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Introduction

In the year 2016, global internet traffic reached the rate of 1.1 zettabytes (nearly 12 billion
gigabytes) per year, and by the end of the year 2021, it is projected to increase about threefold,
i.e. 3.3 zettabytes (nearly 36 billion gigabytes) per year [networking Index, 2016]. Globally, image
and video traffic over the internet are projected to be 82% of all overall Internet traffic by 2021,
rising from 73% in 2016. Image and video coding standards developed long back had been doing
the needful successfully. However, due to the growing internet traffic, and to fulfil the expected
quality of experience (QoE), there is a demand to improve compression coding algorithms.

To validate the performance of any new compression algorithm, it needs to be compared
with the existing one with respect to the quality of the reconstructed image at the same bitrate.
Various image quality assessment (IQA) methods have been developed for such purposes. An
efficient IQA method is expected to provide a quantitative measure that is consistent with the
human visual system (HVS). IQA techniques are classified into three categories subjected to the
availability of the reference image at the receiver end. These categories are: (i) Full-Reference
method (FR-IQA), in case the reference image is available, (ii)Reduced-Referencemethod (RR-IQA),
in case only some partial information about the reference-image is known, and (iii) No-Reference
method (NR-IQA) or blind IQA, when no information of reference-image is present at the receiver
side.

In the last few years, there is high demand for a new set of images called screen-content
images (SCI). The images are used to share the live screen of the display unit to the end user who is
present at a remote location. The properties of SCIs are different from the camera-content images
(CCIs) andwill be discussed later in this chapter. SCIs include text, graphics, and pictures together
are used inmulti-client communication systems, such as video conferencing, virtual screen sharing,
mobile gaming, information sharing between computers and smart-phones, cloud computing,
remote education, etc. Due to the distinguishing properties of SCIs from CCIs, many advanced
coding techniques for CCIs have extended the codec for SCIs [Xu et al., 2016]. Moreover, it has
been observed that even the top IQA methods for CCIs failed to perform satisfactorily on SCIs.
This motivated many research groups to work on the development of the IQA methods for SCIs
in order to fulfil the expected quality-of-experience (QoE).

This chapter introduces the area of Image compression and its quality assessment. It also
defines the problem statement and discuses the motivation and literature survey for this thesis.
It first introduces the basics of image compression and image quality assessment, and then the
state-of-the-art methods in each context are studied and the motivation for the thesis is explained.
Finally, the thesis overview and contributions are discussed.

1.1MOTIVATION AND LITERATURE SURVEY
This section is organized as follows. Section 1.1.1 discusses about the CCI compression. It

also explains some state-of-the-art lossy compression techniques and explains the need for saliency
enabled image compression. Section 1.1.2 introduces a new set of images called screen-content
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images (SCIs). It explains the distinguishable properties of SCIs compared to CCIs and the need for
a separate compression structure for SCIs. Finally, Section 1.1.3 reviews the state-of-the-art quality
assessment methods for CCIs and SCIs. This section also provide motivation towards designing a
reduced-reference SCI quality assessmentmethodwhich canperformadequately under the distortion
caused by compression methods.

1.1.1 Camera Content Image Compression
Usage of image data through the Internet has exponentially increased among the users

[Sayood, 2012]. Compression is essentially required to manage this high data-rate of images
without degrading the quality to an unacceptable level. The necessity of accessing high definition
images with quality as of paramount importance has become the major issue in designing such
algorithms to operate in real time. Image compression can broadly be categorized into two
categories: lossy and lossless. Lossless image compression mainly focuses on the identification
and removal of redundancy that can be recovered on the decoder side [Weinberger et al., 2000]. It
is preferred for archival purposes and often for medical imaging. Lossy compression techniques
usually remove the irrelevant information from the image space. Such methods are suitable for
camera-content or natural images like photographs, where a small loss in fidelity (sometimes
perceptually lossless) is acceptable to achieve a high compression-ratio or low bitrate. The lossy
compression which yields imperceptible differences is also called visually lossless [Wang et al.,
2015]. The lossy image compression methods can be further enumerated into two categories:

Themethods that fall into the first category are called direct methods [Sayood, 2012], which
act directly on the image samples in the spatial domain. Block truncation coding (BTC) [Kurita
and Otsu, 1993; Yang et al., 1994; Dhara and Chanda, 2007] and vector quantization [Feng and
Nasrabadi, 1991; Lee and Chan, 1994] based methods are widely used under this category. BTC
based approach uses a one-bit adaptive non-parametric quantizer over the local regions of an
image. For this, the image is first divided into small non-overlapping blocks, and then the first
and second moments of each block are evaluated as X̄ and σ̄ , respectively. A bit plane is then
constructed by assigning each pixel location as 0 or 1 depending on whether the corresponding
pixel is smaller than the first moment (X̄). The receiver receives the bit plane, X̄ , and σ̄ and
reconstructs the image blocks by preserving the X̄ , and σ̄ .

The optimal vector quantization from empirical data was first proposed in [Linde et al.,
1980] and then extended in [Lloyd, 1982] usingK-means clustering algorithmwhich is also referred
to as LBG or generalized Lloyd algorithm [Hartigan, 1975]. The basic idea of vector quantization
is to map an input data (X) of K-dimensional Euclidean space (RK) into a reduced finite subset Y
of RK . For colour images, [Feng and Nasrabadi, 1991] exploited the inter block and inter-colour
correlations with vector quantization in order to reduce the bit-rate.

The methods under the second category are called transform methods [Sayood, 2012],
where the image is transformed into frequency domain. Principle Component Analysis (PCA)
[Abadpour and Kasaei, 2008], Discrete Cosine Transform (DCT) [Wallace, 1992; Douak et al.,
2011; Dhara and Chanda, 2007; Messaoudi and Srairi, 2016], Discrete Wavelet Transform (DWT)
[Skodras et al., 2001; Boucetta and Melkemi, 2012; Barua et al., 2015] are the most popular
transformations used for this purpose. Such transformations concentrate the energy of the image
in a few number of coefficients, making it suitable for removing perceptual redundancies.

