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Multilevel Saliency Enabled Compression for Camera-Content

Images

In view of the computational efficiency of DCT based compressionmethods [Wallace, 1992;
Douak et al., 2011; Dhara and Chanda, 2007; Messaoudi and Srairi, 2016] as discussed in Chapter
1, our focus has been on designing a method in a similar domain. The major challenge was to
prevent over-quantization of high-frequency regions of an image. Moreover, it was discussed in
Chapter 1 that the human eyes steer an image according to its saliency, i.e., the major focus of the
eyes are on the salient regions [Borji and Itti, 2013]. It was also observed that for camera content
images (CCIs), our brain stores amulti-level saliencymap in order to store image information. This
provided us with the motivation to work on a multi-level saliency-based compression technique.
The main issue in designing such an algorithm was to reduce the overhead information in order
to send the shape of the salient regions and their corresponding rank. As discussed in Chapter 1,
there is a trade-off between sending the exact region of interest (ROI) information where the ROI
needs to be reconstructed on the decoder side, and sending the rectangular approximation where
although the ROI is not needed to be reconstructed on the decoder side, compression ratio (CR)
is compromised. We aimed to develop an ROI encoding which can provide the ROI information
more accurately than that of rectangular approximation and yet needs low computation and space
overhead.

In this Chapter we develop a multi-level saliency-based image compression algorithm
that provides a statistically optimal trade-off between the overhead, perceptual quality, and CR
[Rahul and Tiwari, 2018]. The devised method chooses variance as a basis to classify and rank
the image into an optimal number of classes. The aim is to enable JPEG standard to judiciously
retain high-frequency regions in the image that provides perceptual homogeneity in compression,
particularly in the case of high compression requirement.

The rest of the chapter is organized in the followingway. Section 2.1 explains the developed
multi-level saliency detection and image coding algorithm. Section 2.2 presents the experimental
results in order to show the performance of the developed method. The performance of our
method is also compared with the state-of-the-art methods in terms of the perceptual quality of
the reconstructed image and the rate-distortion. Concluding remarks are given in Section 2.3.

2.1 PROPOSED COMPRESSIONMETHOD
The proposed image encoding process is shown in Figure 2.1. For ease of implementation,

various steps are briefly explained as follows:

The encoder processes a given image through two paths. The first path generates
multi-level saliency map for the input image. The optimal number of classes is adaptively
calculated by using efficiency of segmentation [Otsu, 1979]. The image is then segmented into the
same number of salient classes by maximizing between-class variances [Huang and Wang, 2009].
Every class is then given a rank based on its importance by using their weighted-variances. The
class having high weighted-variance is given higher rank i.e. more important, and vice-versa.
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Figure 2.1 : Encoding Process of Proposed Method

The second path is used for the adaptive quantization. The image is decomposed into
blocks of size 8×8 and each block is ranked based on the input saliencymap obtained from the first
path by applying probability bound. 2D-DCT coefficients of each block are quantized adaptively
by the quantization parameters modified by the rank of the block. The higher rank block (i.e. more
salient) will be lightly quantized and vice-versa. The quantized coefficients are then entropy coded
and the overhead for the rank of the blocks is reduced by using delta encoding method [Schindler,
1970].

Unlike the method in [Christopoulos et al., 2000], where decoder requires reproducing the
ROI mask, making the decoder complex, the decoder of our method is simple as ROI information
is sent to the decoder by the encoder. The reconstruction of the image is the inverse of the encoding
steps. The detailed description of the key steps in the encoding process are given as follows:

2.1.1 Number of Regions Identification &Multiple Saliency Identification
Salient regions are identified by segmenting the image into K number of classes, to be

discussed later, by maximizing between-class variances. For segmenting the image, the Otsu’s
segmentation method [Otsu, 1979; Huang and Wang, 2009; Lagarias et al., 1998] is extended for
K classes. Let these K classes be arbitrarily bounded by K + 1 intensity levels (t0, t1, t2, ..., tK) as
t0 < t1 < t2 < ... < tK−1 < tK . For an image with L intensity levels, ti (0 ≤ i ≤ K) is intensity value
of pixels with t0 = 0, and tK = L−1. Let ith class (1 < i < K−1) consists of all the pixels with their
intensities in the range [ti−1, ti−1]. Whereas, the Kth class consists of pixels with intensity values in
the range of [tK−1, tK ]. With these initial assumptions, probability of ith class occurrence (ωi), and
the class mean (µi) are obtained as follows:

ωi =
ti

∑
j=ti−1

p j, µi =
1
ωi

ti

∑
j=ti−1

jp j, µT =
K

∑
i=1

ωiµi (2.1)

Here p j is probability of the pixels with intensity value j, and (µT ) is the mean of the image.
Thereafter between-class variance (σ2

K) can be obtained using (2.2), given below.
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σ2
K =

K

∑
i=1

ωi(µi−µT )
2 (2.2)

σ2
K is function of ωi and µi and these parameters, in turn, are functions of the chosen class

boundaries t1, t2, ...tK−1. It is desired to obtain an optimal set of the class boundaries that results into
a maximum value of σ2

K . This can be obtained by iteratively solving (2.2) for possible boundary
values given in (2.1). The maximum value of σ2

K is called maximum between-class variance.
Algorithm 2 shows the step by step procedure for threshold values optimization.

Algorithm 1 Number of Regions Identification
Input: Image to be Segmented, and required goodness-of-segmentation (GoS) (ηr)
Step1: Initialize a loop with K = 1
Step2: Use Algorithm 2 to get optimized [t0, ..., tK ]
Step3: Evaluate ωi,µi,µT ,σ2

i
Step4: Evaluate Between Class Variance as:

σ2
K =

K
∑

i=1
ωi(µi−µT )

2

Step5: Calculate total variance (σ2
T ):

σ2
T = σ2

K +∑K
i=1 ωiσ2

i
Step6: Evaluate actual GoS (ηK):
ηK =

σ2
K

σ2
T

Step7: Compare the required GoS (ηr) and actual GoS (ηK):
if ηK ≥ ηr then

exit with K regions
else

K = K +1, and go back to Step2
end if
Output: Number of Regions (K)

To identify the total number of classes (K), it is proposed to first obtain the
goodness-of-segmentation (GOS) (ηK), given in (2.3). Between class variance, σ2

K , given in (2.2),
and weighted-variance, Si, given in (2.5), are used to calculate the total variance σ2

T and ηK , for
initial value of K = 2. Value of K is incremented till the inequality given in (2.4) is satisfied for
required value of (ηr), typically in the range of 0.8 to 0.99.

σ2
T = σ2

K +
K

∑
i=1

Si, ηK =
σ2

K

σ2
T

(2.3)

As it can be observed from (2.3), ηK will be less than 1.

ηK ≥ ηr (0≤ ηr ≤ 1) (2.4)

Choosing number of classes (K) based on GOS helps to avoid the over-segmentation and
under-segmentation situations. Algorithm 1 shows the proposed number of regions identification
process. For a good segmentation, the required GOS ηr should be at least 0.80, as observed in the
proposed work. The effect of ηr parameter is discussed in Section 2.2.
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Algorithm 2 Threshold Optimization
Input: Number of regions (K)
Step1: Initialize the threshold values (t0, ..., tK) as:
t0 = 0, t1 = (255

K ), t2 = (255
K ∗2), ti = (255

K ∗ i),... tK = 255
Step2: Initialize two variables max = 0, and j = 1
Step3:Create a Function Optimize([t0, t1, t2, ..., tK ])
Step4: Evaluate ωi,µi,µT ,σ2

i , for 0 < i < K
Step5: Evaluate Between Class Variance as:

σ2
K =

K
∑

i=1
ωi(µi−µT )

2

Step6: Compare the value of between class variance σ2
K and max:

if σ2
K is higher than the variable max and j < K−1 then:
max = σ2

K
if (σ2

K with t j = t j−1) is higher than the (σ2
K with t j = t j +1) then

Call the Function Optimize with t j = t j−1 until t j > t j−1
else Call the Function Optimize with t j = t j +1 until t j < t j+1

end if
else If (σ2

K > max and j >= K−1)
Exit and Keep the current optimized values [t0, ..., tK ]
else If (σ2

K < max_variance and j < K−1)
j = j+1, and call the Function Optimize with previous values of [t0, ..., tK ]
else If (σ2

K < max_variance and j >= K−1)
Exit and keep the previous values [t0, ..., tK ]

end if
Step7: End Function Optimize
Output: [t0, ..., tK ]
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Figure 2.2 : Block ranking process: (a) to (d) represents pixel with different rank situations.

2.1.2 Saliency Ranking
In order to rank each class, consisting of randomly distributed pixels, weighted-variance

of the pixels are obtained, using (2.5).

Si = ωiσ2
i , i = 1,2, ...,K (2.5)

where σ2
i is the variance of ith class, as given in (2.6)

σ2
i =

1
ωi

ti

∑
j=ti−1

( j−µi)
2 p j (2.6)

Si for 1≤ i≤ K is sorted in descending order. The ith class pixels will get rank q where q is
the position of the sorted Si. Highest weighted-variance refers to the most salient class and gets the
highest rank and vice versa, i.e. pixels corresponding to max(Si) will get rank (r = 1) and min(Si)
will be ranked (r = K). The aim is to give more importance to the class with a considerable area
having high variance. As expressed in (2.5), a class with a high variance but very small area (small
ωi) may get less importance than a class with relatively lower variance but a larger area.

2.1.3 Block Ranking
After classifying pixels based on the threshold values t1, t2, ..., tK−1 and ranking them

according to sorted series of Si, given in (2.5), we propose to use probability mass function (PMF)
to rank every 8× 8 blocks used in JPEG. Blocks having pixels with more than one rank may be
the one that is on the border, or sometimes on the edges. The block is assigned rank r, whenever
the empirically proposed probability bound (2.7) is satisfied, starting with r = 1. The motivation
behind choosing this empirical formula was to provide an advantage to the lower ranked or more
salient region when more than one rank pixels are present in the block. This approach saves the
edges of the higher ranked regions, which are important for an end user.

r

∑
i=1

pi ≥
1

K− r+1
, r = 1,2, ...,K (2.7)

Where pi is the probability of ith ranked pixels in the block. To illustrate the use of
probability bound and ranking of blocks, lets assume K = 4 and apply (2.7) on four different blocks
of size 3×3 shown in Figure 2.2 (a) to (d). Considering Figure 2.2 (a), for example, it is found that
p1 = 0.33, p2 = p3 = 0, and p4 = 0.66. The probability bound (2.7) is then applied, startingwith r = 1.
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The probability bound is satisfied for r = 1, resulting block rank to be 1. Here it can be observed that
although p4 is higher than p1, i.e. pixels with rank 4 are more than pixels with rank 1, but the block
was ranked as 1. The motivation behind choosing such empirical formula was to provide more
importance to the lower ranked pixels (higher saliency) if their frequency is adequate. Similarly,
blocks in Figure 2.2(b) to (d) gets rank 2, 3, and 4 respectively.

2.1.4 Adaptive Quantization of DCT Coefficients
DCT coefficients of every ranked block of size 8× 8 is adaptively quantized as per their

importance, estimated in terms of their rank values (r). The quantization table (T50) used in JPEG
baseline [Wallace, 1992] is proposed to be scaled by a factor Fr for rth ranked block (1≤ r≤ K), and
the same is controlled by two variables Var and Qam as given in (2.8).

