
4
Deep convolutional neural networks for Floor plan

Analysis and Retrieval

In Chapter 3, a baseline retrieval framework was explored by extracting topological features
for understanding the layout in a floor plan. Additionally the decor features were extracted,
to understand the room semantics better. During retrieval, these two features are combined
and the floor plans are rank ordered based on the feature similarity. For efficient and accurate
characterization of a given floor plan, as well as coming up with a feature representation that
is invariant to various perturbation, feature engineering is a key component. Broadly the feature
engineering approaches are classified into two categories, namely: hand-crafted features and machine
learned features (deep features). The features discussed in Chapter 3, are hand-crafted. For
hand-crafted features the pipeline for feature extraction is designed such that it is particularly
suitable for the underlying application, and sufficient to meet the requirements. These features are
robust and give satisfactory retrieval performance. However, the hand-crafted features have the
following deficiencies:

1. The hand-crafted features mostly reflect the low-level identities of the objects present in the
scene or the image under consideration. As a result these features are not directly suitable
for representing the mid-level or even high-level depiction of the objects and require further
processing or integration with additional knowledge.

2. During the feature extraction process the image level information is ignored, i.e. the features
extracted are independent of the content present in the image.

This limits the matching algorithm to identify the similarities between two given floor plans.
Recently, Deep Neural Networks (DNNs) have demonstrated their great power in computer vision
and have achieved better performance for many tasks. For example, Convolutional Neural Networks
(CNNs) have achieved good performance for ImageNet image classification [Russakovsky et al.,
2015]. The CNNs automatically learn the image representation from the images. The image labels
are used to make the image representations separable. Such CNN learned features are termed as
the machine learned features. These machine learned features capture the distribution information
about the underlying data, and such information is especially important to the image representation.
Hence, in this Chapter a deep learning framework is proposed for the analysis and retrieval of similar
floor plans, with query by example paradigm, where the queries are floor plan images.

The rest of the chapter is organized as follows: Section 4.1, gives a brief description of the
proposed technique. Section 4.2 and 4.3 give an insight into the proposed deep architecture for floor
plan feature extraction and retrieval. Section 4.4 analyses the qualitative and quantitative results
obtained through the extensive experiments that were carried out. Finally, Sec. 4.5 concludes the
Chapter.

41

Figure 4.1. : Deep Learning Model based Framework for Floor Plan Retrieval

4.1 BRIEF OVERVIEW

Figure 4.1 depicts the complete framework of the proposed deep learning technique. A
brief overview of the proposed framework for similar floor plan retrieval is as follows. The entire
framework has been divided into two main phases. They are: (1) deep feature representation; and
(2) matching and retrieval. In the deep feature representation task, deep neural network layers like
Convolution, Normalization, Pooling and ReLU are used. In this work an additional Normalization
layer is used which basically is useful when ReLU neurons are being dealt with. This is due to
the fact that ReLU neurons have unbounded output and thus need to be normalized. If there is a
normalization around the local neighborhood of the excited neuron, it becomes even more sensitive
as compared to its neighbors. At the same time, it dampens the responses that are uniformly large
in any given local neighborhood. If all the values are large, then normalizing those values diminishes
all of them. Therefore, the normalization layer encourages some kind of inhibition and boosts the
neurons with relatively larger activations. The output of all the layers mentioned above is passed
through a network of fully connected layers to finally give the feature vector for an input image.
The framework first learns the deep feature representation for floor plan retrieval task using a few
samples from the ROBIN dataset. The learned deep representation helps to extract deep features
from the samples of ROBIN, and stores it in the feature database. During the retrieval stage, the
framework extracts the deep features from query image also using the same deep representation,
where query image is both from the SESYD and the ROBIN dataset. The extracted deep features
are then matched with the deep features in the database. A similarity score for a particular layout
is thus calculated for all the query samples. To understand the effectiveness of the individual layers
or feature representation of the deep learning network, the similarity is calculated using the features
at the outputs of all the layers.