Among all transform based image compression methods, DWT achieves the best energy
compaction. The comparative study between DCT and DWT-based image and video coding
techniques [Xiong et al., 1999] suggests that DWT based methods yield slightly better quality of
reconstructed image after compression i.e. higher peak-signal-to-noise ratio (PSNR) value (< 0.7db)
compared to DCT, for the same compression ratio. However, the DCT based coder has significant
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lower complexity than its DWT counterpart. For this reason, the state-of-art image and video
coding standards, and multimedia devices prefer DCT over DWT [Sullivan et al., 2012].

Due to the computationally efficient encoding and decoding structures, JPEG baseline
[Wallace, 1992] is a well-accepted standard used for lossy image compression. It is widely used
in digital cameras and other photographic image capturing devices for storing and transmitting
images on World Wide Web (WWW). During the encoding process, JPEG divides the image
into blocks of size 8× 8 and applies 2D-DCT on each of them. To achieve compression, the
DCT coefficients of the blocks are quantized by fixed quantization parameters, irrespective of the
Region-of-Interest (RoI) of the block. The JPEGencoding framework is disucssed in detail in section
1.2.1. In the case of high compression requirements, scaled up quantization parameters are used
with the DCT coefficients. We observed that the reconstructed blocks with higher variance (i.e.,
the second central moment of the pixel intensities within a block) are highly degraded, compared
to the blocks with lower variance [Yang et al., 2016; Lam and Goodman, 2000]. This happens due
to the structure of JPEG baseline quantization table designed to quantize higher frequency regions
more heavily than the lower frequency ones. A non-homogeneous compression is observed
causing compression artifacts in the reconstructed image. RoI independent quantization of
DCT coefficients causes degradation of the overall perceptual quality of the reconstructed image
particularly at high compression-ratio (CR) (i.e. at low bit rate).

There are some regions in images where more information is anticipated which can be
delineated as ROIs or salient regions. The amount of attention steered among all the regions of
an image is non-identical as per the human visual and cognitive systems [Borji and Itti, 2013]. A
saliency-guided compression method is ideally suited to preserve perceptually important regions.
These methods can intelligently compress the salient regions lightly and non-salient ones heavily,
to ensure as small perceptual loss as possible, for required CR.

Efforts have been made towards saliency-based image and video compression techniques
[Xia et al., 2012; Yang et al., 2005; Hadizadeh and Bajic, 2014; Guo and Zhang, 2010; Christopoulos
et al., 2000; Barua et al., 2015]. Mostly, these approaches segment the image into two regions
[Hadizadeh and Bajic, 2014; Guo and Zhang, 2010; Christopoulos et al., 2000; Barua et al., 2015]:
salient and non-salient. On the segmented regions, different compression algorithms are applied in
order to obtain a good combination of reconstructed image quality andCR.However, our cognitive
system does not always classify images into salient and non-salient. Human visual system (HVS)
bestows multi-level attention on different regions. This leads to the requirement of segmentation
of images into saliency driven multiple regions.

The work done in multi-level saliency-based compression techniques [Christopoulos et al.,
2000; Barua et al., 2015; Xia et al., 2012; Bruckstein et al., 2003] exhibits an improved trade-off
between CR and perceptual quality than using only two-level saliency. Texture-based methods
[Xia et al., 2012; Bruckstein et al., 2003] classifies the image into edges, textures, and flat regionswith
the aim to save the edge, and important texture information of the image after compression. JPEG
2000 standard [Christopoulos et al., 2000], incorporates both two-level and multi-level models of
ROI encoding using maximum shift or MAXSHIFT and general scaling based method (GSBM),
respectively. The major challenge in multi-level saliency-based compression technique is the
requirement of sending the overhead for the shape of salient regions and their ranks used to grade
the saliency. The overhead is proportional to the complexity of the shape and the number of ranks.
This is because the complex shaped regions will require a larger number of model parameters
which will increase the overhead. Also, the overhead for ranks information will increase with an
increase in the number of salient regions i.e. for the R number of ranks, ⌈log2R⌉ bits- per-rank will
be needed. If the RoImask is generated for an arbitrary shapedRoI, the decoder needs to reproduce
the RoI mask [Christopoulos et al., 2000], making the decoder computationally complex and
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Input Image Salient Regions Rectangular
Approximation

Figure 1.1 : Rectangular approximation in multi-level saliency based compression techniques

increased memory requirement on the decoder side. To reduce the requirement of the overhead
information and to make the decoder simple, the RoI shape is approximated as a rectangular box
[Christopoulos et al., 2000; Barua et al., 2015], as shown in Figure 1.1. The coordinates of the opposite
vertices of the rectangular boxes and their rank information are sent to the decoder. This approach
saves the overhead information to a good extent but the CR is compromised, as the actual RoI has
been approximated by a rectangular bounding box.

Due to high computational efficiency of DCT based methods [Xiong et al., 1999], with
a small loss in performance as compared to DWT based such methods, our focus has been
on the former one. Our efforts were directed towards developing a saliency enabled image
compression frameworkwhich can easily be plugged inwith the JPEG baseline in order to upgrade
its performance. In order to achieve this, we developed amulti-level saliency enabled compression
method which is discussed in Chapter 2.

1.1.2 Screen Content Image Compression
Screen-content-images (SCIs) include the combination of text, graphics, and pictures,

and are used in multi-client communication systems, such as video conferencing, virtual screen
sharing, mobile gaming, information sharing between computers and smart-phones, cloud
computing, remote education, etc [Shen et al., 2009; Lu et al., 2011; Chang and Li, 2011]. Figure 1.2
shows some example of SCIs taken from two publicly available datasets [Yang et al., 2015; Wang
et al., 2016]. The demand for graphically rich services has increased where the display of a remote
system is shared for the purpose of accessing the computational resource or remote data via the
Internet. Recently, there has been a noticeable growth in number of applications which display
more than just camera-content images.