Fr =Var +(r−1)Qam (2.8)

Fr = Var for r = 1 i.e., for the most salient blocks and value of Fr increases by (r− 1)Qam as
the saliency of the block decreases (i.e., r increases). Details of choice of Var and Qam are given in
Section 2.2. It can be observed from (2.8) that the scaling in the quantization table T50 is least for
the most salient regions (r = 1) in the image. The scaling increases gradually by a factor of Qam for
every subsequent region with lower saliency value (higher rank). The motivation behind doing
this was to prevent an abrupt change in the reconstructed image as it is very likely that the rank of
the adjacent blocks will be in close vicinity.

2.1.5 Overhead Reduction
The number of bits for sending the rank (r) information associated with various blocks will

be ⌈log2(K)⌉ and its value in terms of bpp will be no, as given in (2.9).

no =
⌈log2(K)⌉

8×8
(2.9)

For example, if an image is segmented in 8 regions, the overhead will be ⌈log2(8)⌉
64 = 0.0469.

Although, the overhead value per-pixel is very less, the effect of this can still be present in case
of a very low bit requirements. To further lower the overhead for sending the saliency map, the
correlation between the adjacent blocks are used. Due to the Markovian property in images, it
was observed that there was high correlation in the ranks of adjacent blocks. Figure 2.3 shows the
histogram of the delta encoded rank matrix [Schindler, 1970] where the error between the current
rank and the previous rank values evaluated. This helped in further reduction of overhead by
applyingdelta encoding [Schindler, 1970] on rankmatrix. In delta encoding, only the error between
the current-block rank and the previous-block rank is encoded.

2.2 RESULTS AND ANALYSIS
In order to evaluate the robustness and efficiency of the proposedmethod, USC-SIPI Image

data-set [Weber, 1997] is used. The data set contains 397 images in 5 different volumes as 155
texture images, 91 rotated texture images, 38 high altitude aerial images, 44 miscellaneous outdoor
images and 69 frames taken from 4 video sequences. Images in each volume are of the dimensions
between 256×256 pixels to 2048×2048 pixels. These images are 8 bits/pixel, for gray-scale images,
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Figure 2.3 : Histogram of delta encoded rank matrix.

Table 2.1 : Effect of varying parameter (ηr) on the image data-set [Weber, 1997]

ηr Number of Regions R1 area in % R2 area in %

0.78 2.83 36.18 42.23

0.81 3 35.38 30.14

0.84 3.33 34.37 25.37

0.87 3.83 36.79 33.98

0.90 4.33 38.17 30.71

0.93 5.17 29.66 28.46

0.96 7.33 38.49 23.82

0.99 11.5 28.88 15.52
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(a) (b) ( )c

(d) (e) (f)

Figure 2.4 : Test images: (a) Airplane, (b) Peppers, (c) Lena, (d) Girl, (e) Couple, (f) Zelda. [a-c]
dimension 512×512, [d-f] dimension 256×256.

and 24 bits/pixel, for color images. We used 4 : 4 : 4 chroma sub-sampling, as in [Barua et al., 2015],
on the color images to quantize on all luminance and chrominance components. To compare the
quality of the reconstructed image, PSNR [Wang and Bovik, 2002] and SSIM [Wang et al., 2004] are
used.

The key parameters in the proposed method are ηr, Var and Qam. The number of classes in
which the image is to be segmented depends on ηr. Table 2.1 shows average number of regions and
the percentage of area with rank r = 1, and 2 as a function of ηr, for the image data-set in [Weber,
1997]. From Table 2.1, it is observed that number of classes obtained are 3 and 12 for ηr = 0.8 and
0.99, respectively. The value of ηr can be chosen as per the target bit-rate. Choosing lower value for
ηr yields less number of salient regions, the overhead per block is less, which is suitable to achieve
lower bit-rate. In order to control the overhead, an appropriate value for ηr between 0.8 to 0.99 can
be selected for an image.