In this Chapter, the goal is to come up with new effective deep learning based feature
representation and to investigate the effectiveness of learned features on floor plan retrieval tasks.
In particular, two open issues are addressed:

• How to learn a new efficient deep learning feature representation for floor plan retrieval task?

42

• How the individual deep feature layers affect the performance of the retrieval system?

The proposed architecture has two main components, (1) Feature Representation and (2) Matching
and Retrieval, which are discussed in detail in the subsequent subsections:

4.2 FEATURE REPRESENTATION

Traditionally, feature extractors are manually engineered and optimised through a laborious
trial-and-error cycle involving re-learning the classifiers. In this work, the representation is learned
using a CNN instead, by jointly optimising the performance of the features, as well as, of the
classifiers. Existing literature also validates that deep features are a better way to represent an
image. However, it is also shown that improper training of deep layers may lead to over-fitting or
under-fitting of a model which can be a disadvantage.

Convolutional Neural Networks (CNNs) have shown promising results for various computer
vision tasks like classification and detection. Convolutional neural networks are similar to
feed-forward neural networks. They are made up of neurons that have learnable weights and
biases. Each neuron receives some inputs, performs a dot product and generally follows it with a
non-linearity. The entire network expresses a single differentiable score function: from the raw image
pixels on one end to class scores at the other end. There is a loss function on the final fully-connected
layer. The difference that convolutional neural networks have from feed-forward networks is that,
these architectures make the explicit assumption that the inputs are images. This assumption
then leads to a vast reduction in the number of parameters in the network. Convolutional neural
networks have a variety of layers serving different purposes. Using the approach of CNNs, many
classification related tasks have been done in the past. It was observed that researchers have not
extensively explored the CNNs for floor plan retrieval tasks. The work proposed in this Chapter
uses a combination of convolution, pooling, normalization, ReLU, and fully connected layers along
with dropout regularization technique (see Fig. 4.1). Before going into the detailed description of
the proposed architecture, in the next sub-section, for the sake of completeness, a brief description
of multilayer feed forward neural network and its relation to CNNs is presented.

4.2.1 Multilayer feed-forward neural network Architecture

Multilayer feed-forward neural networks (MLFFNN) receive an input (a single vector), and
transform it through a series of hidden layers. Figure 4.2 depicts an architecture of a typical
MLFFNN. Each hidden layer has a number of neurons. Each neuron is connected to all neurons in
the previous layer (Fig. 4.2(a)). Neurons in a single layer do not share any connections. The final
fully-connected layer called the output layer represents the class scores. Let, the input feature vector
x̄ be of d dimension and there are k output classes (in a k-class classification problem). According to
the Universal Approximation theorem, if Φ(.) is a non-constant, bounded, monotonically increasing
continuous function, then there exists an integer J such that:

f̃ (x̄) =
J

∑
j=1

α jΦ j

(
d

∑
i=1

wi jxi +w jo

)
(4.1)

is an approximate realization of the desired function f (x̄). Here, J is the number of neurons in the
hidden layer, and wi js are the synaptic weights between the pre-synaptic neuron i, and post-synaptic
neuron j. The theorem guarantees that we will be able to design an artificial neural network with J

43

Figure 4.2. : Architecture of feed-forward neural network, with the input layer, a hidden layer and the
output layer

hidden nodes and synaptic connections, which will be able to represent the input feature vector to
the best possible extent. In Fig. 4.2(b), the synaptic weights between input to hidden and hidden
to output layer are explicitly shown. To determine the class label for a given test sample, “winner
takes all” decision logic is followed.

In case of MLFFNN, the input vector dimension plays an important role in the scalability
of the entire solution. An increase in the value of d leads to increase in the number of synopsis,
and hence the synaptic weights. As a result, there are huge number of parameters to be learned.
For example, a given image of size, say, 32× 32× 3, requires 3072 weights for each neuron. For
a bigger image that is 200× 200, each neuron in the first layer would require 120000 parameters.
This network with a huge number of parameters, would not only take long to train, but may also
be prone to overfitting.