Such applications include displays that combine camera-captured and computer graphics,
tablets, automotive displays, wireless displays, screen sharing, and so on [Yu et al., 2014]. The
major difference between camera-captured content or natural image and SCI is that SCI contains
no sensor noise. Due to this difference SCIs have large uniform regions, highly saturated or a
limited number of different colors, repeated patterns, and numerically similar blocks or regions
among a sequence of images. SCIs also contain dominant textual information as graphs, codes, or
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Figure 1.2 : Few examples of Screen-Content Images (SCIs)

descriptions.

Over the past few years, the usage of SCIs through the Internet has exponentially increased,
especially for sharing screens over applications such as Teamviewer, Zoom, Skype, etc. Efficient
compression is essentially required, to manage high data-rate of images without degrading the
quality to an unacceptable level. The distinguishing properties of SCIs from natural images has
motivated many advanced coding techniques for a Screen-Content-Coding (SCC) extension [Yu
et al., 2014; Xu et al., 2016]. The quality-of-experience (QoE) as of utmost significance has become
themajor issue in designing such algorithms to operate in real time. The QoE is majorly dependent
on two important factors, such as visual quality of the reconstructed image and the CR. In order
to achieve high CR, lossy compression methods are majorly used. Lossy compression techniques
developed over the years, can be broadly classified into two categories as direct methods, and
transform based methods as discussed in Section 1.1.1. It has been observed that the performance
of transform based compression methods is superior than the direct methods due to its ability of
efficient energy compaction. Due to this, the state-of-the-art image and video coding standards,
and multimedia devices prefer DCT based coder over DWT based coder [Xu et al., 2016; Sullivan
et al., 2012].

JPEG baseline [Wallace, 1992] is the most widely used DCT based compression technique
for natural and screen-content images, due to its computationally efficient encoding and decoding
structures. It is widely used in digital cameras and other multimedia devices for storing
and transmitting natural or screen-content images over the internet. To achieve low bit-rate
requirements, the visual quality of the blocks with higher frequency get more degraded after
reconstruction compared to the blocks with lower frequency. These methods are based on the
fact that the HVS are more sensitive towards any change in low frequency regions than in the high
frequency ones.

The statistical features of CCIs are different from SCIs, especially in a region where text
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informations are present [Yang et al., 2015]. These statistical differences between CCIs and SCIs can
bemeasured in terms of naturalness and frequency level. The expression to find out the naturalness
value of anm×n resolution image I(x,y)was provided by [Mittal et al., 2013] and given in (1.1). The
naturalness of an image (N(x,y)) is evaluated in terms of the ratio between the zero mean intensity
values and the standard deviation. As the CCI’s follow central limit theorem, their naturalness is
expected to follow a Normal distribution.

N(x,y) =
I(x,y)−µ(x,y)

σ(x,y)+1
(1.1)

where µ(x,y), σ(x,y) are the local mean and deviation of the image I(x,y) as given in (1.2),
and (1.3) respectively.

µ(x,y) =
3

∑
i=−3

3

∑
j=−3

ω3,3I(x+ i,y+ j) (1.2)

σ(x,y) =

√√√√ 3

∑
i=−3

3

∑
j=−3

ω3,3[I(x+ i,y+ j)−µ(x,y)]2 (1.3)

where ω3,3 is a 2D circularly-symmetric Gaussian weighting function. The naturalness
value of the image is computed in terms of the distribution of the coefficients N(x,y). Figure 1.3
(a), and (b) shows the naturalness distribution of CCIs, whereas, Figure 1.3 (c), and (d) shows
the naturalness of the SCIs. It is observed that the CCIs follow a Gaussian distribution i.e. the
naturalness of CCIs is high which is also demonstrated in [Mittal et al., 2013]. On the other hand,
the distribution of SCIs is different than the CCIs. A sharp spike in the distribution of SCIs proves
their less naturalness compared to CCIs.

To further examine the properties of SCIs, block-wise activity was analyzed by using the
reported image activity analysis method in [Yang et al., 2012]. The activity analysis reflects the
degree of pixel variation in the local region of the image. It has been observed that the activity
measure of textural blocks is larger than those from the pictorial blocks which is also the reason for
the spike in the distribution curve. This also proves that the textural regions of an SCI have more
frequency than the non-textural regions.

The distinguishing properties of SCIs and CCIs as discussed above, is the main reason for
a comparatively weak performance of compression algorithms such as JPEG or HEVC, which are
specifically designed for CCIs, on SCIs. These DCT based methods are designed to quantize the
high frequency regions more than that of the low frequency regions. As the textual regions in an
SCI has high frequency, it gets more distorted and even illegible after applying such compression
techniques.

As per the human visual and cognitive systems [Borji and Itti, 2013], the amount of attention
steered among all the regions of an image is non-identical. A saliency-guided compressionmethod
is ideally suited to preserve perceptually important regions. Moreover, these methods are capable
to compress the salient and non-salient regions judiciously in order to ensure smallest perceptual
loss at a required CR. It has been observed that in case of SCIs, the textual region anticipate more
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Figure 1.3 : Analysis of Naturalness N(x,y) Histograms for: (a - b) Camera-content Images, (c - d)
Screen-content Images.

information and can be delineated as ROI or salient region. The energy distribution of the text
blocks among DCT coefficients are significantly higher compared to the non-text blocks and due
to this the text regions tend to get highly distorted after applying DCT based codecs [Wallace, 1992;
Xu et al., 2016]. This exhibits the need to develop a saliency based compression method for SCIs.

