List of Figures

Figures	Title	page
1.1	Crystal structure of Hematite (α -Fe ₂ O ₃)	1
1.2	Hematite pictograph	3
1.3	Hematite applications/utility	3
1.4	Photo electrochemical water splitting process and corresponding energy diagram	5
1.5	Illustration of a photoelectrochemical cell consisting of a semiconducting photoanode and	6
	platinum metal cathode and energy diagram	
1.6	Transitions in semiconductors with a direct (left) and an indirect bandgap (right). The	8
	indirect optical transition requires assistance of phonon with energy $(m{h}m{\omega})$	
1.7	Maximum attainable AM _{1.5 global} photocurrent densities (mAcm ⁻²) for single junction PEC devices shown as a function of semiconductor bandgap	13
1.8	Surface fluorinated structure	20
2.1	Hydrothermal reaction methodology	28
2.2	Hydrothermal reaction vessel of 100 mL, 250 mL and 800 mL capacity	28
2.3	X-ray spectrometer principle	29
2.4	Essential features of X-ray	29
2.5	SEM Instrument	30
2.6	Interaction of electron and sample atom	30
2.7	Sample irradiation in XPS	32
2.8	Electron escaping from surface	32
2.9	ICP OES Torch, Spray Chamber and Nebulizer	33
2.10	Excitation and emission diagram (Excitation and emission diagram showing energy	34
	transitions. I & II is excitation, iii is ionisation, iv is ionisation/excitation, v is ion emission and	
	vi is atom emission)	
2.11	I-V measurement under 100 W/m ² solar simulator radiation	35
3.1	pH changes before and after reaction for increasing concentration of F-TEDA	39
3.2	F-19 NMR spectra of the reaction medium, (a) before and (b) after reaction (from	39
	supernatant)	
3.3	(a-e) FESEM images and corresponding (f-j) TEM images of pristine and F-Fe2O3 with 10%,	40
	20%, 30% and 40% of F-TEDA respectively. (k,l) SAED pattern at low and high magnification	
	and (m-o) EDS imaging of F-Fe2O3 with 20% F-TEDA	
3.4	(a) XRD patterns. (b) Variation in intensity of {110/104} peak ratio with respect to weight% of	41
	F-TEDA. Inset shows the packing of atoms in both (110) and (104) crystallographic planes	
3.5	(a) XRD patterns of fluorinated hematite with respect to weight% (50%, 60% and 70%) of F-	42
	TEDA	
3.6	XPS full range survey scan of pristine α -Fe ₂ O ₃ and F- α -Fe ₂ O ₃	42
3.7	X-ray photoelectron spectra (XPS) of (a) Fe2p (b) O1s and (c) F1s of pristine α -Fe2O3 and F-	43
_	Fe2O3. Note that the peak values are calibrated with reference to carbon at 284.8 eV	
3.8	Raman spectra (XPS) of pristine α -Fe2O3 and F-Fe2O3	45
3.9	UV-Vis diffuse reflectance spectra	46
3.10	(a) fauc plots of pristine and F-Fe ₂ O ₃ (b) Variation in bandgap values of α -Fe ₂ O ₃ upon fluorination	46
3.11	(a) Working electrode of pristine and $F-Fe_2O_3$ (with increasing F-TEDA concentration) and (b) Three electrode system (c) photo-electrochemical measurement setup	47
3.12	(a) J-V characteristics of α -Fe ₂ O ₃ films in light (100 W/m2). (b) Chronoamperometry measurements performed at 1.6 V versus RHE	48
3.13	Impact of fluorination on electron hole recombination and better charge transport at	48
3.14	(a) I-t curve of pristine and fluorinated Fe_2O_3 films on exposure to light for 5 s. (b) The	49
7.45	photocurrent response with respect to pristing P_2U_3 mins	50
3.15	density of fluorinated a Eq. (a) at different calcination temperature prepared by severe	50
	printing (E-TEDA 10% wt)	
> 16	(a) Mott_Schottky plots of pristing Eq.(and E-Eq.(). The intercent of the linear	50
3.10	extrapolation with the <i>x</i> -axis (potential) marks the flat band potential as $(U_{fb} + \frac{K_b T}{\rho})$. (b)	20
	C C	

	Band structure of the synthesized Fe_2O_3 with different quantity of F-TEDA. Conduction	
	band (red bars), the approximate position of the mid-bandgap energy level (green line), and the valence band (black bars)	
3.17	Nyquist plot of pristine and F- F-Fe $_2O_3$ (10-40% F-TEDA) of electrodes in photo-	51