On the other hand, the convolutional neural network has its origin deeply rooted at the
seminal work by Hubel and Wiesel (Nobel prize awarded in the 1980’s). Hubel and Wiesel’s
“simple” and “complex” cell’s computational properties were later well-described by linear models
and rectifiers. The key components incorporated in convolutional neural networks, which are similar
to the various components of the visual cortex are:

• CNNs are spatially organized, so that nearby cells act on nearby parts of the input image
(similar to the Retinotopic map)

• CNNs use spatially localized linear filters, which are followed by thresholding (resembling the
simple cells)

• CNNs use pooling units to incorporate invariance to shifts of the position of the feature
(mimics the complex cells)

Some recent work has shown that artificial neurons in convolutional neural networks have similar
hierarchical structure to the visual pathway. CNN (refer Fig. 4.3) takes advantage of the fact

44

Figure 4.3. : Architecture of a Convolutional Neural Network Model for classification of an image
[LeCun et al., 2015]

that the input are images and they constrain the architecture. In particular, the layers of a CNN
have neurons arranged in 3 dimensions: width, height and depth, where, depth refers to the third
dimension of an activation volume.

4.2.2 Proposed CNN architecture

The Convolutional Neural Network (CNN) proposed in this Chapter for the classification
of floor plans has an architecture comprising of an Input layer, a Convolution layer, a ReLU layer,
a Pooling layer, a Normalization layer and a Fully Connected layer. Details of each layer are as
follows:

• The Input layer holds the raw pixel values of the floor plan image.
• Convolutional layer computes the output of neurons that are connected to local regions in

the input, each neuron computing a dot product (weighted sum) between its weights and a
small region it is connected to in the input image. Figure 4.4 depicts an example of such a
weighted sum between an input image and a filter. The convolutional layer defines a collection
of filters (or activation maps), each with the same dimension as the input. Let, the input
be of dimensionality (w,h,d), and the filter dimensionality be (w f ,h f ,d), typically w f < w.
The depths being equal means that the output of this convolution operation is 2D. The
output slices of the convolution operations with each filter are composed together to form
a (w+w f − 1,h+ h f − 1,n f) tensor, where n f is the number of filters. A convolutional layer

Figure 4.4. : Example of how convolution operation is performed on an image matrix.

45

Figure 4.5. : Example of how a ReLU Operation works.

finally learns a set of n f filters, Filt = { f ilt1, f ilt2.... f iltn f } with input floor plan image I to
produce a set of 2D feature maps:

zk = f iltk ⊛ I (4.2)

where ⊛ is the convolution operator. Sharing of weights is done over the entire image which
in turn results in the reduction of the number of parameters. Also, if there are m inputs
and n outputs in a hidden layer, a MLFFNN would require O(mn) operations to compute
the output. Whereas, in CNN each output is connected to only k = w f h f d inputs, and thus
requires O(kn) operations to compute the output, thereby reducing the computation time.

• In the network proposed in this Chapter, ReLU (Rectified Linear Unit) layer is used to
induce non-linearity. The ReLU clips negative values to zero while keeping positve values
unchanged. Figure 4.5 depicts how ReLU works. The popularity of ReLU is due to the fact
that it highly enhances the acceleration of the convergence of stochastic gradient descent as
opposed to the sigmoid/tanh functions due to its linear non-saturating form. It also avoids
and rectifies vanishing gradient problem [Krizhevsky et al., 2012b]. This is due to the fact
that as seen in Eq. 4.3 the gradient maintains a constant value. An added advantage is that
it is computationally less expensive. ReLU has the following mathematical form:

y = max(0,x) (4.3)

It applies an element-wise activation function, in the form of max(0,x) with thresholding at
zero which leaves the size of the volume unchanged.

• In the proposed architecture, a pooling layer is used for reducing the size of the feature maps
and to provide invariance between floor plan images with very little differences. Max pooling
is usually preferred as it prevents blurring of the activations and gradients throughout the
network because the gradient is placed in a single location during back propagation. It also
avoids cancellation of negative elements (refer Fig. 4.6) [Cadène et al., 2016; Yin et al., 2016].
Pooling layer performs a down-sampling operation along the spatial dimensions.

