
4
Reduced-Reference Quality Assessment Methods for Camera

and Screen Content Images

In the last two chapters, two different compression methods have been proposed for
camera content images (CCIs), and screen content images (SCIs) respectively. In order to analyze
the performance of any compression algorithm, it is important to use a reliable image quality
assessment (IQA) method. The reliability of an IQA method can be evaluated in terms of its
accuracy and robustnesswith respect to themean opinion score or subjective score. Itwas observed
from the literature survey in Chapter 1 that although, many IQAmethods for CCI’s were proposed
over the years [Wang and Bovik, 2002; Wang et al., 2004; Chandler and Hemami, 2007; Liu et al.,
2012; Zhang et al., 2011] but, due to the distinguishing properties of SCIs compared to the CCIs,
such methods did not perform satisfactorily on SCI’s. This motivated many research communities
to work in the area of IQA for SCIs [Gu et al., 2016b, 2018; Yang et al., 2015; Ni et al., 2016].

Moreover, it was also discussed in Chapter 1 that an RR-IQAmethod is themost suitable to
evaluate the distortion in an image over a communication channel. As the RR-IQA method needs
only a few bits of information about the reference image, it can be easily sent to the receiver side in
order to verify the quality of the received image. However, it was also observed that the RR-IQA
methods perform inferior over distortion caused by compression. Due to the less computation
and space complexity in RR-IQA methods, it motivated us to design an efficient IQA metric for
CCIs and SCIs. The aim here was to develop an RR-IQA method which can perform efficiently,
especially on the distortion caused by compression. This could also justify the performance of
the proposed compression framework for SCIs. The major challenge in designing an RR-IQA
method was to extract the efficient set of features and descriptors which could correctly represent
the reference image at the receiver side. Moreover, a computationally efficient feature matching
was also needed in order to provide an accurate IQA metric.

Two feature-based camera and screen-content image quality assessment methods are
proposed in this chapter, namely CSQA and FQI. Firstly, the feature points and their descriptors
are extracted from reference image (RI) at the sender side and from the distorted image (DI) at the
receiver side. A feature matching process is also proposed by evaluating the descriptor distance
between every feature of the RI and feature present in the vicinity in theDI. Finally, a normalization
process is also proposed in order to find the quality metric which is able to reflect the importance
of every feature.

The organization of rest of the chapter is as follows. The proposed CSQA is explained in
Section 4.1. The performance analysis of CSQA is carried out in Section 4.2 where its accuracy and
robustness is compared with the state-of-the-art methods. Section 4.3 describes the proposed FQI
in detail. The result and analysis for FQI are discussed in Section 4.4, where the performance of
the proposed FQI is compared with the state-of-the-art methods. Finally, Section 4.5 provides the
concluding remarks.
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CSQA 

Figure 4.1 : Framework of the proposed Camera and Screen content Image Quality Assessment (CSQA)
method.

4.1 CAMERA AND SCREEN CONTENT QUALITY ASSESSMENT: CSQA
The proposed CSQA pipeline is shown in Figure 4.3. SIFT descriptors and the scale values

are first extracted for all the feature points in the reference image and the distorted image [Lowe,
2004]. The feature extraction process of SIFT is discussed in detail in the related work section of
Chapter 1. To match the features between them, the descriptor distance is calculated between each
feature of the reference image and the feature present in the close vicinity in the distorted image.
The feature with the least distance is selected as a feature match. The matched feature’s distance
and their scale values in the reference image reflect the information of the preserved feature in the
distorted image and their corresponding importance. To use this as a quality index, these two are
normalized as distance vector and scale vector. At last, in order to get the CSQA metric, the inner
product between these two vectors is obtained. A detailed description of all the steps are discussed
in the following subsections.

4.1.1 Feature Matching
The proposed CSQA, applies SIFT on both the reference and the distorted image in order

to get the desired parameters like, location of feature points, the scale values, and the descriptor
vectors. To illustrate the feature matching process, let us assume that there are N1, and N2 feature
points in the reference and distorted image, respectively. Let the location, scale values, and
descriptor vector for ith feature point in the reference image are (xi,yi), σ i

1 and Di
1, respectively,

where 1 ≤ i ≤ N1. The location, scale values, and descriptor vector for jth feature point in the
distorted image are (z j,w j), σ j

2 andD j
2, respectively, where 1≤ j≤N2. The overallmatching process

is shown in Algorithm 3, given below. The matched features along with corresponding descriptor
distances can be obtained from the vector Min_Dist where Min_Dist ̸= inf.

The distortion in SCIs and CCIs are mostly due to noise, blurring, contrast-change, and
compression [Yang et al., 2015; Wang et al., 2016; Ponomarenko et al., 2013]. Typically, these
distortions don’t affect the preserved feature’s co-ordinate in the DI with respect to the RI. In
view of this fact, to reduce the cost of a typical feature matching process, we propose a fast
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and efficient way of feature matching. The proposed feature matching searches for each feature
of the RI, preserved in the corresponding close vicinity in the DI. The feature with the lowest
Euclidean-distance of the descriptors among the features in the vicinity is selected as the matched
features. Then the distances of matched features are saved in vector Min_Dist. The vector Min_Dist
carries two information, such as the features of the RI which are preserved in the DI for all values
whereMin_Dist is not tending to infinity, and the corresponding descriptor distances. Algorithm 3
shows the proposed RDM for feature matching. The length of the vicinity in the DI to be searched
for a feature in the RI is set at 2.

Algorithm 3 Proposed Feature Matching Algorithm
Min_Dist← inf
for i = 1 to N1 do

for j = 1 to N2 do
if ((|z j− xi| ≤ 2) and (|w j− yi| ≤ 2)) then

dist← Euclidean_Distance(Di
1,D

j
2)

if dist < Min_Dist[i] then
Min_Dist[i]← dist

end if
end if

end for
end for

So, instead of calculating the Euclidean distance between each feature of the reference
image with every feature in the distorted image (N1×N2 distance computations), the proposed
feature matching process performs a smaller number of distance computations, as shown in
Algorithm 3.

4.1.2 Normalization and Inner-Product
The features in an image have a non-identical importance and the proposed CSQA includes

this information to achieve better performance than other feature based quality assessment
techniques. As the scale value of a feature point is directly proportional to its gradient-magnitude,
we used it to extract the importance of the feature points. In order to reflect the importance of a
feature in the proposed CSQA, the scale vector of RI σ1

i is normalized and the same is represented
as vector S, given in (4.1). As the descriptor distances of the matched features between RI and
DI are represented by Min_Dist vector, it is normalized in such a way that lower distance carries
higher weight-age. The normalization process of descriptor differences is shown in Algorithm 4,
where normalized Min_Dist vector is represented as T .

S[i] =
σ1

i

∑N1
i=1(σ1

i )
, 1≤ i≤ N1 (4.1)

To reflect the importance of the preserved features in the RI, and their descriptor distances
with the DI, the inner product between vector S, and T is computed as shown in (4.14). The inner
product in (4.14) provides equal importance to S, and T .