Although, there was no work found on saliency based SCI compression, there have been
efforts towards developing saliency-enabled compression techniques for natural or camera-content
images [Guo and Zhang, 2010; Barua et al., 2015; Kaur et al., 2006; Christopoulos et al., 2000;
Rahul and Tiwari, 2018]. The methods in [Hadizadeh and Bajic, 2014; Christopoulos et al.,
2000] segment the image into two regions as salient and non-salient. A saliency map is then
obtained based on the importance of the segemented regions. On the segmented regions, different
compression algorithms are applied to obtain a good combination of reconstructed image quality
and compression-ratio (CR).

Wedevised a two-level saliency-based SCI compression algorithm that provides an optimal
trade-off between the overhead, perceptual quality, and CR. The developed method first classifies
the SCI into salient and non-salient region by identifying the textual information. The aim
is to enable the JPEG standard to judiciously retain high-frequency text regions in the image,
particularly in the case of high compression requirement.

1.1.3 Camera and Screen Content Image Quality Assessment
Image Quality Assessment (IQA) is a method to evaluate the quality of an acquired image

or a processed image obtained through systems such as image acquisition, de-noising, de-blurring,
enhancement, transmission, reconstruction, and compression. An efficient IQA technique is
expected to provide a objective quantitative measure that is consistent with the subjective human
observations. The meaning of consistent here is that the objective evaluation of the algorithm
should be within close agreement with HVS, irrespective of the type, content or strength of the
distortion present in the image. IQA techniques can broadly be classified into three categories as
(i) Full-Referencemethod (FR-IQA) in case the reference image is available, (ii)Reduced-Reference
method (RR-IQA) in case the availability of the partial information about the reference image,
(iii) No-Reference method (NR-IQA). There are number of researchers who have contributed
significantly towards designing image quality assessment algorithms over the years.
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In recent years, the demand for graphically rich services has exponentially increasedwhere
the display of a remote system is shared in order to access the remote computational resources or
data via the world-wide-web (WWW). Screen-content-images (SCIs) includes text, graphics, and
pictures together and are used inmulti-client communication systems, such as video conferencing,
virtual screen sharing, mobile gaming, information sharing between computers and smartphones,
cloud computing, remote education, etc [Shen et al., 2009]. Unlike CCIs, SCIs do not contain any
sensor noise, and such images mostly have large uniform regions, patterns in a repeated form,
mostly saturated or a few number of different colors, and contain numerically similar blocks or
regions among a sequence of images.

The distinguishing property of SCIs from CCIs as discussed in Section 1.1.2, has
motivated the High-Efficiency-Video-Coding (HEVC) [Xu et al., 2016] research group to include
screen-content-coding (SCC) extension into their current video compression framework. This
in fact motivated many researchers for Quality assessment for SCIs through systems such as
transmission, reconstruction, and compression to fulfil the expected quality-of-experience (QoE)
of the interactive remote system. It has been observed that even the top IQA methods for CCIs
failed to perform satisfactorily on SCIs. Due to this, many IQA techniques have been proposed
over past three years which are specifically designed for SCIs.

Full access of reference image is required in case of FR-IQA. The traditional FR-IQA, such
as peak-signal-to-noise-ratio (PSNR) [Wang and Bovik, 2002] and the mean-squared error (MSE)
provide the intensity difference between the reference image and the processed image. These index
are computed by taking the average of the squared intensity differences between the corresponding
pixels of distorted and reference image. Thesemethods are simple in order to evaluate, have proper
physical meanings, and are mathematically convenient to implement. However, such methods
lack the correlationwith the subjective visual quality. Thewidely used FR-IQA techniques for CCIs
are visual signal-to-noise ratio (VSNR) [Chandler and Hemami, 2007], local-tuned-global (LTG)
model [Gu et al., 2014], structural similarity (SSIM) index [Wang et al., 2004], gradient-similarity
(GSIM) [Liu et al., 2012], visual saliency index (VSI) [Zhang et al., 2014], and feature-similarity
(FSIM) index [Zhang et al., 2011].

VSNR [Chandler and Hemami, 2007] is a wavelet-based IQA method which aims to
quantify the perceptual loss of the distorted images based on the psychophysical findings as
presented by [Ramos and Hemami, 2001; Chandler and Hemami, 2003a,b; Chandler et al., 2006].
Later, it was observed that the HVS evaluates the overall distortion of a scene by combining the
sensations of salient local artefacts and global degradation. To exploit this, LTG [Gu et al., 2014]
was proposed to first evaluate the gradient magnitude (GM) of an image. It then independently
uses the global and local mean pooling to evaluate the HVS perception.

In SSIM [Wang et al., 2004], it was observed that the HVS is more sensitive towards change
in structure, luminance, and contrast of an image than the change in intensity. SSIM proposed a
similarity index value using the weighted sum of the nomalized distortion in luminance, contrast,
and structure. Theweights of these three components are adjusted as per their relative importance.
The framework of SSIM is shown in Figure 1.4.

GSIM [Liu et al., 2012] was proposed later on the similar lines of SSIM [Wang et al.,
2004]. The major contribution in GSIM was that it used gradient information in order to capture
the contrast and structure of the image which led to a more accurate quality assessment of the
image. GSIM also propose an adaptive approach to integrate the gradient or contrast-structure
and luminance components. Figure 1.5 shows the GSIM process.

The recent studies in the area of functional magnetic resonance imaging (fMRI) in
neurobiology [Henriksson et al., 2009] suggest that the HVS is more sensitive towards changes
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Figure 1.4 : Structural similarity index (SSIM) framework
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Figure 1.5 : Gradient similarity index (GSIM) framework

in the low-level feature of an image like edges and zero-crossings. In simplified words, our brain
stores the information of a scene through the salient low-level features. FSIM [Zhang et al., 2011]
used this information to devise an IQAmetric by comparing the low-level feature sets between the
reference and distorted image. In order to efficiently extract the low-level feature, FSIM extracts
the feature at points where high phase congruency (PC) is present. This is due to the fact that
the visually distinctive features coincide with such points, where congruent phases are present in
the Fourier waves at different frequencies [Concetta Morrone and Burr, 1988; Morrone et al., 1986;
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Morrone and Owens, 1987; Kovesi, 1999]. Moreover, taking into account that the PC is considered
contrast invariant, and HVS is contrast-change sensitive, the image gradient magnitude (GM) is
evaluated as the secondary feature in order to encode the contrast information. PC and GM are
reciprocal and they reflect distinctive parts of the HVS, and produces a local similarity map of an
image. In order to derive a single quality score, PC is utilized again after the evaluation of the local
similarity map.