46

Figure 4.6. : Example of how a Max-Pooling Operation behaves on an image matrix.

• The next layer in the proposed architecture is the Batch normalization layer, which is widely
popular as it converges faster [Ioffe and Szegedy, 2015]. The Batch normalization layer leads
to an addition of a normalization step which helps in shifting the inputs to zero-mean and unit
variance [Cadène et al., 2016]. It allows activation functions to not get stuck in the saturation
mode (gradient equal to 0).

• The fully-connected layer computes the class scores. Classification into categories is done
by this layer. Neurons in a fully connected layer have connections to all activations in the
previous layer.

In this way, the proposed Convolutional Neural Network transforms the original floor plan
image, layer by layer from the original pixel values to the final class scores. In particular, the
Convolutional/Fully Connected layers perform transformations that are a function of not only the
activations in the input volume, but also of the parameters (the weights and biases of the neurons).
On the other hand, the RELU/Pooling layers implement a fixed function. The parameters in the
Convolutional/Fully Connected layers are trained with gradient descent so that the class scores
that the Convolutional Neural Network computes are consistent with the labels in the training set
for each image.

This proposed architecture takes inspiration from the methodology described in the work
AlexNet [Krizhevsky et al., 2012a], to obtain an effective feature representation from floor plan
images (refer Fig. 4.7).

The basic highlights of the AlexNet framework [Krizhevsky et al., 2012a] are:

• ReLU is used instead of Tanh to add non-linearity. This layer accelerates the speed by 6 times
at the same accuracy for classification tasks.

• Dropout is used instead of regularisation to deal with overfitting.
• Pooling is overlapped to reduce the size of network. It reduces the top-1 and top-5 error rates

by 0.4% and 0.3%, respectively.
The AlexNet framework contains 5 convolutional layers and 3 fully connected layers. ReLU is
applied after every convolutional and fully connected layer. Dropout is applied before the first
and the second fully connected layer. Through Dropout, at each training stage, individual
nodes are dropped out of the net to ensure that there is no overfitting in the network.

However, the model proposed in this Chapter is different from AlexNet in terms of two

47

Figure 4.7. : Sequence of layers in AlexNet Framework [Krizhevsky et al., 2012a]

properties:

• The network is not trained with data-augmentation.
• The order of pooling and normalization layers is switched (pooling is done before

normalization) [Jia et al., 2014].

The values of the parameters used in the framework such as, number of layers, type of
layers, channels, filter sizes, convolution strides, pooling size, pooling stride and the padding size
are listed out in Tab. 4.1. The parameters left blank in the table are the ones which do not have
any role to play in that particular layer.

As an example taking the first layer, which is a combination of a convolution layer, a
maxpool layer and a normalization layer. The size of the output image after passing through a
convolution layer can be computed as:

Let, Oc = Size of the output image, Ic = Size of input image, Kc = Size of channels used in
the convolution layer, Sc = Stride of the convolution operation and Pc = Padding Size. The size of
the output image Oc is calculated using the equation below:

Oc =
Ic−Kc +2Pc

Sc
+1 (4.4)

Now as, our input size Ic is 512× 512. The first convolutional layer has 96 kernels of size
11×11. The stride is 4 and the padding is 0, therefore, the output image size is:

Oc =
512−11+2×0

4
+1 = 126 (4.5)

The output image size is : 126×126×96, corresponding to the number of channels. This
image is then sent to the maxpool layer.