CSQA = ⟨S,T ⟩=
N1

∑
i=1

(S[i]×T [i]) (4.2)
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Algorithm 4 Descriptor Distance Normalization
for i = 1 to N1 do

SUM← 0
if Min_Dist[i] ̸= inf then

SUM← SUM+Min_Dist[i]
◃ Variable SUM contains sum of descriptor distances of matched features

end if
T [i]← 0
if Min_Dist[i] ̸= inf then

T [i]← 1− Min_Dist[i]
SUM

end if
end for

4.2 EXPERIMENTAL RESULTS AND DISCUSSIONS
4.2.1 Datasets and Protocol

The performance of the proposed CSQA is evaluated on both CCI and SCI datasets. For
CCI, TID-2013 [Ponomarenko et al., 2013], and LIVE [Sheikh et al., 2018] image databases are used.
Moreover, we included two publicly available databases for SCI as QACS [Wang et al., 2016], and
SIQAD [Yang et al., 2015].

The proposed CSQA is compared with state-of-the-art RR and FR IQA algorithms for both
CCIs and SCIs. The RR-IQA methods include WNISM [Wang and Simoncelli, 2005], DNT [Li and
Wang, 2009], EPM [Min Zhang, 2011], FTB [Narwaria et al., 2012], SDM [Gu et al., 2013], RIQMC
[Gu et al., 2016c] which are proposed specifically CCIs and RRQA [Wang et al., 2018] which has
been proposed recently for SCIs. In addition, the FR-IQA algorithms including PSNR [Wang and
Bovik, 2002], SSIM [Wang et al., 2004], VSNR [Chandler andHemami, 2007], GSIM [Liu et al., 2012],
VSI [Zhang et al., 2014] which are proposed for CCIs and SQMS [Gu et al., 2016b], SPQA [Yang et al.,
2015], GDI [Ni et al., 2016], and SVQI [Gu et al., 2018] which have been specifically proposed for
SCIs, are compared as well.

To evaluate the performance of different IQA techniques, four commonly used
performance metrics are employed, which includes Spearman rank correlation coefficient (SRCC).
Pearson linear correlation coefficient (PLCC), root-mean-squared error (RMSE), and Kendall rank
correlation coefficient (KRCC). SRCC and KRCC is used to measure the monotonicity of the
prediction of an IQA metric. The major focus of these two performance metrics are on the rank
of the data points, and they are invariant of the relative distances between them. On the other
hand, PLCC and RMSE is used to evaluate the prediction accuracy by performing a non-linear
mapping between the subjective and objective scores as specified in Video-Quality-Experts-Group
(VQEG) Phase I FR-TV test [Rohaly et al., 2000]. It should be noted that the correlation value for a
few methods on certain dataset was not found and hence left blank.

4.2.2 Performance Evaluation
The validation results on the four SCI and CCI databases in [Yang et al., 2015; Wang et al.,

2016; Sheikh et al., 2018; Ponomarenko et al., 2013] are shown in Table 4.1, and Table 4.2. Table 4.1
gives the performance comparison of eight state-of-the-art RR-IQA methods for CCIs, and SCIs
with the proposed CSQA. The proposed CSQA outperforms all RR-IQA methods on QACS and
LIVE datasets and comes under top 3 for the rest SIQAD, and TID-2013 datasets. CSQA reflected
an approximate 6% improvement compared to RWQMS [Wang et al., 2016] which is a recently
published IQA method for SCIs. It is observed that the proposed CSQA performs equally well for
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Table 4.1 : Performance comparison of CSQA with state-of-the-art RR-IQA methods on CCI and SCI
datasets.

IQA- DNT EPM WNISM FTB SDM RIQMC RRQA RWQMS CSQA
Model Proposed

SI
Q
A
D PLCC 0.5291 0.6711 0.5857 0.4691 0.6034 0.2732 0.8014 0.8103 0.7928

SRCC 0.5054 0.6529 0.5188 0.4575 0.6020 0.2395 0.7655 0.7815 0.7695

RMSE 12.147 10.612 11.602 12.641 11.414 13.769 8.5620 8.8392 8.9218

KRCC 0.3615 0.4582 0.3540 0.3268 0.4322 0.1627 0.5756 0.5835 0.5924

Q
A
C
S

PLCC 0.8083 0.6658 0.6326 0.6864 0.6590 0.4241 - 0.8489 0.9162

SRCC 0.8094 0.6552 0.6154 0.6887 0.7463 0.3489 - 0.8504 0.9201

RMSE 1.3062 1.6552 1.7182 1.6134 1.6686 2.0091 - 1.1727 0.8902

KRCC 0.6198 0.4697 0.4352 0.5048 0.5467 0.2502 - 0.6606 0.7723

LI
V
E

PLCC 0.9173 0.8812 - 0.8968 0.9330 - - - 0.9491

SRCC 0.9287 0.8857 - 0.9073 0.9364 - - - 0.9501

RMSE - 12.9160 - 12.0863 - - - - 8.5012

KRCC - - - 0.5611 - - - - 0.8521

TI
D
-2
01
3 PLCC - - - 0.7697 0.5831 0.8651 - - 0.8523

SRCC - - - 0.6095 0.3482 0.8044 - - 0.7895

RMSE - - - 0.6261 0.7968 0.4920 - - 0.6309

KRCC - - - 0.4685 0.2389 0.6178 - - 0.6480

CCIs and SCIs and shows exceptional stability and consistency.

To further observe the performance of the proposed CSQA, it is also compared with nine
state-of-the-are FR-IQAmethods for CCIs, and SCIs in Table 4.2. FR-IQAmethods are expected to
provide better results than RR-IQAbecause of the availability of RI at the decoder side. It should be
noted that the proposed CSQA only requires an average of 0.17 bit-per-pixel as overhead whereas,
any FR-IQA method requires 24 bits-per-pixel. The proposed method outperforms all FR-IQA
methods on QACS dataset and consistently comes among the top three for LIVE, and TID-2013
datasets. CSQAperformed 2.23%better than the second bestmethod SVQI [Gu et al., 2018]which is
a recently published work towards FR-IQA for SCIs. This validates the robustness of the proposed
CSQA over both CCIs and SCIs. The performance analysis of the proposed CSQA also proves
that it performs exceptionally well on QACS dataset which is especially designed with images
distorted after compression. The reason for the best performance of CSQA on QACS dataset can
be drawn from the fact that while developing an image compression algorithm, it is taken care that
the features are preserved in the compressed image to produce better quality reconstructed image.

4.2.3 Dynamic Range Analysis
The dynamic range of an IQAmethod helps to realize its sensitivity towards change in the

distortion level. To analyze the dynamic range of the proposed CSQA, all 29 reference images
of the LIVE dataset are compressed using the JPEG baseline and JPEG-2000. For every reference
images in the LIVE dataset, 101 JPEG baseline compressed images are obtained with quality factor
as 0 (highly compressed),1,2, ...100. We also obtained 99 JPEG 2000 compressed images, between
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Table 4.2 : Performance comparison of CSQA with state-of-the-art FR-IQA methods on CCI and SCI
datasets.