Region-wise effect of changing the parameters Var and Qam, at 0.5 bpp, for Lena test image
is shown in Table 2.2. To achieve 0.5 bpp, the quantization table T25 for JPEG baseline is used.
Increasing Qam yields improved quality at the most salient regions (i.e. r = 1) which is 38% of the
image. By decreasing Qam, the results behave like JPEG baseline. So, by changing the parameters
Var and Qam, we get adequate flexibility in controlling quality and compression ratio than that can
be obtained in JPEG baseline method, as shown in Table 2.2.

The rate-distortion curve in Figure 2.5, shows that the PSNR of the proposed method is
always higher compared to JPEG for the image’s most salient regions (r = 1)which constitutes an
average of 31.1% of total area (or the number of pixels) of the test images. However, the overall
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Table 2.2 : Effect of varying parametersVar and Qam on 24 bpp Lena image compressed to 0.5 bpp and
at ηr = 0.95. Ri denotes the regions in the image with rank i

Var Qam PSNR PSNR PSNR SSIM
R1 R2 Overall Overall

1.4 4 31.28 26.43 26.12 0.9351

1.6 3.5 30.95 26.48 26.48 0.9450

1.8 3 30.59 26.63 26.40 0.9443

2 2.5 30.33 26.98 27.05 0.9509

2.3 2 29.87 27.18 27.39 0.9520

2.6 1.5 29.47 27.32 27.59 0.9555

2.8 1 29.25 27.54 28.14 0.9623

3 0.5 29.01 27.89 28.75 0.9666

JPEG Baseline 29 28.41 29.42 0.9714

Region Weight (%) 38 20 100 100

Bitrate (bpp)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 2.5 : Rate-distortion comparison (at ηr = 0.95) between proposedmethod and JPEG baseline on
the data-set [Weber, 1997]. R1 denotes most salient regions in the image.
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Input Image After Saliency Ranking After Block Ranking

Figure 2.6 : Multiple salient regions after applying proposed saliency detection technique at ηr = 0.92.
Brighter region indicates more saliency and vice versa.

After Saliency Ranking Rectangular Approximation After Block Ranking

Figure 2.7 : Comparison of ROI reconstruction at the decoder side by using rectangular approximation
and the proposed method.
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quality has an average degradation of 1.57% compared to JPEGbaseline. Since, there is a significant
improvement in quality at the salient regions i.e. the regions of perceptual importance, the overall
visual quality of the images has improved. It can also be observed from Figure 2.5, that between 0.4
to 0.6 bpp, there is a fluctuation in JPEG baseline curve for the most important regions i.e. a region
with a large variance. The reason for this is non-homogeneous compression in JPEG, leading to
compression artifacts. On the other hand, the proposed method gives a stable curve for the most
important regions as well as for the overall image.

Table 2.3 presents the performance comparison of the proposed method with the recently
published DCT and DWT based algorithms in [Dhara and Chanda, 2007; Douak et al., 2011;
Boucetta and Melkemi, 2012; Messaoudi and Srairi, 2016] and the JPEG baseline [Wallace, 1992]
on the same test images as shown in Figure 2.4. The value of PSNR (in db) shown in Table 2.3 for
proposed method, and JPEG baseline is for the most important regions (r = 1) of the image and
for rest of the methods for the whole image. When any DWT or DCT methods in [Wallace, 1992;
Dhara and Chanda, 2007; Douak et al., 2011; Boucetta and Melkemi, 2012; Messaoudi and Srairi,
2016] are applied on the most important regions (r = 1), the mean-square error (MSE) of these
regions is higher than overall MSE. The reason for this is while applying these transform based
methods in a region with high variance, the energy compaction is lesser compared to a region with
lower variance [Yang et al., 2016], which results in higher MSE after quantization to achieve lower
bit-rate. A similar example can be referred from rate-distortion curve in Figure 2.5, where the PSNR
after applying JPEG on the most important regions of the image is always lower than the overall
image. This information suggests that the PSNR values provided in Table 2.3 for the methods in
[Dhara and Chanda, 2007; Douak et al., 2011; Boucetta and Melkemi, 2012; Messaoudi and Srairi,
2016], which is for the whole image will have a lower value of PSNR for the regions with (r=1). It is
clear that the proposed method outperforms those reported in [Wallace, 1992; Dhara and Chanda,
2007; Douak et al., 2011; Boucetta and Melkemi, 2012; Messaoudi and Srairi, 2016].