VSI [Zhang et al., 2014] was proposed on the similar lines of FSIM [Zhang et al., 2011]. The
study on the relationship between visual saliency (VS) and HVS suggests that a VS based IQA
model can achieve better prediction performance than the other feature-based methods [Zhang
et al., 2014]. VSI [Zhang et al., 2014] analyzes the changes in the visual saliencymap of the distorted
image with respect to the reference image. Basically, VSI uses the saliency map of an image as a
feature map in order to characterize the local region quality of an image.

The IQAmethodswhich have been discussed above are specifically designed for CCIs. Due
to the distinguishing properties of SCI, such methods are unable to perform satisfactory on these
images. This led many researchers to start working on designing a SCI-IQA metric. Over the past
few years there have been much works done towards the development of FR-IQA for SCI’s [Gu
et al., 2016b, 2018; Yang et al., 2015; Ni et al., 2016].

Yang et al. [2015] was the first attempt towards in-depth study for object and subjective
quality assessment of SCIs. They proposed a large scale SCI dataset named screen content quality
assessment database (SIQAD). They also proposed a SCI-IQA method known as SCI Perceptual
Quality Assessment (SPQA) in order to evaluate the visual quality of distorted SCIs. SPQA was
proposed to handle the textual and pictorial regions in the SCI separately as the same distortion
in different regions may have different visual perception according to the HVS. The framework of
SPQA is shown in Figure 1.6
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Figure 1.6 : SCI perceptual quality assessment (SPQA) framework

Gu et al. [2016b] proposed a saliency enabled quality measure of SCIs (SQMS). In order to
assess the structural degradation, SQMS uses GM via Scharr operator [Jähne et al., 1999]. The
flowchart for SQMS is shown in Figure 1.7. On similar lines, the authors in [Ni et al., 2016]
proposed an IQAmetric by using the similarity of gradient direction of SCIs. The gradient direction
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is computed by finding the direction where the gradient magnitude field has highest variation.
Recently, a structural variation based SCI-IQA method (SVQI) has been proposed in [Gu et al.,
2018]. SVQI evaluates the similarity between the reference and distorted SCI by identifying the
variation in local and global structure.
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Figure 1.7 : Flowchart for saliency enabled quality measure (SQMS)

Although FR-IQA methods can efficiently predict the quality of the distorted image (DI)
better than others methods, it is not suitable in case of SCIs where the receiver is connected to
a shared remote display. Providing the reference-image (RI) information through the network
increases the bit-rate requirements.

TheNR-IQAmethods do not allowany access to theRI and thesemethods aremainly suited
for CCIs. The major challenge in designing an NR-IQA method is to first identify the distortion
type. Most of the NR-IQA methods are distortion centric [Saad et al., 2012], which work best on
a particular set of distortions. However, a support vector machine (SVM) based NR-IQA method
(NR-SVM) in [Wu et al., 2016] claims to identify the distortion type before evaluating the quality
assessment. The distortion type is predicted using SVM classifier by evaluating the distorted
image’s probability of belonging to each distortion type. The framework of NR-SVM [Wu et al.,
2016] is shown in Figure 1.8.

At the acquisition time of CCIs by using physical camera sensors, which may involve
multiple distortions. Moreover, this may cause the unavailability of images with perfect quality.
On the other hand, SCIs are directly generated from the sender computer and are presumed to have
perfect quality. Due to this theNR-IQAmethods are also notmuch useful for SCIs. However, some
work has been done towards developing NR-IQA methods for SCIs [Gu et al., 2016a; Qian et al.,
2017].

The blind quality measure for SCIs (BQMS)reported in [Gu et al., 2016a] is a learning based
model. BQMS first establishes the screen content statistics (SCS) model using free energy measure
and the information of structural degradation in order to specify the auto-regressive (AR) model.
The framework for BQMS is shown in Figure 1.9. Authors in [Qian et al., 2017] claim to measure
the distortion in the SCI by evaluating the loss of edge information using edge-preserving filters.
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Figure 1.8 : Framework of no-reference support vector machine (NR-SVM) method
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Figure 1.9 : Framework of blind quality measure for SCIs (BQMS)

The RR-IQA provides a compromise between FR-IQA and NR-IQA methods where only
sparsely sampled meaningful features capable to reflect the visual quality of the RI are provided
at the receiver end. The key criteria for any efficient RR-IQA method is to judiciously select
the features of reference image such that its property can be captured adequately. Due to this,
numerous RR-IQA techniques have been proposed for natural images such as wavelet-domain
natural image statistic model (WNISM) [Wang and Simoncelli, 2005], Fourier transform-based
scalable image quality measure (FTB) [Narwaria et al., 2012], divisive normalization-based image
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representation (DNT-RR) [Li and Wang, 2009], structural degradation model (SDM) [Gu et al.,
2013], edge pattern map (EPM) [Min Zhang, 2011], and reduced-reference image quality metric
for contrast change (RIQMC) [Gu et al., 2016c]. A general framework for RR-IQA systems is shown
in Figure 1.10

WNISM [Wang and Simoncelli, 2005] is based on natural image statistics model in the
wavelet transform domain. The idea of WNISM is to compare the naturalness of the reference
and distorted images in order to measure the quality. DNT-RR [Li and Wang, 2009] is based the
divisive normalization transform (DNT)[Wainwright and Simoncelli, 2000]. It has been observed
that unlike DCT or DWT transform, which can only work on first-order correlation [Schwartz and
Simoncelli, 2001], DNT is able to reduce higher order correlation. This helps DNT in order to reflect
the neuronal responses in biological visual systems [Heeger, 1992; Simoncelli and Heeger, 1998].