Dataset IQA- SSIM PSNR VSI GSIM VSNR SQMS SPQA GDI SVQI CSQA
Model Proposed

SI
Q
A
D PLCC 0.5912 0.5869 0.5568 0.5686 0.5966 0.8872 0.8584 0.8515 0.8911 0.7928

SRCC 0.5836 0.5608 0.5381 0.5483 0.5703 0.8803 0.8416 0.8436 0.8836 0.7695

RMSE 11.545 11.589 11.890 11.775 11.487 0.6039 7.3421 7.5055 6.4965 8.9218

KRCC 0.4235 0.4226 0.3874 0.4054 0.4381 0.6936 0.6591 0.6486 0.6985 0.5924

Q
A
C
S

PLCC 0.8764 0.8669 0.8715 0.8921 0.7050 0.9059 0.8511 0.8669 0.9158 0.9162

SRCC 0.8829 0.8656 0.8719 0.8947 0.7172 0.9096 0.8456 0.8632 0.9194 0.9201

RMSE 1.0684 1.1059 1.0879 1.0025 1.5733 0.9396 1.1940 1.1059 0.8909 0.8902

KRCC 0.7072 0.6768 0.6941 0.7215 0.5383 0.7470 0.6679 0.6812 0.7623 0.7723

LI
V
E

PLCC 0.9449 0.8723 0.9482 0.9512 0.9213 - - - - 0.9491

SRCC 0.9479 0.8756 0.9524 0.9561 0.9274 - - - - 0.9501

RMSE 8.9455 13.3597 8.6816 8.4327 10.5059 - - - - 8.5012

KRCC 0.7963 0.6865 0.8058 0.8150 0.7616 - - - - 0.8521

TI
D
-2
01
3 PLCC 0.6895 - 0.9000 0.8464 0.7402 - - - - 0.8523

SRCC 0.6370 0.6395 0.8965 0.7946 0.6812 - - - - 0.7895

RMSE 0.8608 - 0.5404 0.6603 0.8392 - - - - 0.6309

KRCC 0.4636 0.4700 0.7183 0.6255 0.5084 - - - - 0.6480
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Table 4.3 : Computation cost analysis of proposed CSQA

Feature-Matching Features Descriptor Features Descriptor Distance Total
Method in RI Dimension in DI Dimension Calculations Computation

Conventional N1 D N2 D N1×N2 N1×N2×D

SIFT N1 128 N2 128 N1×N2 N1×N2×128

CSQA N1 8 N2 8 N1×N2×
0.002

N1×N2×
0.256

(a) (b)

‘ ‘

CSQA CSQA

Figure 4.2 : Shows the dynamic range comparison from the plot of quality index of different IQA
methods versus JPEG quality in (a), and JPEG 2000 compression-ratio in (b), respectively.

compression-ratio (CR) 2,3, ..100 (total 29×200 = 5800 distorted images).

The proposed CSQA along with PSNR [Wang and Bovik, 2002], SSIM [Wang et al., 2004],
and FSIM [Zhang et al., 2011] are applied on these 5800 distorted images. The PSNR index is
normalized as PSNR′ using (4.3) such that PSNR′ ∈ [0,1]. The results in Figure 4.2 (a) shows the
dynamic range after JPEG baseline. The dynamic range for PSNR′ comes out to be 0.11 (between
0.88 to 0.99), SSIM 0.45 (0.54 to 0.99), FSIM 0.27 (0.72 to 0.99), and for the proposed CSQA 0.83
(0.15 to 0.98). Similarly, the results in Figure 4.2 (b) shows the dynamic range after JPEG 2000. The
dynamic range here for PSNR′ is 0.06 (0.93 to 0.99), SSIM is 0.14 (0.85 to 0.99), FSIM is 0.06 (0.92
to 0.99), and for the proposed CSQA is 0.5 (0.43 to 0.93). The observed performance in Figure 4.2
(a), (b) shows significant higher dynamic range of the proposed CSQA as compared to the other
methods.

PSNR′ = 1− exp−(
PSNR

10 ) (4.3)

59



4.2.4 Computation Cost Reduction in Proposed RDM
In order to provide certain invariance in the feature descriptors, the proposed feature

extraction process was found to be marginally computationally expensive. The proposed RDM
for feature matching tries to recompense the computational cost during feature extraction. The
computational cost for RDM is validated on all four datasets for CCI and SCI [Yang et al., 2015;
Wang et al., 2016; Sheikh et al., 2018; Ponomarenko et al., 2013]. Typically, feature matching process
for N1 features in the RI, and N2 features in the DI requires (N1×N2) Euclidean distances to be
computed, in order to compare the feature descriptors. The proposed feature matching process of
CSQA requires only 0.2% distance computations compared to the conventional feature matching
process i.e. (0.002× N1× N2). Moreover, the key-step in comparing two feature points for a
feature matching process is to evaluate the distance of every descriptor between the feature points.
The proposed CSQA yields only eight descriptors per feature and hence the computation cost for
featurematching is further reduced. Table 4.13 illustrates the cost reduction under proposedCSQA
compared to traditional feature matching process where every feature has aD dimensional feature
descriptors and SIFT feature matching [Lowe, 2004] where every feature has 128 dimensional
descriptors.

4.3 FEATURE QUALITY INDEX: FQI
In the previous section, an RR-IQA method called CSQA was proposed, which showed

a promising result on screen content images (SCIs). The performance of CSQA was also found
to be satisfactorily on camera content images (CCIs). The aim was to design an IQA method
which can conveniently evaluate the quality of the compressed image on the receiver end without
requiring large overhead on the communication network. To illustrate such a situation, let us
assume that a person is accessing a remote screen over a limited bandwidth network. The
reference SCIs are first compressed as per the network bandwidth in order to send the same to
the receiving side. In these situations, if a quality assessment can be done on the receiver side
in order to analyze the performance of the compression algorithm in real time, the quality of
experience (QoE) for the end user can be improved. For CSQA, it was observed that although,
its performance was satisfactory on some distortions, the bitrate requirements, and computation
costs were on the higher side. Moreover, it was also observed that the performance of CSQA was
relatively marginally inferior compared to other state-of-the-art methods on distortions such as
contrast-change, and motion-blur.

The reason behind the above-mentioned overhead and computation issue in CSQA was
due to the fact that it uses 128 dimensional descriptor for every feature. This high dimensional
descriptor requires more computation and overhead for efficient feature matching. The second
problem was the inferior performance of CSQA on certain datasets like contrast-change and
motion-blur. These distortions were associated with invariance property of SIFT [Lowe, 2004].
We observed that during the weak feature point rejection stage in sift as discussed in Section 1.2.2,
if the threshold parameters are made stricter then certain invariance such as contrast-change, and
motion-blur could be removed. So, the task to improve the performance of CSQA boiled down to
two major challenges. The first challenge was to prune the descriptor size in order to reduce the
bitrate requirement in CSQA, and the second challenge was to improve the performance of CSQA
on contrast-change, and motion-blur distortions.

With the motivation to solve the above-mentioned issues in CSQA, a superior IQAmethod
called Feature Quality Index (FQI) is proposed through this section. A feature extraction process
is proposed in order to extract feature points and their descriptors from RI at the sender side and
from the DI at the receiver side. The descriptor size of every feature in FQI is made 16 times smaller
than that of CSQA. The feature matching and the normalization process of FQI is on the similar
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Step1: Feature Points Identification Step2: Feature Descriptors

Figure 4.3 : Proposed feature quality index (FQI) framework
(a) FQI framework with proposed feature matching RDM (reduced distance method), (b)
Feature extraction process for RI at transmitter Side, DI at Receiver Side

lines of CSQA.