The Figure 2.7 shows the performance of the proposed multi-level saliency ranking and
block ranking on Lena. For illustration purpose, the saliency of the regions is shown in gray-scale
with brighter region implies more salient and vice-versa. The face region of Lena image gets high
importance regardless of having comparatively low variance. This is because the face region has
large area compared to other regions. It is observed that the proposed approach of block ranking
provides effective means of labeling Region of Interest (ROI).

Figure 2.7 shows the comparison in terms of accuracy of reconstructed ROI at the decoder
side, between the proposed method of sending the ROI and the rectangular approximation used
in state-of-art saliency enabled methods [Barua et al., 2015; Christopoulos et al., 2000]. The
reference images can be seen in Figure 1.1. It is observed that the proposed approach of sending
ROI information to the decoder by using block ranks, retains the ROI structure better than the
rectangular approximation of ROI. The average overhead found to be 0.00038 bpp while using the
rectangular approximation, and 0.0091 bpp while using the proposed method.

Although, the rate-distortion curve in Figure 2.5 shows that at 0.2 bpp, the PSNR of the
proposed method converges to JPEG for the image’s most salient regions (r = 1), however, the
overall perceptual quality of the proposed method is significantly better than JPEG. To illustrate
this, Figure 2.9, and Figure 2.10 provide a better visual comparison of the reconstructed images
after applying JPEG baseline and the proposedmethod. In Figure 2.9 (a), Lena image of dimension
512× 512 is shown with portion of its face area highlighted. Figure 2.10 (b), and (c) are the
reconstructed images after applying JPEG baseline and the proposed method, respectively, to
achieve bit-rate of 0.2 bpp. Similarly, in Figure 2.10 (a), Baboon image of dimension 512× 512
is shown and a high variance region is highlighted. Figure 2.10 (b), and (c) are the reconstructed
images after applying JPEG baseline and the proposed method, respectively, to achieve bit-rate of
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Table 2.3 : Performance comparison between the proposed method, JPEG Baseline [Wallace, 1992],
CBTF-PF [Dhara and Chanda, 2007], CDABS [Douak et al., 2011], GA-DWT [Boucetta and
Melkemi, 2012], and dLUT [Messaoudi and Srairi, 2016] algorithms

Image R1 Area JPEG CBTC−PF CDABS GA−DWT dLUT Proposed
in% PSNR bpp PSNR bpp PSNR bpp PSNR bpp PSNR bpp PSNR bpp

Airplane 19.6 29.71 0.97 30.36 1.04 31.40 0.72 31.16 0.49 31.16 0.48 31.43 0.45

Peppers 45.2 30.16 1.47 30.15 1.5 30.33 0.88 31.20 0.83 31.19 0.88 31.49 0.85

Lena 51.1 32.57 1.03 31.93 1.17 32.77 1 32.76 0.66 32.65 0.74 33.37 0.72

Girl 21.58 34.98 0.62 35.13 0.6 36.96 0.69 35.90 0.41 35.86 0.38 36.26 0.37

Couple 44.4 31.49 0.94 32.44 1 33.07 1.13 32.87 0.89 32.62 0.79 32.51 0.81

Zelda 30.8 31.24 1 31.31 1.12 32.05 1.09 31.98 0.76 32.01 0.82 32.89 0.80

Average 35.45 31.69 1.01 31.89 1.07 32.76 0.92 32.65 0.67 32.58 0.68 32.99 0.67

0.31 bpp. The overall perceptual quality of the reconstructed images, obtained from the proposed
method is significantly better than that of the reconstructed images from JPEG baseline. Also,
the highlighted area of the images obtained from the proposed method shows very less distortion
compared to the reconstructed images from JPEG baseline.