Let Om be the size of the output image, Im be the size of the input image to maxpool layer,
Sm be the stride of the pooling operation and Pm be the pool size. The size of the output image is

48

Layers 1 2 3 4 5 6
Type conv1+

maxpool1+
norm1

conv2+
maxpool2+
norm2

conv3 conv4 conv5+
maxpool3

full
(fc6,fc7)

Channels 96 256 384 384 256 4096
Filter Size 11×11 5×5 3×3 3×3 3×3 -
Convolution
Stride

4×4 1×1 1×1 1×1 1×1 -

Pooling Size 3×3 3×3 - - 3×3 -
Pooling
Stride

2×2 2×2 - - 2×2 -

Padding Size - 1×1 1×1 1×1 1×1 -

Table 4.1. : Network Parameters for the proposed framework

calculated using the following equation:

Om =
Im−Pm

Sm
+1 (4.6)

As per this equation, the size of the output image after passing through the first maxpool
layer is:

Om =
126−3

2
+1 = 62 (4.7)

So, the output image is of size 62×62×96. After passing through the normalization layer,
the size of the output remains unchanged, i.e. 62×62×96. In a similar manner according to the
parameters, sizes of the output across each of the layers are calculated.

For learning a representation of CNN (deep) layers, a few samples from the proposed floor
plan dataset are used. Unlike the networks mentioned in the literature, the activations of all the

Figure 4.8. : Architecture of the Convolutional Neural Network (CNN) model used for feature
extraction from the floor plan images.

49

layers (convolution, pooling, norm, and fully connected) for the task of floor plan retrieval are taken
to investigate the effectiveness of each individual layer (see Fig. 4.8). The major motivation behind
using lower convolution neural network layers is to understand the effectiveness of low level features
as compared to higher-level feature representation for floor plan retrieval tasks.

To obtain the feature representation from query as well as the database samples, the images
are directly fed into the input layer of the learned CNN model, and then the activation values from
all the layers are taken (see Fig. 4.8). For conv, norm, and pool layers, the activation output is
vectorized. Since computation from the feed-forward network based on the matrix multiplication
is only needed once, the whole scheme is highly time efficient. In the next stage, i.e. matching and
retrieval, query samples are matched with database samples to effectively retrieve the rank-ordered
samples from the database.

4.3 MATCHING AND RETRIEVAL

Floor plan layout matching using the extracted features is essential for retrieving similar
layouts to the query layout. In the rest of this section, the procedure to calculate matching score
M for a pair (query and database) of layouts is described, corresponding to learned deep features.

Let N be the total number of images in the form of (xρ ,yρ), ρ = 1,2...,N where, xρ is the
observed variable and yρ is the corresponding class label in a retrieval database. Let FH(xρ) :
{FH 1(xρ),FH 2(xρ), ..,FH L(xρ)} be the set of hidden layer features extracted for xρ sample, where
FH p(xρ) represents pth hidden layer feature extracted from xρ sample in database and L represents
the total number of hidden layers in deep feature hierarchy. For experimentation purpose, features
are extracted from 12 hidden layers of CNN model (see Fig. 4.8). For each sample in the database,
features from each hidden layer (FH p(xρ)) are extracted and stored in the feature database as
discussed. Let FH(q) : {FH 1(q),FH 2(q), ..,FH L(q)} be the the set of hidden layer features extracted
from a query image (q). In this Chapter, analysis of the proposed framework is done using features
features extracted from all the hidden layers:

• Similarity based on each learned hidden layer feature representation: In this
approach, extensive experimental analysis was performed by comparing the performance of
individual hidden layer for proposed floor plan retrieval task. The Matching Score (M) between
query image (q) and an image sample from the database (xρ) using pth hidden layer feature
is calculated (and used for ranking), as:

M =
|FH p(xρ)|

∑
i=1

|F i
H p(xρ)−F i

H p(q)|2 (4.8)

• Similarity based on combination of hidden layer feature representation: On the
other hand, in this approach, the focus is on identification of the best performing hidden layer
representation for each retrieval sample. This was achieved by combining the matching score
outputs of each hidden layers using a min operation. The Matching score (M) between a query
image (q) and a database image (xρ) using all the hidden layer features is calculated (and

50

Figure 4.9. : Rank ordered retrieval result of the proposed framework for five different query floor plans
from the ROBIN dataset. Here, top five rank ordered floor plans are shown for each query.

used for ranking), as:

M = argminp

|FH p(xρ)|

∑
i=1

|F i
H p(xρ)−F i

H p(q)|2, p ∈ (1, ...,L) (4.9)

The next section describes the qualitative and quantitative assessment of the proposed
framework.