The proposed framework of FQI is shown in Fig. 4.3. In the first stage, shown in Fig.
4.3a, features and descriptors from the reference image (RI) available at the transmitter side, and
that of the distorted image (DI) at receiver side are extracted. These will be the reference feature
(RF), and distorted feature (DF) respectively. Fig. 4.3b may be referred for feature extraction
process. The key steps involved in the feature extraction process are divided into two parts.
The first part is responsible for identifying strong feature point and their locations as described
in Section 4.3.1, and the second step proposes an eight-dimensional descriptor for every feature
points as described in Section 4.3.2. The extracted features RF, and DF are then matched using
proposed reduced-distancemethod (RDM). Finally, FQI is computed as the inner product between
the normalized scale values of the matched features and the Euclidean distances. The proposed
feature matching and normalization process are discussed in the subsections 4.3.3-4.3.4.

4.3.1 Feature Points Identification
The feature points and their locations in the RI and DI are identified on the lines of Lowe

[2004] to include certain invariance to the feature descriptors which is helpful in SCI-IQA. There
are three steps involved for this purpose, which are, identification of initial feature points, pruning
weak feature points, and orientation assignment. The steps involved in identifying and locating
the feature points are described in the following subsections in brief:

Identification of Initial Feature Points
The initial feature points are identified by using cascade filtering approach Wells [1986].

The scale-space or the continuous function of scale, can be useful to identify locations of initial
feature points and are also referred to as the Gaussian image. The scale-space of an image I(x,y) is
defined as a function S(x,y,σ) given in (4.4).

S(x,y,σ) = G(x,y,σ)∗ I(x,y) (4.4)

where ∗ is the convolution operator in x, and y, and

G(x,y,σ) =
1

2πσ 2 e−(x
2+y2)/2σ2

(4.5)
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Figure 4.4 : Progressively Gaussian-blurred images (left), and difference-of-Gaussian images (right) are
shown for each octave of scale-space. The Gaussian image is down-sampled by a factor of
2 for the next octave.
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Adjacent Scale

Adjacent Scale

Current Scale

Figure 4.5 : The pixel marked with X is compared to the values at 26 neighbors at the current and
adjacent scales (marked with circles) in order to detect the local extrema

To efficiently detect the stable feature points which are invariant of scaling, the
difference-of-Gaussian (DOG) images, D(x,y,σ) are computed. This is done by evaluating the
difference between two nearby scales, which are separated by a constant multiplying factor of
k as shown in Fig. 4.4. The DOG images are defined as follows:

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I(x,y)

= S(x,y,kσ)−S(x,y,σ)
(4.6)

The scale-space pyramids as shown in Fig. 4.4 are generated for O number of octaves Burt
and Adelson [1983]. After each octave, the Gaussian image is down-sampled by a factor of 2, and
the process repeated.

The feature points are then selected by extracting the local extrema from the DOG pyramid
as shown in 4.4. For this, Fig. 4.5 can be referred in which pixels at the current scale and those in
the two adjacent scales are shown with dark circles and the pixel marked as X, in the current scale,
is the current pixel.

Pruning Weak Feature Points
There will be some feature points, obtained from sub-section 4.3.1, that will have low

contrast or will be poorly localized along an edge. Such points are referred as unstable feature
points. To remove low contrast feature points, the DoG function is first expressed in a small
three-dimensional neighborhood around a feature point (xi,yi,σi) by a second-order Taylor-series
as given in 4.7.
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(a)

(b)

Figure 4.6 : Evaluating local feature descriptor
(a) Gradient magnitude along with orientation for every feature point in the image around
its 16× 16 neighborhood after applying a Gaussian filter, (b) The samples in figure (a) are
then accumulated into orientation histogram summarizing the content in 1 region with 8
orientations.
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D(x,y,σ) = D(xi,yi,σi)+

(
∂D(xi,yi,σi)

∂ (x,y,σ)

)T

∆

+
1
2

∆T
(

∂ 2D(xi,yi,σi)

∂ (x,y,σ)2

)
∆,

∆ =

( x− xi

y− yi

σ −σi

) (4.7)

The location of the extrema, [x̂, ŷ, σ̂ ]T , is then found by taking the derivative of (4.7) with
respect to (xi,yi,σi) and setting it to zero as shown in (4.8). Finally, Dextrema is obtained by
substituting (4.8) into (4.7) as in (4.9).

( x̂
ŷ
σ̂

)
=−

(
∂ 2D(xi,yi,σi)

∂ (x,y,σ)2

)−1(∂D(xi,yi,σi)

∂ (x,y,σ)

)
(4.8)

Dextrema = D(xi,yi,σi)+
1
2

(
∂D(xi,yi,σi)

∂ (x,y,σ)

)T
( x̂

ŷ
σ̂

)
(4.9)

To remove the low contrast feature points, FQI proposed to set the threshold for extrema
at 0.06 i.e., if for a feature point |Dextrema| ≤ 0.06, then the same will be discarded. Setting a higher
threshold compared to Lowe [2004] yields an average of 3.5% lesser feature points. This helps
FQI in achieving lower bitrate in sending the feature information of RI to the receiver. This also
helps to improve the performance of FQI under contrast-change distortion as the features become
more sensitive towards change in contrast. The remaining feature points give the same results
on the quality index as setting the threshold at 0.02 as in Lowe [2004]. However, increasing the
threshold value above 0.06 degrades the quality index performance on other distortion categories.
The detailed analysis at different threshold value is provided in Section 4.4.2.

Some feature points reside on edges, as edges always give a high response to a DoG filter.
These feature points are then eliminated by using Harris corner detector Harris and Stephens
[1988]. The principal curvature is computed by using 2× 2 Hessian matrix, H at the location and
scale of the feature point, as shown in (4.10).

H =

[
Dxx Dxy

Dxy Dyy

]
(4.10)

Dxx, andDyy are second order derivatives in x, and y respectively. SimilarlyDxy is derivative
in x and then derivative in y, and Dyx is derivative in y and then derivative in x. The derivatives are
estimated by taking differences of neighboring feature points.

The ratio of eigenvalues of H is proportional to the principal curvature of D. It is observed
that a peak which is poorly defined in the DOG function has a large principle curvature along the
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edge and small curvature in the perpendicular direction Lowe [2004]. The ratio of eigenvalues
is proportional to the ratio of the transpose Tr(H) and the determinant Det(H) of H Harris and
Stephens [1988]. The determinant Det(H) as the product of eigenvalues, and transpose Tr(H) as
the sumof eigenvalues ofH are calculated. The feature point is discarded if the proposed inequality
in (4.11) is satisfied Harris and Stephens [1988].