Authors in [Min Zhang, 2011] proposed an IQA metrics called EPM which is based on the
statistics of edge discrimination. EPM extracts low-level features from reference and distorted
image by creating a binary edge map with the help of the multi-scale wavelet transform modulus.
It uses the histogram of edge pattern map, which is generated by applying the gradient operator
on the binary edge map, to measure the quality of the distorted image. On the other hand
FTB [Narwaria et al., 2012] proposes a regression-based IQA model in frequency domain, which
combines the quality score from phase and magnitude. The motivation behind FTB is to provide
more importance to the distortion in low frequency regions than in the high frequency ones.

SDM [Gu et al., 2013] proposes an IQA model on the similar lines of SSIM [Wang et al.,
2004]. SDM exploits the structural degradation in an image by applying SSIM multiple times
and combining them using SVM based integration. The authors in [Gu et al., 2016c] propose
a RR-IQA method called RIQMC to measure the distortion due to contrast change. They also
proposed RIQMC based optimal histogram mapping (ROHIM) in order to enable the receiver
to do a automatic contrast enhancement. It was observed that the third and fourth order
statistics (skewness and kurtosis) are connected to human’s feeling of comfort. RIQMC fused this
information in order to measure the distortion in the contrast. The framework of RIQMC is shown
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Figure 1.11 : IQA framework of reduced-reference image quality metric for contrast change RIQMC

in Figure 1.11.

Few RR-IQA methods for SCIs have also been proposed in recent years such as quality
assessment of compressed SCIs (QACS) [Wang et al., 2016], reduced-reference quality index (RQI)
[Che et al., 2017], reduced-reference quality assessment (RRQA) [Wang et al., 2018]. The authors
in [Wang et al., 2016] develop an IQA model named QACS, which works in two stages. In the
first stage, a wavelet domain based feature extraction method is proposed by using a scale-space
orientation decomposition. For this, they use the multi-level pyramid structure in the directions of
horizontal, vertical, and diagonal (HL, LH, and HH) by decomposing the input SCI in four scales,
and merged the sub-bands HL, LH as they share the same statistics. In the second stage, they
proposed a quality predictionmodel based on support vector regressor (SVR) training as proposed
in [Schölkopf et al., 2000].

In RQI [Che et al., 2017], the authors first proposed a layer based segmentation model in
order to extract the textual and pictorial layer from an SCI. Then RQI evaluates respective quality
metrics for textual and pictorial layers, and judiciously combine them to evaluate the quality
measure of the distorted SCI. In RRQA [Wang et al., 2018], in order to find the quality of the
distorted SCI, the statistical features are first extracted, that takes into account both primary HVS
information and unpredictable uncertainty. In order to measure the quality of the distorted image,
a significance histogram is generated with the help of GM, and the low pass filter. The flowchart
for the RRQA model is shown in Figure 1.12.

Detectable image degradation will lead to change or loss in the image features, and an
efficient IQA metric can be established by evaluating these changes. Many efforts have been
made in developing feature-based IQA techniques [Zhang et al., 2011; Wang et al., 2016] as also
discussed above. Scale-invariant feature transform (SIFT) [Lowe, 2004] is a widely used feature
extraction method, which is extensively used in different image processing areas such as object
identification, image matching, quality assessment, and many others. The feature extraction
process of SIFT is discussed in detail in Section 1.2.2. The work done on SIFT-based IQA for CCIs
have shown promising results in [Temel and AlRegib, 2016; Wen et al., 2014; Sun et al., 2014; Chen
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Figure 1.12 : Flowchart for RRQA

and Coulombe, 2013; Decombas et al., 2012]. These methods measure the quality of the distorted
SCI by comparing the features of reference and distorted images, where the features are extracted
using SIFT.

The features contained in an SCI generally have non-identical importance i.e. there are
some features which may provide more or less information than others. The work done on
feature-based IQA techniques so far for CCIs as-well-as SCIs have provided equal importance
to every feature in the reference image [Zhang et al., 2011; Temel and AlRegib, 2016; Wen et al.,
2014; Sun et al., 2014; Chen and Coulombe, 2013; Decombas et al., 2012]. To achieve a better IQA
metric, the features of the image should be weighted according to their importance, and it should
be consistent with the HVS.

1.2 RELATEDWORKS
This section discusses a few methods which will be used in the chapters to be followed

throughout the thesis. Moreover, the steps which are relevant in the later part of the thesis are
discussed in details here in order to provide a better insight.

1.2.1 JPEG Baseline
The encoding and decoding process of JPEG baseline is shown in Figure 1.13. There are

three basic steps in JPEG compression [Wallace, 1992], such as color sub-sampling, block-DCT
coefficient quantization, and entropy coding. The required bit-rate after encoding by JPEGbaseline
is mainly controlled in the quantization phase. The DCT coefficients of all the blocks are quantized
by fixed quantization parameter of its quantization table (T, i.e. a quantization matrix which
provides step sizes). As per the JPEG standard, the quantization table can be configured as per
the bit-rate requirement [Yang et al., 2016]. There have been series of several quantization tables
developed and are widely used for the requirement of higher compression ratio or improved
reconstructed image quality. The JPEG recommended a series of quantization tables (TF) is given
in (1.4).
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TF =


⌊T50× 50

F + 1
2⌋, 1≤ F < 50

⌊T50× (2− F
50)+

1
2⌋, 50≤ F ≤ 100

(1.4)

The value of quality factor (F) ranges between 1 to 100. The small value of F corresponds
to large quantization step-size, and thus results in high CR. T50 is the standard quantization table
[Wallace, 1992] used for luminance component of an image is given in (1.5). JPEG uses separate
quantization table for the chrominance component of the color images (1.6).