7 1 8	electrochemical cell in 3- electrode geometry Schematic representation of dve sensitized solar cells fabricated using g-Fe O /TiO as	53
5.10	photoanode	52
3.19	J-V characteristics of (a) pristine α -Fe2O3 and (b) 30% F-Fe2O3 photo anode mixed in different weight ratios with TiO2 (P25) as photo anode. (c) Photo-conversion efficiency (d) Nyquist plot of the optimized composition (10% of Fe2O3 in TiO2) for pristine and F-Fe2O3respectively. Inset shows an equivalent circuit diagram	53
4.1	Structure of fluorinating agents used for in-situ fluorination of α -Fe ₂ O ₃	57
4.2	X-ray pattern of α - Fe ₂ O ₃ and F- α - Fe ₂ O ₃ synthesized using 20%wt. of fluorinating agents and * represents impurity peak	58
4.3	Intensity ratio of (110) and (104) plane in α - Fe ₂ O ₃ and F- α - Fe ₂ O ₃ synthesized with different fluorinating agents. Percentage represents the wt. % quantity of fluorinating agents used with respect to Fe precursor	58
4.4	SEM images of (a) pristine α -Fe ₂ O ₃ , (b) F-TEDA, (c) TBABF ₄ , (d) NaF, (e) NH ₄ F, and (f) HF mediated F- α -Fe ₂ O ₃ synthesis (20wt. % were used with respect to Fe precursor)	59
4.5	Magnetic hysteresis loops (M-H curves) of pristine α -Fe ₂ O ₃ , F-TEDA, TBABF ₄ , NaF, NH ₄ F, and HF mediated F- α -Fe ₂ O ₃ (20wt. % of fluorinating agent were used with respect to Fe precursor)	60
4.6	M-H curve of α -Fe ₂ O ₃ and F- α -Fe ₂ O ₃ (fluorinated with different wt. % F-TEDA)	61
4.7	Fluorine at.% in F- α -Fe $_2O_3$ mediated by different wt.% of F-TEDA in relation with H $_c$ and M $_s$	62
4.8	Zero-field cooled and field cooled magnetic measurements at 500 O_e applied filed for (a) Pristine Fe ₂ O ₂ (b) F-TEDA (c) TBABF, (d) NaF (e) NH, F and (f) HF	63
4.9	Temperature dependent magnetization of α - Fe ₂ O ₃ and F- α -Fe ₂ O ₃ (at 500 O _e) synthesized at different wt. % of F-TEDA	64
4.10	Real and imaginary permittivity (a), permeability (b), dielectric loss (c) and magnetic loss (d) for α-Fe ₂ O ₃ and F- α-Fe ₂ O ₃ samples over 6–18 GHz	65
4.11	Simulated absorption characteristics for fluorinated Fe ₂ O ₃ at different thicknesses	66
4.12	Schematics of fluorinated hematite being used for microwave absorption material	67
5.1	Uranium contamination and toxicity	69
5.2	FTIR spectra of $F-\alpha$ -Fe ₂ O ₃ and Uranium adsorbed $F-\alpha$ -Fe ₂ O ₃	71
5.3	X-ray diffraction patterns of F- α -Fe ₂ O ₃ and U(VI)-F- α -Fe ₂ O ₃	72
5.4	XPS spectra of spectra of $F-\alpha$ - Fe_2O_3 before and after U(VI) adsorption, survey XPS	72
5.5	XPS spectra of spectra of $F-\alpha$ - Fe_2O_3 before and after U(VI) adsorption (a) high resolution of U 4f, and (b) high resolution of O 1s. The peaks are referenced to the C 1s line of adventitious hydrocarbon at 284.8 eV.	73
5.6	(a) FESEM image and (b) EDX profile of $F-\alpha$ -Fe ₂ O ₂ - U(VI)	73
5.7	Nitrogen adsorption - desorption isotherms of (a) pristine α -Fe ₂ O ₃ (b) 10% F-TEDA- F- α -Fe ₂ O ₃ (c) 20% F-TEDA- F- α -Fe ₃ O ₂ (d) 30% F-TEDA- F- α -Fe ₃ O ₂ (e) 40% F-TEDA- F- α -Fe ₃ O ₂	74
5.8	Calibration of ICP OES for uranium detection	75
5.9	The effect of initial solution pH on U(VI) removal at 50 ppm concentration; volume, 50 mL; adsorbent dose, 25 mg; pH value, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12; contact time, 180 min;	76
	temperature, 25 °C; rotating speed, 140 rpm	
5.10	The effect of fluorination on U(VI) removal at 50 ppm concentration; volume, 50 mL; adsorbent dose, 25 mg; pH value 8, contact time, 180 min; temperature, 25 °C; rotating speed 140 rpm	77
5.11	Schematic of fluoride assisted uranium adsorption at F_{α} - F_{α} - S_{α} -	77
5.12	Effect of initial uranium concentration on adsorption capacity	77
5.12	Adsorbed amount of $U(VI)$ at different time, volume 50 mL 50 ppm adsorbent	,0 78
رببر 5.14	Pseudo-second-order kinetic plot of U(VI) adsorption	70
5.15	(a) Langmuir and (b) Freundlich adsorption of U(VI) onto $F-\alpha$ -Fe ₃ O ₃	80
1.1	() () () () () () () () () ()	