Tr(H)

Det(H)
≥ 12.5 (4.11)

Orientation Assignment
Unlike intensity based IQA techniques such as PSNR or VSNR Wang and Bovik [2002];

Chandler and Hemami [2007], IQAmethods are expected to have a rotation invariance Wang et al.
[2004]. To include this property, FQI Computes the gradient magnitudes and orientations in a
small window around the feature point as in Lowe [2004].

For this, an orientation histogram is formed for every feature point by using gradient
magnitude M(x,y) and orientation information θ(x,y) as shown in (4.12), and (4.13), respectively.
To do the same, the Gaussian blurred image L(x,y) is produced for every feature points at their
corresponding scale value.

M(x,y) =
√
[(L(x+1,y)−L(x−1,y))2 +(L(x,y+1)

−L(x,y−1))2]
(4.12)

θ(x,y) = tan−1 [(L(x+1,y)−L(x−1,y))/(L(x,y+1)

−L(x,y−1))]
(4.13)

The gradient orientations within the 16×16 neighborhood around the feature point is then
used to create an orientation histogram. This histogram has 36 bins corresponding to 360 degree
range of orientations. To provide importance to the nearest neighbors of the feature point, a
Gaussian-weighted circular window is applied on the gradientmagnitude in 16×16 neighborhood
with a scaling factor 1.5 times higher than the scale of the feature point. This way, the gradients
that are far away from the feature point will add smaller values to the histogram compared to the
gradients with the same magnitude which are nearer to the feature points. The samples added
to the histogram are weighted by the Gaussian weighted gradient magnitude. The orientation
corresponding to the highest peak in the histogram is assigned to the feature point. Also, any
peaks above 80% of the highest peak are converted into a new feature point. This new feature
point has the same location and scale as the original. But it’s orientation is equal to the other peak.
So, the orientation assignment can split up one feature point into multiple feature point.

4.3.2 Local Feature Descriptors
The previous subsections assigned the location, scale, and orientation for every feature

points in an image. In this subsection, descriptors for every feature points are computed with
the aim to make them distinctive as well as invariant of small change in illumination. The feature
point descriptors are proposed to be created by computing the gradient magnitude and orientation
of sample points around the feature point location with a 16× 16 window size. To avoid sudden
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changes in the descriptor with small changes in the position of the window, the magnitude of
feature points in 16× 16 neighborhood are weighted by a Gaussian window. The scaling factor
for the Gaussian window is selected as one half of the width of the descriptor window i.e. 8.
Choosing this window size also provides less emphasis to gradients that are away from the center
of the descriptor, as these are the most affected gradients by registration errors. An orientation
histogram is then formed summarizing the contents of 16×16 sized window into 1 region with 8
directions. This leads to a descriptor vector for each feature of length 8.

The Fig. 4.6 can be referred to as an example to get the idea how the descriptors for a feature
point are computed. The gradient magnitude along with orientation for every feature point in an
image around its 16×16neighborhood after applying aGaussian filter, has been shown in Fig. 4.6a.
The length and orientation of the arrows are directly proportional to the gradient magnitude and
orientation. These are then accumulated into the orientation histogram summarizing the content
in 1 region with 8 different directions as shown in Fig. 4.6b. The length of each arrow in Fig. 4.6b
corresponds to the sum of the length of arrows in Fig. 4.6a near to that directions.

After getting the descriptors for every feature, each descriptor is quantized to a given
number of bits with the aim to fulfil the bit requirements of the network. The analysis of quantizing
the descriptor with a different number of bits is given in Section 4.4.2.

(a) (b) ( )c

(x,y) (x,y) (x,y)(x,y) (x,y) (x,y)
X X X

L

RI DI RI DI RI DI

Figure 4.7 : Length of vicinity (L) used in proposed RDM
(a) A feature in Distorted Image (DI) will be searched only at the exact same location in
the Reference Image (RI), i.e. FQIL for L = 0, (b) A feature in Distorted Image (DI) will be
searched in a length of vicinity L in the Reference Image (RI), i.e. FQIL, (c) Compare each
feature of theRIwith every feature of theDI during the featurematchingprocess, i.e. FQIall

4.3.3 Feature Matching: RDM
The feature vector consisting of location, scale, orientation, and descriptors are extracted

using the proposed feature extraction method from RI, and DI as RF, and DF respectively. To
illustrate the feature matching process, let us assume that there are N1, and N2 number of feature
points present in RF, and DF, respectively. Let the location, scale, and the descriptor vector for ith

feature point in the RF are (x1
i ,y

1
i ), σ1

i , and D1
i , respectively, where 1 ≤ i ≤ N1. The location, scale,

and the descriptor vector for jth feature point in the DF are (x2
j ,y

2
j), σ2

j , and D2
j , respectively, where

1≤ j ≤ N2.

The distortions in screen content images are usually due to noise, blurring, contrast change,
and compression Yang et al. [2015]; Wang et al. [2016]. Typically, these distortions don’t affect the
preserved feature’s coordinate in the DI with respect to the RI. In view of this fact, to reduce the
cost of a typical feature matching process, a fast and efficient way of feature matching is proposed,
whichwill be referred to as reduced-distancemethod (RDM). The proposed RDMsearches for each
feature of the RI, preserved in the corresponding close vicinity in the DI. The feature with lowest
Euclidean-distance of the descriptors among the features in the vicinity is selected as the matched
features. Then, the distances of matched features are saved in vectorMin_Dist. The vectorMin_Dist
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Figure 4.8 : Length of vicinity (L) plot
(a) Euclidean distance plot between everyFQIL andFQIall , (b) Computation cost reduction
(in%) plot for every FQIL with respect to FQIall

carries two pieces of information, as the features of RI which are preserved in the DI for all values
whereMin_Dist is not tending to infinity, and the corresponding descriptor distances. Algorithm 5
shows the proposed RDM for feature matching. The length of the vicinity in the DI to be searched
for a feature in the RI is represented as L.

Algorithm 5 Proposed reduced-distance method (RDM)
Min_Dist← inf
for i = 1 to N1 do

for j = 1 to N2 do
if ((|x2

j − x1
i | ≤ L) and (|y2

j − y1
i | ≤ L)) then

dist← Euclidean_Distance(D1
i ,D

2
j)

if dist < Min_Dist[i] then
Min_Dist[i]← dist

end if
end if

end for
end for

To analyze the optimal length of vicinity (L) to be used in RDM, the proposed FQI was
applied on a large-scale screen content images database (SIQAD) Yang et al. [2015], and the value
of L was varied between L = [0,10]. Here, L = 0 means that a feature in DI will be searched only at
the exact same location in the RI as given in Fig. 4.7a. For each value of L, the corresponding FQI
index (FQIL) as in Fig. 4.7b, is comparedwith the FQI valueswith default featurematching (FQIall)
by taking Euclidean distance. Here, the meaning of default feature matching is to compare each
feature of the RI with every feature of the DI during the feature matching process as shown in Fig.
4.7c. The curve between L = [0,10] and the Euclidean distance between FQIL and FQIall is shown in
Fig. 4.8a. The curve between L = [1,10] and the cost reduction in percentage in terms of the number
of comparisons in feature matching is also shown in Fig. 4.8b. The optimal length of vicinity (L)
is selected with the aim to get a better trade-off between cost reduction for feature matching, and
the Euclidean distance between FQIL and FQIall . Fig. 4.8a can be approximated as a first degree
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Table 4.4 : Benchmark test databases for SCI IQA

Database Reference Images Distorted Images Distortion Types Image Type Observers

QACS 24 492 2 Color 20

SIQAD 20 980 7 Color 96

curve having three different slopes between L = [0,1], L = [1,2], and L = [2,10] respectively. The
Euclidean distance between L= [0,2] comes down from 13.5 to 7.8with 2% increase in computation
cost, whereas on the other hand, between L = [2,10], the Euclidean distance comes down from
7.8 to 5.9 with 17% increase in computation cost. Setting a threshold on the Euclidean distance
between FL, and Fall as 7.8, i.e. L = 2 gives a reasonable tradeoff between Euclidean distance and
computation cost.