T50 =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


(1.5)

TC
50 =



17 18 24 47 99 99 99 99
12 12 14 19 99 99 99 99
14 13 16 19 99 99 99 99
14 17 19 19 99 99 99 99
19 19 19 19 99 99 99 99
19 19 19 19 99 99 99 99
19 19 19 19 99 99 99 99
19 19 19 19 99 99 99 99


(1.6)

For illustration purpose, few other chrominance quantization tables at F = 100,60,20,1 are
given in (1.7-1.10), respectively.
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TC
100 =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1


(1.7)

TC
60 =



13 9 8 13 19 32 41 49
10 10 11 15 21 46 48 44
11 10 13 19 32 46 55 45
11 14 18 23 41 70 64 50
14 18 30 45 54 87 82 62
19 28 44 51 65 83 90 74
39 51 62 70 82 97 96 81
58 74 76 78 90 80 82 79


(1.8)

TC
20 =



40 28 25 40 60 100 128 153
30 30 35 48 65 145 150 138
35 33 40 60 100 143 173 140
35 43 55 73 128 218 200 155
45 55 93 140 170 273 258 193
60 88 138 160 203 260 283 230
123 160 195 218 258 303 300 253
180 230 238 245 280 250 258 248


(1.9)

TC
1 =



800 550 500 800 1200 2000 2550 3050
600 600 700 950 1300 2900 3000 2750
700 650 800 1200 2000 2850 3450 2800
700 850 1100 1450 2550 4350 4000 3100
900 1100 1850 2800 3400 5450 5150 3850
1200 1750 2750 3200 4050 5200 5650 4600
2450 3200 3900 4350 5150 6050 6000 5050
3600 4600 4750 4900 5600 5000 5150 4950


(1.10)

To achieve low bit-rate requirements, the visual quality of the blocks with higher variance
(or frequency) get more degraded after reconstruction compared to the blocks with lower
variance. To illustrate this, we compressed an image at different bit-rates using JPEG baseline
and highlighted a high variance region to analyze the distortion occurred, as shown in Figure
1.14. Figure 1.14 (a) is the original (512×512) dimension color image at 24 bits-per-pixel (bpp) and
Figure 1.14 (b-d) are the reconstructed images after applying JPEG compression with quantization
tables T50, T10, and T5, respectively. It can be observed that the distortion in the highlighted region
increases at lower bit-rate, causing degradation in the perceptual quality of the overall image. A
similar effect is also observed in Figure 1.15 for Lena image with quantization tables T20, T10, and
T5, respectively.
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Original Image
24 bpp

JPEG Baseline (T )50
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JPEG Baseline (T )10

0.31 bpp

JPEG Baseline (T )5

Figure 1.14 : Effect of JPEG compression at different scale values for Baboon image

(a) (b) ( )c (d)

Original Image
24 bpp

JPEG Baseline (T )20

0.5 bpp 0.3 bpp

JPEG Baseline (T )10

0.2 bpp

JPEG Baseline (T )5

Figure 1.15 : Effect of JPEG compression at different scale values for Lena image
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1.2.2 Scale-Invariant Feature Transform (SIFT)
Scale-invariant feature transform (SIFT) generates the set of image features in four major

stages [Lowe, 2004]:

Initial Feature Points Selection
The candidate feature locations in the image are identified by using cascade filtering

approach. The idea is to locate the feature points which are invariant to scale change of the image,
using a continuous function of scale, known as scale-space [Lowe, 2004]. The function S(x,y,σ)
defines the scale-space of an image, which is produced by convolving variable-scale Gaussian
function, G(x,y,σ)with the image I(x,y):

S(x,y,σ) = G(x,y,σ)∗ I(x,y) (1.11)

where ∗ is the convolution operator in x, and y, and

G(x,y,σ) =
1

2πσ 2 e−(x
2+y2)/2σ2

(1.12)

The difference-of-Gaussian (DOG) images, D(x,y,σ) are then evaluated from the difference
between two nearby scales which are separated by a constant multiply factor k as shown in Figure
4.4. The DOG images are defined as follows:

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I(x,y) = S(x,y,kσ)−S(x,y,σ) (1.13)

The scale-space pyramids as shown in Figure 4.4 are generated for O number of octaves.
Every octave of scale-space is segmented into N number of intervals, so k = 21/N . Then number of
scale-space N in each octave is proposed to be 3 [Lowe, 2004]. To cover a complete octave, N + 3
blurred images are produced in each octave. The number of octaves, O, is determined according
to the size of image. The scale coefficient C of lth scale layer in the oth octave in the scale-space
pyramid is computed as follows:

Co,l = σ12(o−1+(l/N)) = σ1kN(o−1)+l

o = 1,2, ...,O; l = 1,2, ...,N; k = 21/N

σ1 = 1.6

(1.14)

In order to find the maxima and minima of DOG pyramid, each pixel is compared to its
eight neighbors at the same scale layer, and nine neighbors in the scale above and below (i.e. 26
in total), as shown in Figure 4.5. The point is selected only if it is higher or smaller than all of its
neighbors.

Refining Feature Points
To reject the unstable feature points detected in the first step, the point that have low

contrast or are poorly localized along an edge are removed. In order to do that, the subpixel
location, the scale, and ratio of principle curvature of the DOG function D(x,y,σ) are calculated. A
3D surface is fitted to the feature points using second order Taylor expansion of the DOG function
D(x,y,σ). These fitted-points are then shifted such that the origin is at the sample point.
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Figure 1.16 : Gaussian images (left), anddifference-of-Gaussian images (right) are shown for eachoctave
of scale-space. The Gaussian image is down-sampled by a factor of 2 for the next octave.