4.4 EXPERIMENTS AND RESULTS

The experiments were performed on the SESYD [Delalandre et al., 2010b] and the ROBIN
dataset to show the effectiveness of the framework. As already illustrated the SESYD dataset
[Delalandre et al., 2010b], contains 10 different types of layouts, each with 100 images varying
in their arrangement of furniture inside the rooms. The image sizes in the database vary from

51

6775×2858 to 2056×1837. All floor plans are binarized to ensure use of only structural information
while analysis. On the other hand, ROBIN dataset contains 510 floor plans divided into 3 broad
categories based on the global layout shape.

The ROBIN dataset is split into two sets: (a) training - comprises of 30% samples and used
for deep feature representation; and (b) testing - comprises of rest 70% samples and used as test
(query) samples. As a retrieval database, the entire ROBIN dataset was used. Each floor plan
image has been resized to a size of 512× 512 for both matching and feature representation task.
For deep model configuration, the architecture described in Fig. 4.8 is used, with same parameters
as discussed in [Krizhevsky et al., 2012a]. The same model pretrained on the ROBIN dataset is
used for feature representation of the SESYD dataset.

4.4.1 Qualitative Results

The proposed framework is able to successfully retrieve a rank order set of floor plan images
using the proposed deep learning framework. The top 5 rank ordered retrieval results for five
different queries on ROBIN, are shown in Fig. 4.9. The arrow underneath the diagram depicts the
decreasing order of similarity as one goes from left to right in Fig. 4.9 with green colour signifying
high similarity and red signifying low similarity. The samples which are erroneously retrieved, i.e.
not from the same class as that of the query class, are highlighted with “red” color. For all the
results shown in Fig. 4.9, features extracted from the second normalization layer of the CNN stack
were used. The rationale behind this choice was that the second normalizaton layer yields the best
performance. Details analysis of such a selection is discussed in details in the next sub-section.

The first rank ordered result retrieved from the layout database is the query image itself.
This is due to maximum matching score between the retrieved layout and the query layout. The
subsequent results differ in the matching scores and are thus, ranked lower. In case of Fig. 4.9 (a),
all the top 5 samples belong to the query class. Global layouts of the all the floor plans are identical
and so is the number of rooms in the floor plans. The individual plans differ in terms of the number
of furniture present in the rooms and their position. Readers are requested to note the difference
in the shape and position of the individual rooms also for the rank ordered samples. There are 4
rooms in each floor plans, however the framework is able to rank order the samples correctly by
ordering the most similar ones to the query first, followed by the rest.

Figure 4.9 (b-c) depict some of the failure cases. In Fig. 4.9 (b), the 4th ranked result
is erroneously retrieved (highlighted by “red”) by the framework. However, the the 5th sample
is correctly retrieved. Justification of the rank 4 erroneously retrieved result can be understood
through qualitative analysis. For example, room 1 in the query layout is adjacent to room 2, 3 and
4, that is identical to the adjacencies shared by room 1 in rank 2 retrieved result. Moreover, the
size and type of furniture in the room 1 is same in case of the query and the rank 4 sample. Hence,
similarity score between the query floor plan and the retrieved rank 4 layout is high, as compared
to that with the rank 5 result. However, the similarity score of the rank 1-3 samples are marginally
high as compared to rank 4 samples and hence they are ranked higher. In contrast, Fig. 4.9 (c)
shows an instance where two out of top five retrieved results are incorrect. The rank 4 image has
only three rooms, while the the rank 5 floor plan has four rooms in it. In this case, the framework
is unable to capture the detailed features of the floor plans correctly. Even though, the number of
rooms in a floor plan is different than the query, the framework ranks it higher.

52

Layer conv1 pool1 norm1 conv2 pool2 norm2 conv3 conv4 conv5 pool5 fc6 fc7
MAP 0.503 0.527 0.554 0.537 0.557 0.561 0.539 0.537 0.541 0.536 0.472 0.465

Table 4.2. : Performance Comparison (MAP) of CNN layers used for floor plan retrieval task (on
ROBIN dataset).