4.3.4 Normalization and Inner-Product
This process is similar to the CSQA normalization process, as discussed in Section 4.1.2.

The reason for choosing the same normalization process was the fact that the features in SCIs also
possess non-identical importance same as CCIs.

To reflect the importance of the preserved features in the RI, and their descriptor distances
with the DI, the inner product between vector S, and T is computed as shown in (4.14). The inner
product in (4.14) provides equal importance to S, and T .

FQI = ⟨S,T ⟩

=
N1

∑
i=1

(S[i]×T [i])
(4.14)

4.4 EXPERIMENTAL RESULTS AND DISCUSSIONS
4.4.1 Protocol

To the best of our knowledge, there are two publicly available databases in the SCIs quality
assessment (SCI IQA) communities, including QACS Wang et al. [2016], and SIQAD Yang et al.
[2015]. The QACS dataset contains distorted SCI’s after HEVC and HEVC-SCC designed for SCI
compression and is helpful to analyze the performance of SCI compression techniques. On the
other hand, SIQAD contains images distorted after Gaussian noise, Gaussian blur, motion blur,
contrast change, and compression. The characteristics of these two databases are provided in
Table 4.4. The proposed method is compared with state-of-the-art RR and FR IQA algorithms.
The RR-IQA methods include WNISM Wang and Simoncelli [2005], DNT Li and Wang [2009],
EPMMin Zhang [2011], FTB Narwaria et al. [2012], SDM Gu et al. [2013], RIQMC Gu et al. [2016c],
RWQMS Wang et al. [2016], and RRQA Wang et al. [2018]. In addition, the FR-IQA algorithms
including PSNR Wang and Bovik [2002], SSIM Wang et al. [2004], VSNR Chandler and Hemami
[2007], GSIM Liu et al. [2012], VSI Zhang et al. [2014], SQMS Gu et al. [2016b], SPQA Yang et al.
[2015], GDI Ni et al. [2016], and SVQI Gu et al. [2018] are compared as well. It can be noted that two
versions of SSIM implementations are compared, which are denoted as SSIM1 Wang [2018a], and
SSIM2 Wang [2018b]. SSIM2 is a single scale version of the SSIM1 where no downsampling has
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Table 4.5 : Performance analysis by changing the threshold for Dextrema to remove low contrast feature
points. The last column represents the average improvement in the performance in terms of
percentage.
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Table 4.6 : Performance analysis by changing the number of bits needed to represent a descriptor as
bits-per-feature. The first column represents the total number of bits used to send the
descriptors of one feature. The overhead in the second column is given in bits-per-pixel
(bpp). The last column represents the average improvement in the performance in terms
of percentage. The value of Dextrema is set at 0.06.
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Table 4.7 : Performance comparison between FQI and different RR-IQA methods on the QACS dataset.
The top two performances are highlighted.

IQA- DNT EPM WNISM FTB SDM RIQMC RWQMS RRQA CSQA FQI
Model Proposed

PLCC 0.8083 0.6658 0.6326 0.6864 0.6590 0.4241 0.8489 - 0.9162 0.9176

SRCC 0.8094 0.6552 0.6154 0.6887 0.7463 0.3489 0.8504 - 0.9201 0.9212

RMSE 1.3062 1.6552 1.7182 1.6134 1.6686 2.0091 1.1727 - 0.8902 0.8897

KRCC 0.6198 0.4697 0.4352 0.5048 0.5467 0.2502 0.6606 - 0.7723 0.7756

Table 4.8 : Performance comparison between FQI and different FR-IQA methods on the QACS dataset.
The top two performances are highlighted.

IQA- SSIM1 SSIM2 PSNR VSI GSIM VSNR SQMS SPQA GDI SVQI CSQA FQI
Model Proposed

PLCC 0.8764 0.8696 0.8669 0.8715 0.8921 0.7050 0.9059 0.8511 0.8669 0.9158 0.9162 0.9176

SRCC 0.8829 0.8683 0.8656 0.8719 0.8947 0.7172 0.9096 0.8456 0.8632 0.9194 0.9201 0.9212

RMSE 1.0684 1.0953 1.1059 1.0879 1.0025 1.5733 0.9396 1.1940 1.1059 0.8909 0.8902 0.8897

KRCC 0.7072 0.6910 0.6768 0.6941 0.7215 0.5383 0.7470 0.6679 0.6812 0.7623 0.7723 0.7756

Table 4.9 : Performance comparison between FQI and different RR-IQAmethods on the SIQAD dataset.
The top two performances are highlighted.

IQA- DNT EPM WNISM FTB SDM RIQMC RWQMS RRQA CSQA FQI
Model Proposed

PLCC 0.5291 0.6711 0.5857 0.4691 0.6034 0.2732 0.8103 0.8014 0.7928 0.8018

SRCC 0.5054 0.6529 0.5188 0.4575 0.6020 0.2395 0.7815 0.7655 0.7695 0.7729

RMSE 12.147 10.612 11.602 12.641 11.414 13.769 8.8392 8.5620 8.9218 8.7312

KRCC 0.3615 0.4582 0.3540 0.3268 0.4322 0.1627 0.5835 0.5756 0.5924 0.5983

been performed. SSIM2 is found to be more effective if used at the appropriate scale to preprocess
the reference and distorted SCIs.

To evaluate the performance of different IQA techniques, four commonly used
performance metrics are employed, including Spearman rank correlation coefficient (SRCC),
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Table 4.10 : Performance comparison between FQI anddifferent FR-IQAmethods on the SIQADdataset.
The top two performances are highlighted.