Figure 1.17 : The pixel marked with X is compared to its 26 neighbors at the current and adjacent scales
(marked with circles) in order to detect the maxima and minima of the DOG
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(a) Input Image (233 x 189) (b) Initial Key-points (832) 

(c) Key-points after removing low contrast points (721) (d) Key-points after removing points on edges (503) 

Figure 1.18 : Effect of pruning feature points. (a) Input Image of dimension 233× 189, (b) Shows the
initial key-points as discussed in Chapter 1.2.2, (c) Shows the key-points after removing low
contrast points, (d) Shows the remaining key-points after removing the points which are
on edges

The effect of pruning feature points is shown in Figure 1.18. For an input Image of
dimension 233× 189, Figure 1.18 (b) shows 832 key-points after initial feature points selection,
as discussed in Chapter 1.2.2. The key-points after removing low contrast points are shown in
Figure 1.18 (c). It was observed that about 14% key-points were discarded as low contrast points.
Figure 1.18 (d) Shows the remaining key-points after removing the points which are on edges. This
further discarded about 31% of remaining key-points after removing the low contrast points.

Tr(H)

Det(H)
≥ 12.1 (1.15)

Orientation Assignment
The gradient magnitude M(x,y), and the orientation θ(x,y), is computed using pixel

differences as shown in (4.12), and (4.13) for every sample image L(x,y), at a scale.

M(x,y) =
√
[(L(x+1,y)−L(x−1,y)]2 +[L(x,y+1)−L(x,y−1)]2 (1.16)

θ(x,y) = tan−1
[
(L(x+1,y)−L(x−1,y))
(L(x,y+1)−L(x,y−1))

]
(1.17)
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The gradient orientation within a region around a feature point is then used to create
an orientation histogram. This histogram consists of 36 bins corresponds to 360 degree range
of orientations. The samples added to the histogram are weighted by using Gaussian-weighted
circular windowwith a scaling factor 1.5 times higher than the scale of the feature point. A feature
point is only created for the highest peak in the histogram or any other peak which is within 80%
of the highest peak with the corresponding orientation. This provides multiple feature points at
the same location and scale but a different orientation.

Local Feature Discriptors
The feature point descriptors are created by computing the gradient magnitude and

orientation of sample points around the feature point location with a 16×16 window size. These
areweighted by aGaussianwindowwith scaling factor as one half thewidth of descriptorwindow.
An orientation histogram is then formed summarizing the contents over 4× 4 subregions into 8
directions. This leads to a descriptor vector for each feature of length 4×4×8 = 128.

1.3 THESIS OVERVIEW AND CONTRIBUTIONS
This thesis contains four contributions in the area of image compression and its quality

assessment. The first contribution is towards developing multilevel saliency enabled compression
method for camera-content images (CCIs) as discussed in Chapter 2. Because of the computational
efficiency of DCT basedmethods [Xiong et al., 1999], with a small loss in performance as compared
to DWT based such methods, our focus has been on the former one. We developed a multi-level
saliency-based image compression algorithm that provides a statistically optimal trade-off between
the overhead, perceptual quality, and CR. The developed method chooses variance as a basis to
classify and rank the image into an optimal number of classes [Rahul and Tiwari, 2018]. The aim
is to enable JPEG standard to judiciously retain high-frequency regions in the image that provides
perceptual homogeneity in compression, particularly in the case of high compression requirement.

In order to do this, the given image is segmented intomultiple salient regions in such away
that the between-class variances aremaximized [Otsu, 1979; Huang andWang, 2009]. The different
regions are ranked according to their weighted-variances i.e. within-class variances [Huang and
Wang, 2009]. A region with high variance is given more importance and vice versa. We also
devised an adaptivemethod to compute the number of different salient regions in an image. This is
done based on the goodness of segmentation (GoS) [Otsu, 1979; Lagarias et al., 1998], using the ratio
of between-class variance and total variance. After identifying the multi-level salient regions and
their rank information, the image is divided into non-overlapping blocks of size 8×8. If a block falls
into more than one regions, then probability bound is used to identify its rank. It is observed that
ranks of neighbouring blocks are, generally, highly correlated and hence delta encoding [Schindler,
1970] method is employed to reduce the overhead information for the ranks. 2D-DCT coefficients
are obtained for each of the blocks and these coefficients are adaptively quantized based on the
rank of the block.

After designing a compression framework for CCIs we proceeded towards developing a
similar compression algorithm for screen-content images (SCIs) as discussed in chapter 3 [Rahul
and Tiwari, 2019b]. The JPEG quantizer here was made intelligent to perform a judicious
quantization. The key difference in this method is that instead of a multi-level saliency map, a
binary saliency map is provided to the quantizer to identify text or non-text regions. Moreover, as
JPEG framework transforms the image blocks into DCT at the initial state, we decided to use this
DCT information for marking every block as textual or non-textual to create a saliency map with
low computation cost.
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This method provides an optimal trade-off between the overhead, perceptual quality,
and CR. The developed method first classifies the SCI into the salient and non-salient region
by identifying the textual information. The aim is to enable the JPEG standard to judiciously
retain high-frequency text regions in the image, particularly in the case of high compression
requirements.

To accurately identify the performance of the proposed compression methods, two
reduced-reference Image-Quality-Assessment (RR-IQA) methods for camera and screen content
images are also proposed in this thesis. These methods are based on the fact that Human Visual
System (HVS) is more sensitive towards change in features than intensity or structure.

In the final contribution, two feature-based reduced-reference IQA methods are designed
for CCIs and SCIs [Rahul and Tiwari, 2019a] in Chapter 4. For this, the feature points are extracted
from the reference image (RI) and distorted image (DI). A low dimensional feature descriptor
structure has been developed to reduce the computation complexity in the feature matching
process. A feature matching technique is also developed by calculating the descriptor distance
between each feature of the reference image and the feature present in their vicinity in the distorted
image. This makes the proposed method computationally faster than other feature based IQA
methods. The developedmethod also normalizes the features as per their importance to get a better
IQA result with a larger dynamic range compared to the current state-of-the-art IQA techniques.

SCIs are usually high dimensional and more informative compared to natural images,
and due to this, it contains more feature points. The proposed descriptor structure also helps in
achieving low bit-rate for sending the RI information to the receiver.

…
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