4.4.2 Quantitative Results

To quantify the performance of the framework the Precision (P) and Recall (R) metric is
used. The precision values are averaged over all the queries for the particular recall values. Given
a query floor plan image, retrieved layouts should belong to the same sub-category of layouts as
the query, keeping in mind the preference set by the property seeker during querying. Remember
that the global shape of the layout is the criteria for a given floor plan to belong to a certain class.
The PR plot is shown for only the proposed ROBIN Dataset, as for SESYD dataset, the proposed
and some of the existing state-of-the-art techniques [Sharma et al., 2016a,b; Dalal and Triggs, 2005]
yielded a flat PR curve (Precision value 1 for all Recall values). The reason behind such a flat curve
for SESYD dataset is the simplicity of the dataset.

To understand the effectiveness of the proposed CNN layers, the Mean Average Precision
(MAP) values were calculated for floor plan retrieval task using each layer separately (see Fig. 4.10
and Tab. 4.2). From Fig. 4.10 and Tab. 4.2, it can be concluded that: (1) it is not always true
that the final layer i.e. the fully connected layer will always work best; and (2) normalization and
pooling layers are more powerful as compared to convolutional layer for floor plan retrieval task.

Figure 4.10. : Mean Average Precision values, comparing result of the framework on ROBIN dataset,
using features from all the hidden layers of the CNN.

To show the effectiveness of the proposed framework, the technique proposed in this chapter

53

Figure 4.11. : Precision and Recall (PR) plot, comparing state-of-art methods with the proposed
framework on ROBIN dataset.

is also compared with several state-of-the-art (SOA) techniques. Figure 4.11 depicts the PR plot
comparing result of the framework on ROBIN dataset, with the other SOA techniques. It can
be observed that the framework with features extracted from the Normalized layer 2 (see Fig.
4.10) is giving the best retrieval performance. It can also be noted from Fig. 4.11 that the
proposed min based approach (which selects best layer for each retrieval sample, refer Eq. 4.9)
is also outperforming all the state-of-the-art techniques. There is a significant improvement in the
performance while using deep features as compared to other features or techniques.

As shown in Fig. 4.9 (a), given a query sample the rank 1 result is the query floor plan
itself. This leads to the highest precision value of 1 during the initial recall. With further retrieval
the average precision value decreases due to some incorrectly retrieved results belonging to other
categories of layouts as compared to the query layout. It is to be noted that area under the PR
curve is the highest for proposed deep learning based retrieval framework, as compared to other
techniques applied for floor plan retrieval task as can be noted through the orange marker on the
PR plot (Fig. 4.11).

The SOA techniques with which the proposed approach is compared with are standard
image retrieval techniques that use hand-crafted features such as HOG [Dalal and Triggs, 2005],
SIFT [Lazebnik et al., 2006a], Run-Length Histogram and Online Algorithm for Scalable Image
Similarity (OASIS) [Chechik et al., 2009]) but are not able to capture well the complete content of
the floor plan images. Also, reason behind the under performance of OASIS [Chechik et al., 2009]
is that, it focuses on the difference of similarity values between relevant and irrelevant image pairs,
while ignoring the similarity value between highly similar images. Hence, when the same features
(HOG, SIFT, RLH) are used under a canonical CBIR paradigm, better results are obtained in
comparison to using them in conjuction with OASIS (see Tab. 4.3).

54

Techniques MAP
CVPR [Sharma et al., 2016b] 0.29
ICPR [Sharma et al., 2016a] 0.23
HOG [Dalal and Triggs, 2005] based CBIR 0.40
SIFT [Lazebnik et al., 2006a] based CBIR 0.33
RLH based CBIR 0.30
OASIS [Chechik et al., 2009] with HOG 0.31
OASIS [Chechik et al., 2009] with BOW 0.19
OASIS [Chechik et al., 2009] with RLH 0.01
Ours (min) 0.54
Ours (norm2) 0.56

Table 4.3. : Performance Comparison in terms of MAP on ROBIN dataset.