IQA- SSIM1 SSIM2 PSNR VSI GSIM VSNR SQMS SPQA GDI SVQI CSQA FQI
Model Proposed

PLCC 0.5912 0.7561 0.5869 0.5568 0.5686 0.5966 0.8872 0.8584 0.8515 0.8911 0.7928 0.8018

SRCC 0.5836 0.7566 0.5608 0.5381 0.5483 0.5703 0.8803 0.8416 0.8436 0.8836 0.7695 0.7729

RMSE 11.545 9.3676 11.589 11.890 11.775 11.487 6.6039 7.3421 7.5055 6.4965 8.9218 8.7312

KRCC 0.4235 0.5583 0.4226 0.3874 0.4054 0.4381 0.6936 0.6591 0.6486 0.6985 0.5924 0.5983

Pearson linear correlation coefficient (PLCC), root-mean-squared error (RMSE), and Kendall rank
correlation coefficient (KRCC). SRCC and KRCC can measure the prediction monotonicity of an
IQA metric. These two metrics operate only on the rank of the data points and ignore the relative
distance between them. On the other hand, PLCC and RMSE evaluate the prediction accuracy
by performing a nonlinear mapping between the subjective and objective scores as specified in
Video Quality Experts Group (VQEG) Phase I FR-TV test Rohaly et al. [2000]. To compute these
two metrics, it is needed to apply a regression analysis, as in (4.15). where βi = 1,2, ...,5 are the
parameters to be fitted. A better objective IQA index is expected to achieve higher values in PLCC,
SRCC, and KRCC, and lower values in RMSE.

f (x) = β1

(
1
2
− 1

1+ eβ2(x−β3)

)
+β4x+β5 (4.15)

4.4.2 Parameter Analysis
Threshold Value for Contrast Change

The extrema value (Dextrema) is used as a threshold to remove any low contrast feature
point as given in (4.9). This means, if, for a feature point |Dextrema| ≤ T hreshold, then the same
will be discarded. A performance analysis is carried out to optimize the threshold value as given
in Table 4.5. The performance is observed by evaluating PLCC, SRCC, RMSE, and KRCC on
SIQAD and QACS datasets at the given threshold. The last column of the table represents the
average improvement in the performance in terms of percentage compared to the performance at
the threshold value in the previous row. It has been observed that the performance is optimum
with the threshold value equal to 0.06 which validates the statement in Section 4.3.1.

Descriptor Quantization Value
To reduce the transmission overhead and optimize the performance of FQI, the analysis

for the number of bits per feature is carried out as discussed in Section 4.3.2. Table 4.6 shows the
performance analysis of the proposed FQI by changing the number of bits required to quantize a
descriptor and to represent a feature. Every feature has eight descriptors, thus, the total number
of bits needed to send a feature will be eight times the number of bits assigned for a descriptor as
given in the first column of the table. The performance is observed by evaluating PLCC, SRCC,
RMSE, and KRCC on SIQAD and QACS datasets for the given bit-rate. It is observed that the
overhead for sending the feature information along with the distorted image, increases linearly, as
provided in the second column of the table in terms of bits-per-pixel. The last column in the table
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represents the average improvement in the performance in terms of percentage compared to the
performance at the number of bits per feature in the previous row. The analysis shows that, by
assigning more than 80 bits-per-feature, gives an insignificant improvement in the performance to
justify overhead. Therefore, 80 bits-per-feature is found to be appropriate.

4.4.3 Performance Evaluation
The validation results of the two screen content databases in Yang et al. [2015]; Wang

et al. [2016] are shown in Tables 4.7- 4.10. Table 4.7 outlines the performance comparison of
proposed FQI and seven state-of-the-art RR-IQAmethods for SCI. It is observed that the proposed
FQI outperforms all other RR-IQA methods, especially RWQMS Wang et al. [2016], which is a
recently published IQAmethod, specially designed for quality assessment for compressed SCI. The
proposed FQI reflects an approximate 6.5% improvement compared to RWQMS. This motivated
us to compare the performance of the proposed FQI with six FR-IQA methods which are shown
in Table 4.8. Due to the availability of RI at the receiver end, it is obvious that FR-IQA methods
will yield better results compared to RR-IQAmethods where the receiver side only has the feature
information of the RI. With this broad understanding of the superiority of FR-IQA, performances
were compared to show that the proposed method provides at par performance compared to
FR-IQA. The proposed FQI outperforms all FR-IQA methods for QACS dataset Wang et al. [2016],
especially SQMS Gu et al. [2016b], GDI Ni et al. [2016], and SVQI Gu et al. [2018], which are
specifically developed IQA methods for SCIs. The proposed method gives 0.7% better results
compared to SVQI Gu et al. [2018] on all the images of QACS dataset as shown in Table 4.8.

The reason for which the proposed FQI outperforms all RR and FR-IQA methods can be
drawn from the fact that the distorted images in the QACS dataset have undergone compression
and while developing an image compression algorithm, it is taken care that the features are
preserved in the compressed image to produce better quality reconstructed image Rohaly et al.
[2000].

The performance of the proposed FQI on SIQADdataset Yang et al. [2015] is shown in Table
4.9 with respect to RR-IQAmethods, and 4.10 with respect to FR-IQAmethods. It is observed that
the proposed FQI perform at second best among the RR-IQAmethods in Table 4.9 and it performs
at par among FR-IQA methods in Table 4.10. The overall performance analysis also shows the
robustness of the proposed FQI as it performs at the best for the QACS dataset and the second
best for SIQAD dataset. To evaluate the performance of the proposed FQI further, the analysis of
individual distortion type is carried out which is explained in detail in Section 4.4.4.

4.4.4 Performance on Individual Distortion Type
To further evaluate the breakdown prediction performance for individual distortion type,

Tables 4.11 and 4.12 can be referred, where the performance of RR-IQA methods are shown for
individual distortion present in SIQAD Yang et al. [2015], and QACS Wang et al. [2016] datasets,
respectively. To reflect the prediction accuracy and monotonicity, PLCC and SRCC are used.
Similar conclusions could be drawn by using other measures, such as RMSE and KRCC.

Table 4.11 shows the distortion wise performance comparison between FQI and other
RR-IQA methods on SIQAD dataset Yang et al. [2015]. It should be noted that the compression
distortion includes JPEG, JPEG 2000, and Layered compression. The proposed FQI outperforms all
other RR-IQAmethods under four distortion categories such as Gaussian noise, and three different
types of compression. However, for contrast-change, and motion blur distortions the proposed
method is second and third to the bestmethod, respectively. Moreover, the proposed FQI performs
very well under compression and Gaussian noise categories compared to that of RWQMS Wang
et al. [2016], and RRQA Wang et al. [2018]. The proposed FQI exhibits approximately 2.3% better
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Table 4.11 : Performance comparison of FQIwith respect to individual distortion type for SIQADdataset.
The top two performances are highlighted.
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Table 4.12 : Performance comparison of FQI with respect to individual distortion type for QACS dataset.
The top two performances are highlighted.

IQA HVEC HVEC-SCC
Model PLCC SRCC PLCC SRCC

DNT 0.8200 0.8199 0.7804 0.7813

EPM 0.6540 0.6371 0.6504 0.6302

WNISM 0.6627 0.6423 0.5948 0.5479

FTB 0.6267 0.6266 0.7245 0.7376

SDM 0.6499 0.7395 0.6740 0.7205

RIQMC 0.5033 0.3382 0.4959 0.3354

RWQMS 0.8478 0.8437 0.8407 0.8452

RRQA - - - -

FQI 0.9287 0.9211 0.9253 0.9289

Figure 4.9 : Distortion wise Plot of Mean Opinion Score versus six state-of-the-art RR-IQA Methods on
SIQAD dataset
(a) Reduced-reference wavelet-domain quality measure for SCIs (RWQMS) Wang et al.
[2016], (b) reduced-reference image quality metric for contrast change (RIQMC) Gu et al.
[2016c], (c) Structural degradation model (SDM), (d) Fourier transform-based scalable
image quality measure (FTB) Narwaria et al. [2012], (e) Wavelet-domain natural image
statisticmodel (WNISM)WangandSimoncelli [2005],(f) Divisive normalization-based image
representation (DNT-RR) Li and Wang [2009]

,
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Figure 4.10 : Distortion wise Plot of Mean Opinion Score versus FQI on SIQAD dataset

result compared to RRQAWang et al. [2018] under Gaussian noise and 12.5% under compression
distortion. The reason for this performance improvement under distortion caused by compression
can be the fact that the compression algorithms broadly try to preserve important features of the
image. As the proposedmethod is feature based, it identifies any changes in the feature efficiently.
Also, the pruned descriptors as mentioned in the FQI framework are more sensitive towards the
distortion due to compression than contrast-change ormotion blur as compression is an engineered
distortion and contrast-change is a natural distortion.

