) and (b) correspond to the query given from
ROBIN dataset. On closer observation it can be seen that retrieval framework performs well while
layout matching and all layouts from the same category are retrieved as can be seen form the same
global shapes of the layouts in the query as well as the retrieved results.
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Figure 3.12. : Retrieval results for two different query architectural floor plans taken from the SESYD
dataset and the ROBIN dataset. 1. (a) and (b) correspond to the query given from
SESYD dataset and the subsequent rank-ordered results. 2. (a) and (b) correspond to
the query given from ROBIN dataset

Figure 3.13. : Quantitative result comparing the RLM and the RDM approach on the ROBIN dataset
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3.6.2 Quantitative Results

Quantitative analysis of the proposed algorithm was also done to observe the results.
Precision (P) and Recall (R) are calculated using the equations mentioned below:

Precision(P) =
|{relevant floor plan images}∩{retrieved floor plan images}|

|{retrieved floor plan images}| (3.12)

Recall(R) =
|{relevant floor plan images}∩{retrieved floor plan images}|

|{relevant floor plan images}| (3.13)

Figure 3.13 shows the PR plot obtained by taking query from the ROBIN dataset and
retrieving based on layout matching and a combination of layout and decor matching separately.
In Fig. 3.13, the blue line marked with red squares denotes the PR plot obtained through layout
matching (RLM) and the green line with yellow diamond markers depicts PR plot obtained with
combination of both RLM and RDM. This study helped in observing how well the algorithm behaves
in case of both matching strategies taken exclusively. The initial Recall value was obtained as 1
due to the first rank ordered retrieved result to be the same as the query. The subsequent results
had some differences in the layout and decor. It was observed that taking the global layout, i.e.
the placement of rooms inside a floor plan was a broader way of classifying the layouts, hence, the
area under the PR plot with layout matching was obtained to be greater. This also owes to the
fact that as more detailed decor characterization and matching is looked into, it leads to a slightly
poor categorization of the layouts because of the specificity while retrieval.

Similarly, quantitative analysis of retrieval performance on the SESYD dataset was also
performed. As discussed before, SESYD dataset has large differences between the layouts across
its 10 categories but inside a category, all the layout shapes are the same, only differing in their
decor arrangement. The values of the distance metric depicting the similarity between layouts from
SESYD dataset are shown in Figure 3.14. In Fig. 3.14, the x-axis corresponds to the ten different
categories of layouts present in the database, whereas, the y-axis corresponds to the distance value
between two layout categories in terms of the distance between the feature vectors representing
them. The nodes depict the distance of each category from the 10 categories in the database.
For example, as shown in Fig. 3.14, yellow line with triangles corresponds to the distances with
respect to layout category 3 in the SESYD database. Note that the distance is 0 with respect to
category 3 and highest with respect to category 9. This is due to the very large difference in the
layout characteristics between category 3 and 9. It is evident from the plot that our proposed RLM
technique (see Sec. 3.5.3) yields high intra-category similarity and low inter-category similarity
between layouts, as expected. To illustrate further, one can see in Fig. 3.15 for layout 8 and 4 that
the first rank retrieved result is layout 8 itself due to exact matching between the query and the
Rank 1 result. Further, Rank 2 result has similar number of rooms and adjacency information as
the query. Other retrieved results follow suit. Due to high inter-class dissimilarity between floor
plans in the SESYD dataset, a perfect Precision value was obtained for all the recall values while
retrieval.
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Figure 3.14. : Plot of intra-class and inter-class distances between layouts using our feature matching
technique on the SESYD datset.

3.7 DISCUSSION

The framework discussed in this Chapter efficiently performs the various processing steps
starting from, wall detection to room segmentation, graph creation of the layouts, feature
computation, graph matching between the layouts, object level matching between the layouts and
finally rank ordering the results. Another important aspect to be analyzed here is the search time.
To compute the search time of the proposed approach time taken in seconds is computed at every
step for the SESYD dataset. This time is averaged over 1000 samples belonging to a single class
in the SESYD dataset. Figure 3.16 shows the class-wise computation time-ratio for the layouts
in the dataset. Colour coding signifies various components of the proposed framework and helps
establishing correspondence to understand which step performs computationally efficient in the
proposed framework.

It can be observed that the wall detection step took an average time of 4.481 secs. for all
the layout categories. Segmentation into rooms was a little computationally expensive step owing
to a number of intermediate processing steps. The average time taken by the segmentation step was
18.047 secs. Graph generation and spectral feature embedding of the graphs took an average time
of 5.513 secs. and 5.292 secs. respectively. Figure 3.16 shows this analysis, where, values shown
in the bar chart denote the ratio of time taken in seconds for each step to the total time taken for
execution.