4.5 SUMMARY

In this Chapter a deep learning framework is proposed to extract semantic features from
floor plans and those features are used for matching and retrieval of similar floor plan images.
Extensive experimentation was conducted and performance was compared with eight different
state-of-the-art methods to demonstrate the edge that the deep learning framework has, as compared
to the hand-crafted feature based retrieval. Although, deep learning is convenient and bypasses the
need of curating features manually, the issue lies in the fact that the layers in the deep learning
framework extract features implicitly. This implicit feature extraction at each layer does not give
the user, the ability to give priorities to certain aspects or features while retrieval. For example,
if a user wants to give higher preference to the feature “size of the rooms” while retrieval, then in
the deep learning framework there is no such provision of giving additional weights to a particular
feature. This, makes the application of the framework a little less intuitive. Hence, in Chapter 5,
high level semantic analysis of floor plans and their subsequent retrieval is proposed. Additionally,
a provision to adjust the weights of each feature while retrieval is given in the proposed technique.
Such a provision can prove to be more practical to users while looking for similar floor plans sufficing
their specific preferences.

55

	Introduction
	Motivation of the Problem
	Problem Statement
	Brief description of the Work Done

	Research Issues
	Organization of the Thesis

	Background and Related Work
	Introduction
	State of the art in Floor plan Analysis
	3D reconstruction of floor plans
	Semantic analysis of floor plans
	Structural Analysis

	State of the art in Symbol spotting
	Region based symbol spotting
	Segmentation and recognition of isolated symbols for symbol spotting

	State of the art in generic features for retrieval
	State of the art in Deep learning frameworks for image and sketch retrieval
	Floor plan Datasets
	Summary

	Topological features for representation and retrieval of similar floor plans
	Brief Overview
	Layout segmentation
	Adjacent room detection
	Furniture detection and categorization
	Graph Spectral Embedding
	Spectral Feature representation
	Spectral feature embedding
	Feature Matching and Retrieval

	Experiments and Results
	Qualitative Results
	Quantitative Results

	Discussion
	Summary

	Deep convolutional neural networks for Floor plan Analysis and Retrieval
	Brief Overview
	Feature Representation
	Multilayer feed-forward neural network Architecture
	Proposed CNN architecture

	Matching and Retrieval
	Experiments and Results
	Qualitative Results
	Quantitative Results

	Summary

	Requirement driven feature integration for floor plan retrieval
	Brief Overview
	High Level Semantic features
	Feature 1: Room Adjacency String (RAS)
	Feature 2: Carpet Area Ratio (CAR)
	Feature 3: Furniture Composition Record (FCR)

	Fine-grained Matching and Retrieval
	RAS Matching Score
	CAR Matching Score
	Furniture Composition Record Matching Score
	Cumulative Match Score (CMS)
	Total Match Score

	Experiments and Results
	Qualitative results
	Quantitative results

	Discussion
	Summary

	Domain invariant feature transform for interactive floor plan retrieval
	Brief Overview
	Approach 1: Cyclic GAN for domain adaptation and sketch based floor plan retrieval
	Domain Mapping through Cyclic GAN
	Feature Representation through CNN
	Matching and Retrieval

	Approach 2: Unified framework for retrieval using autoencoder and Cyclic GAN
	CNN for query classification
	Autoencoder for domain mapping
	Matching and Retrieval

	Experiments and Results
	Dataset Creation
	Implementation Details
	Parameter Setting
	Qualitative Results
	Quantitative Results

	Summary

	Conclusions
	Contributions
	Discussion on the relative performance of the techniques proposed
	Scope of Future Work

	Floor plan datasets ROBIN and S-ROBIN
	Number of Rooms
	Global shape of the house
	Connectivity within a house
	Placement of furniture
	Dataset creation process
	Statistics of the dataset
	Conclusion

	GUI for floor plan analysis and retrieval
	System Architecture
	Software functionality
	Screen-shots of the floor plan retrieval framework
	Conclusion

	References