Usually, aerial images are compressed at a lower bit rate compared to the other multimedia
data set. Figure 2.8 can also be referred for better visual comparison, where an aerial image is
compressed at 0.31 bpp by the proposed and the JPEG method. A region with high variance
is highlighted in Figure 2.8 to show the efficacy of the proposed method on such regions. To
achieve bit-rate of 0.31 bpp, JPEG quantizes the highlighted area heavily, yielding significantly
higher artifacts compared to the proposed method.

The overhead of sending the ROI information to the decoder is dependent on ηr. We set
the parameter ηr = 0.95 and got average overhead for the data set without any post-processing as
0.047 bpp. Although this overhead seems to be low, however, at high CR requirements (i.e. low
bpp), reduction in this overhead is desired. For this, after applying delta encoding, the average
overhead reduced to 0.0299 bpp.

2.3 CONCLUSIONS
For the requirement of high compression ratiowithout any significant quality loss in salient

regions of the reconstructed image, we propose to classify a given image intomultiple rankedROI’s
and quantize the corresponding DCT coefficients judiciously. The goodness-of-segmentation
(GOS) is used as a parameter to adaptively identify the number of classes in the image. Themultiple
ROI’s are obtained by maximizing between-class variances and ranked by using within-class
variances. Coefficients of the quantization table used in JPEG are adaptively changed as a function
of the rank of the ROI, and its application in JPEG’s framework resulted in significant improvement
in compression performance.

We achieved (average) 2.88% better quality at the most salient regions, which contained
an average of 31.1% area in 397 test images. Due to improvement in the salient regions, the
overall perceptual quality of the reconstructed image is better than JPEG. The experimental results
obtained on different color images clearly showed that our proposed method outperforms the
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(a) Original Image (b) JPEG Baseline (c) Proposed Method

Figure 2.8 : Reconstructed aerial image from JPEG baseline and the proposed compression technique.
(a) Original Image (24 bpp). (b) Reconstructed image compressed at 0.31 bpp, using JPEG
baseline. (c) Reconstructed images at 0.5 bpp, using the proposed method.

recently published similar methods in terms of the perceptual quality of the reconstructed images.
By ranking 8× 8 blocks, we were able to reconstruct the ROI at the decoder side more accurately
than the recent state-of-the-art works where the ROI is approximated by a rectangular bounding
box. The average overhead is also found to get reduced by 36.38% by using delta encoding as a
post-processing on rank information matrix.

…

37



(a) (b) ( )c

Original Image
24 bpp 0.2 bpp

JPEG Baseline (T )5 Proposed Method
0.2 bpp

PSNR: 23.29 db PSNR: 28.37 db

Figure 2.9 : Reconstructed Lena image from JPEG baseline and the proposed compression technique.
(a) Original Image (24 bpp). (b) Reconstructed image compressed at 0.2 bpp, using JPEG
baseline. (c) Reconstructed images at 0.2 bpp, using the proposed method.
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(a) (b) ( )c

Original Image
24 bpp 0.31 bpp

JPEG Baseline (T )5 Proposed Method
0.31 bpp

PSNR: 19.89 db PSNR: 22.11 db

Figure 2.10 : Reconstructed Baboon image from JPEG baseline and the proposed compression
technique. (a) Original Image (24 bpp). (b) Reconstructed image compressed 0.31 bpp,
using JPEG baseline. (c) Reconstructed image at 0.31 bpp, using the proposed method.
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