As discussed in Sec. 3.3, graph matching is a computationally expensive process. To avoid
this spectral graph embedding is proposed in this Chapter, which creates uniform three component
vectors for representing all the graphs, which helps in clustering similar graphs closer in the pattern
space. Therefore, this technique considerably reduced the computation time while matching the
layouts. The average time taken at this step is 7.569 secs.

Analysis revealed that the furniture level matching inside the layouts was the most
computationally expensive step in the proposed approach. This step took the maximum average
time of 154.036 secs for every layout because of 1) iteratively searching for the arrangement of
furniture inside each layout, and 2) large dimension (6775×2858) of the layout images. An efficient
indexing method or hashing technique for the second level match could yield better results.
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Figure 3.15. : Layout matching from floor plans taken from SESYD dataset. Two such results from
Category 8 and 4 are highlighted with a red bounding box.

Similar analysis was also performed for the ROBIN dataset. As the classes in ROBIN
dataset are 51 in number, therefore, it is not feasible to show class-wise search time graph for the
ROBIN dataset. Alternatively, in Fig. 3.17 the search time taken in seconds averaged over all the
510 samples in the ROBIN dataset, at every step of the framework is represented as a bar-graph.
It was observed that the most computationally step was the decor matching step again taking an
average time of about 7.34 secs., which results from the fact that, iteratively searching for the
arrangement of furniture inside each layout is computationally expensive. On the other hand, the
most computationally efficient step is the Automatic Room Detection step.

As this was a novel baseline framework proposed in this Chapter, therefore, due to a lack
of availability of the implementation of such a composite framework for retrieval and matching of
floor plans in the literature, there is an inability to compare the results with other approaches.
Although, in Fig. 3.18 the comparison of segmentation step to the one proposed in [de las Heras
et al., 2014] is shown. Where, segmentation results on two images from CVC-FP [de las Heras
et al., 2015] dataset are shown, with, the left hand side being (a) the input floor plan and (b) and
(c) correspond to the technique proposed in [de las Heras et al., 2014] and the proposed approach
respectively. It can be observed that the proposed segmentation technique performs at par with
the technique proposed in [de las Heras et al., 2014].
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Figure 3.16. : Execution time for the intermediate stages of processing of the framework for different
categories of floor plans on the SESYD dataset. Values shown in the bar chart denote
the ratio of time taken in seconds for each step to the total time taken for execution.

Figure 3.17. : Execution time for the intermediate stages of processing of the framework averaged over
all 51 categories of floor plans in the ROBIN dataset. Values shown in the bar chart
denote the time taken in seconds.

The approach proposed in [Weber et al., 2010] taking sketch as a query to retrieve floor
plans is partly related to the work proposed in this Chapter. However, the key difference is that
the authors in [Weber et al., 2010] represent query layouts as sketches using only primitive shapes
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Figure 3.18. : Segmentation results on two images from CVC-FP [de las Heras et al., 2015] dataset (a)
Input floor plan, (b) Technique proposed in [de las Heras et al., 2014], (c) Our approach

such as rectangles. In contrast, in this Chapter the room decor represented by complex geometric
primitives is considered. Moreover, in [Weber et al., 2010] the adjacencies between the rooms
represented in the layouts, in sketch form were very simplistic in nature which is quite complex
in our case. Furthermore, they have ignored the representation and matching of the room decor
between the layouts.

3.8 SUMMARY

In this Chapter, a framework for searching floor plans by structural analysis, as well as,
semantic similarity is proposed. Inclusion of the room decor arrangement during retrieval is a novel
idea that can find application in scenarios where the user has specific choices in terms of the fully
furnished floor plans. Furthermore, a spectral embedding approach to represent graphs obtained
from the layout is proposed in the baseline retrieval framework proposed in this Chapter. This
technique helped in reducing the computation time taken during the graph matching stage to a
considerable level.

In this Chapter, handcrafted topological features were proposed to be extracted from the
floor plans. Topology and room decor features although help in distinguishing two floor plans
and retrieving similar ones, but inclusively are not a good enough measure to analyse a floor plan
completely. It is very difficult to curate handcrafted features powerful enough to extract all the
details from a floor plan. On the other hand, deep neural networks are able to analyse a floor
plan in a minute manner extracting all the relevant features at once. In the literature, deep neural
network based features have shown promising results for the retrieval of natural images. However
their application to floor plan images has not been researched. Therefore, in the next chapter, deep
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neural networks are explored to extract structural and semantic information from a floor plan for
the retrieval task.
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