List of Symbols

Symbol Description

A, B, C Angstrom Constant

A₁, B₁ C₁, D₁ Local Coefficients used in Cloud Radiation Modelling

DBR Diffuse Beam Ratio
DBT Dry Bulb Temperature
ETR Extra- terrestrial Radiation

 $\hat{G}(x_o)$ Sum of all Station in Spatial Consistency Test $G(x_o)$ Individual Station Value in Spatial Consistency Test

H_d Hourly Diffused Radiation Value
 H_g Hourly Global Radiation Value
 I_{absorbed} Absorbed Radiation, by Atmosphere
 I_{reflected} Reflected Irradiance, back to Space
 I_B Beam or Direct Horizontal Irradiation

I_{B,C} Beam or Direct Horizontal Irradiation at Clear Sky

 I_{BN} Beam Radiation at Direction of the Rays

I_D Diffused Horizontal Irradiation

I_{D,C} Diffused Horizontal Irradiation at Clear Sky

I_{D,OC} Diffused Horizontal Irradiation at Overcrowded Sky

I_E Extraterrestrial Radiation I_G Horizontal Irradiation

I_{G,C} Horizontal Irradiation at Clear SkyK_d Earth-Sun Correction Factor

N No. of Stations

O No. of Stations Cloud presence (Scale 1-8 Oktas)

P_{atm} Atmospheric Pressure

Prs Station Surface Pressure in milli-Bars R Maximum Distance Between Stations

R² Coefficient of Determination

R_L Rayleigh Diffuse Limit

SD, SD_{max} Sunshine Duration, Max Sunshine Duration

SF= n/N Ratio of Measured Sunshine and Averaged Sunshine (Sunshine Factor)

T_{LK} Linke Turbidity

 $\begin{array}{ll} T_{rd} & \text{Theoretical Diffuse Irradiance} \\ WBT & \text{Wet Bulb Temperature} \end{array}$

a,b Constants used in Theoretical Radiation Calculation

(a₁---an), Constants used in Quartile Analysis

 $(b_1 - - - b_n),$ $(c_1 - - - c_n)$

d,e,f,g,h,i Constants used in Rayleigh Calculation j,l, d₁ Constants for [Skartveit et al., 1987]

a1,b1,c1 Coefficients used in Gap Filling with 95% Confidence Bounds

 d_z Station in between distance (x_0 with other stations)

Exp Exponential

H Solar Elevation Angle k_t Clearness Index

k_t' Alternate Sky Clearness Index

k_n Direct Beam Index

 k, k_0, k_1 Diffuse Horizontal Transmittance

M Air Mass N No. of Days p1,p2,p3... Coefficients used in Gap Filling with 95% Confidence Bounds ...,p9 **Ground Albedo** r_{s} Cloudless Sky Albedo r_{α} Interpolation Coefficient $W_{\text{Z}} \\$ Mean \bar{x} Measurement Value X_{i} Gap Filling Model Output \bar{x}_i **Station Location** X_{o} **Next Station Location** $\boldsymbol{X}_{\boldsymbol{Z}}$ Solar Zenith Angle Z Solar Altitude α Location Constant for [Skartveit et al., 1987] β δ **Declination Angle** δ_{r} Rayleigh's Optical Depth Earths Eccentricity Factor ε Latitude Angle Φ Standard Deviation $\sigma_{n} \\$ Atmospheric Transmittance τ Mie Scattering τ_{α} Transmittance Ratio for Mixed Gases Scattering τ_{g} Transmittance Ratio for Ozone τ_{o} Rayleigh Scattering τ_{r} Transmittance Ratio for Water Vapour Scattering τ_{w}

Solar Hour Angle