The QACS dataset Wang et al. [2016] is focused only on the distortion caused by
compression for SCIs. There are two types of distortions present in the dataset, such as HEVC,
and HEVC-SCC which is the extension of HEVC for SCIs. The proposed method outperforms
all other RR-IQA methods for both HEVC and HEVC-SCC as shown in Table 4.12. Although, as
mentioned in Section 4.4.3, RWQMS Wang et al. [2016] which has been proposed along with the
QACS dataset for quality assessment of distorted SCIs under compression distortion, appears as
second best for the same dataset. FQI outperforms RWQMS with a margin of 9.5% for HEVC
and 10.1% for HEVC-SCC. It can also be drawn from this result that FQI performs better for a
compression algorithm specifically designed for SCIs.

For a better statistical comparison, the scatter plots of objective prediction for the six
state-of-the-art RR-IQA methods in Li and Wang [2009]; Narwaria et al. [2012]; Gu et al. [2013,
2016c]; Wang et al. [2016]; Wang and Simoncelli [2005] and proposed FQI after regression versus
subjectiveMOSon SIQADdataset Yang et al. [2015] are shown in Fig. 4.9, and Fig. 4.10 respectively.
The curves shown in Fig. 4.10 were obtained by a nonlinear fitting according to Larson and
Chandler [2008]. From Fig. 4.9, and Fig. 4.10, it is observed that the objective scores predicted
by proposed FQI correlate much more consistently with the subjective evaluations than the other
state-of-the-art RR-IQAmethods. Similar comparisons are portrayed for QACS dataset Wang et al.
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Figure 4.11 : Distortion wise Plot of Mean Opinion Score versus six state-of-the-art RR-IQA Methods on
QACS dataset
(a) Reduced-reference wavelet-domain quality measure for SCIs (RWQMS) Wang et al.
[2016], (b) reduced-reference image quality metric for contrast change (RIQMC) Gu et al.
[2016c], (c) Structural degradation model (SDM), (d) Fourier transform-based scalable
image quality measure (FTB) Narwaria et al. [2012], (e) Wavelet-domain natural image
statistic model (WNISM) Wang and Simoncelli [2005],(f) Divisive normalization-based
image representation (DNT-RR) Li and Wang [2009]
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Figure 4.12 : Distortion wise Plot of Mean Opinion Score versus FQI on QACS dataset

[2016] in Fig. 4.11, and Fig. 4.12 to reflect the consistency of proposed FQI.

Table 4.13 : Computation cost analysis of proposed FQI

Feature-Matching Features Descriptor Features Descriptor Distance Total
Method in RI Dimension in DI Dimension Calculations Computation

Conventional N1 D N2 D N1×N2 N1×N2×D

SIFT N1 128 N2 128 N1×N2 N1×N2×128

CSQA N1 128 N2 128 N1×N2 N1×N2×0.256

FQI N1 8 N2 8 N1×N2×0.002 N1×N2×0.016

4.4.5 Computation Cost Reduction in Proposed RDM
To provide certain invariance in the feature descriptors, the proposed feature extraction

process came out to be somewhat computationally expensive. The proposed RDM for feature
matching tries to recompense the computational complexity during feature extraction. The
computational cost for RDM is validated on both SIQAD and QACS datasets. Typically, feature
matching process for N1 features in the RI, and N2 features in the DI requires (N1×N2) Euclidean
distances to be computed, in order to compare the feature descriptors. The proposed feature
matching process of FQI requires only 0.1% distance computations compared to the conventional
feature matching process i.e. (0.001×N1×N2). Moreover, the key-step in comparing two feature
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points for a feature matching process is to evaluate the distance of every descriptor between
the feature points. The proposed FQI yields only eight descriptors per feature and hence the
computation cost for feature matching is further reduced. Table 4.13 illustrates the cost reduction
under proposed FQI compared to traditional feature mating process where every feature has a D
dimensional feature descriptors and SIFT feature matching Lowe [2004] where every feature has
128 dimensional descriptors.

4.5 CONCLUSIONS
Through this chapter, two feature-based RR-IQA methods for CCI and SCI are proposed.

The underlying principle of the proposedCSQAandFQI is that the feature describes the perception
of the human-visual-system (HVS) more than other parameters, such as intensity or structure.
Also, as the feature of an image has a non-identical importance, it must be weighed for better
quality assessment. CSQA outputs the qualitymetric in three steps: (i) extracting feature vector for
reference image (RI) at sender side, and distorted image (DI) at receiver side, (ii) feature-matching
to identify number of features preserved in the DI with respect to the RI, (iii) inner product of
normalized scale and descriptor difference.

The feature matching of the proposed CSQA shows a significant reduction in
computational cost of about (99.8%) compared to the traditional feature-based IQA techniques.
The consistency, accuracy, stability, and robustness of the proposed CSQA are compared with 8
state-of-the-art RR-IQAmethods, and 9 FR-IQA techniques for both CCI and SCIs. CSQA showed
promising results for both CCI and SCI datasets. With about 0.21 bits-per-pixel overhead, the
proposedCSQAoutperformed all RR and FR IQAmethods onQACSdataset and performed under
top 3 for the rest of the datasets.

FQI produces the quality metric in four steps: (i) extracting feature vector for RI at the
transmitter side, and DI at receiver side, (ii) feature-matching using reduced-distance method
(RDM) to identify number of features preserved in the DI with-respect-to RI, (iii) normalization of
scale value to weight the importance of the feature, and also normalization of descriptor distance
of matched features, (iv) inner product of normalized scale and descriptor difference.

With a reduced set of feature descriptor in FQI compared to CSQA, its feature extraction
method provides invariance towards scaling and rotation which are helpful during feature
matching. Also, the feature matching process of the proposed FQI shows a significant
computational cost reduction (99.8%) compared to the traditional feature-matching techniques
where to find suitable feature match, every feature point in RI is compared with all the feature
points in DI. The consistency, accuracy, and robustness of the proposed FQI are compared with
9 state-of-the-art FR-IQA, and 8 RR-IQA techniques. FQI has shown promising results as it
outperformed all RR and FR-IQA methods for QACS dataset, and performed as second best for
SIQAD dataset. The comparison of individual distortion type shows that the proposed FQI is
more suitable towards distortion caused by compression, and it can be proven very useful for such
research communities.

…

80


