List of Figures

Figure	Title	oage
1.1	Rectangular approximation in multi-level saliency based compression techniques	4
1.2	Few examples of Screen-Content Images (SCIs)	5
1.3	Analysis of Naturalness $N(x, y)$ Histograms for: (a - b) Camera-content Images, (c - d) Screen-content Images.	7
1.4	Structural similarity index (SSIM) framework	9
1.5	Gradient similarity index (GSIM) framework	9
1.6	SCI perceptual quality assessment (SPQA) framework	10
1.7	Flowchart for saliency enabled quality measure (SQMS)	11
1.8	Framework of no-reference support vector machine (NR-SVM) method	12
1.9	Framework of blind quality measure for SCIs (BQMS)	12
1.10	General framework of reduced-reference image quality assessment systems	13
1.11	IQA framework of reduced-reference image quality metric for contrast change RIQMC	14
1.12	Flowchart for RRQA	15
1.13	Encoding and Decoding Process of JPEG Baseline	16
1.14	Effect of JPEG compression at different scale values for Baboon image	18
1.15	Effect of JPEG compression at different scale values for Lena image	18
1.16	Gaussian images (left), and difference-of-Gaussian images (right) are shown for each	
	octave of scale-space. The Gaussian image is down-sampled by a factor of 2 for the next octave.	20
1.17	The pixel marked with X is compared to its 26 neighbors at the current and adjacent	
	scales (marked with circles) in order to detect the maxima and minima of the DOG	20
1.18	Effect of pruning feature points. (a) Input Image of dimension $233 imes189$, (b) Shows the	
	initial key-points as discussed in Chapter 1.2.2, (c) Shows the key-points after removing	
	low contrast points, (d) Shows the remaining key-points after removing the points which	
	are on edges	21
2.1	Encoding Process of Proposed Method	26
2.2	Block ranking process: (a) to (d) represents pixel with different rank situations.	29
2.3	Histogram of delta encoded rank matrix.	31
2.4	Test images: (a) Airplane, (b) Peppers, (c) Lena, (d) Girl, (e) Couple, (f) Zelda. [a-c]	
	dimension 512 $ imes$ 512, [d-f] dimension 256 $ imes$ 256.	32
2.5	Rate-distortion comparison (at $\eta_r{=}0.95)$ between proposed method and JPEG baseline	
	on the data-set [Weber, 1997]. R1 denotes most salient regions in the image.	33
2.6	Multiple salient regions after applying proposed saliency detection technique at $\eta_r=$	
	0.92. Brighter region indicates more saliency and vice versa.	34
2.7	Comparison of ROI reconstruction at the decoder side by using rectangular approximation	
	and the proposed method.	34
2.8	Reconstructed aerial image from JPEG baseline and the proposed compression technique.	
	(a) Original Image (24 bpp). (b) Reconstructed image compressed at 0.31 bpp, using	
	JPEG baseline. (c) Reconstructed images at 0.5 bpp, using the proposed method.	37
2.9	Reconstructed Lena image from JPEG baseline and the proposed compression technique.	
	(a) Original Image (24 bpp). (b) Reconstructed image compressed at 0.2 bpp, using JPEG	
	baseline. (c) Reconstructed images at 0.2 bpp, using the proposed method.	38

2.10	Reconstructed Baboon image from JPEG baseline and the proposed compression technique. (a) Original Image (24 bpp). (b) Reconstructed image compressed 0.31 bpp, using JPEG	
	baseline. (c) Reconstructed image at 0.31 bpp, using the proposed method.	39
3.1	Proposed encoding framework	42
3.2	Flow chart of the proposed method	43
3.3	(a) Traditional JPEG's zig-Zag scanning order, (b) Proposed scanning order	44
3.4	Coefficients correlation analysis	45
3.5	Salient Region Identification Process	46
3.6	Error Energy Correlation Analysis	47
3.7	Segmentation performance of the proposed method (a)-(c) Input SCIs, (d)-(f) Segmented image after applying the proposed method on (a)-(c) respectively.	48
3.8	Comparison on quality of the reconstructed image at 0.8 bpp by using different methods	
	(a) Original SCI, (b) After applying JPEG [Wallace, 1992], (c) After applying JPEG 2000	
	[Skodras <i>et al.</i> , 2001], (d) After applying HEVC [Sullivan <i>et al.</i> , 2012], (e) After applying HEVC for SCC [Xu <i>et al.</i> , 2016] and (f) After applying the proposed method	<u>4</u> 9
3.0	Bate-distortion comparison between proposed method. IPEC baseline, and IPEC 2000	50
3.10	Region wise rate-distortion comparison between proposed method and JPEG baseline.	50
	Here R1 indicates the salient region and R2 indicates non-salient region.	51
3.11	Rate-distortion comparison with respect to feature quality index (FQI), between proposed method and JPEG baseline.	52
4.4	Framework of the proposed Camera and Screen content Image Quality Assessment	
4.1	(CSQA) method.	54
4.2	Shows the dynamic range comparison from the plot of quality index of different IQA	
	methods versus JPEG quality in (a), and JPEG 2000 compression-ratio in (b), respectively.	59
4.3	Proposed feature quality index (FQI) framework (a) FQI framework with proposed	
	feature matching RDM (reduced distance method), (b) Feature extraction process for	
	RI at transmitter Side, DI at Receiver Side	61
4.4	Progressively Gaussian-blurred images (left), and difference-of-Gaussian images (right)	
	are shown for each octave of scale-space. The Gaussian image is down-sampled by a	
	factor of 2 for the next octave.	62
4.5	The pixel marked with X is compared to the values at 26 neighbors at the current and	
	adjacent scales (marked with circles) in order to detect the local extrema	63
4.6	Evaluating local feature descriptor (a) Gradient magnitude along with orientation for	
	every feature point in the image around its 16×16 neighborhood after applying a Gaussian	
	niter, (b) The samples in figure (a) are then accumulated into orientation histogram	()
	summarizing the content in 1 region with 8 orientations.	64
4./	Length of vicinity (L) used in proposed RDM (a) A reactive in Distorted image (DI) will be searched only at the exact same location in the Reference Image (RI) i.e. EQL for	
	L = 0 (b) A facture in Dictorted Image (DI) will be correlation in a longth of vicinity L in the	
	E = 0, (b) A reactive in Distorted image (b) will be searched in a length of vicinity E in the Reference image (RI) i.e. $FOIr$. (c) Compare each feature of the RI with every feature	
	of the DI during the feature matching process i.e. FOL_{ii}	67
18	Length of vicinity (I) plot (a) Euclidean distance plot between every EOI_{L} and EOI_{M}	07
4.0	(b) Computation cost reduction $(in\%)$ plot for every FOL with respect to FOL	68
10	Distortion wise Plot of Mean Opinion Score versus six state-of-the-art RR-IOA Methods	00
т• <i>э</i>	on SIOAD dataset (a) Beduced-reference wavelet-domain quality measure for SCIs (BWOMS)	
	Wang et al. [2016]. (b) reduced-reference image guality metric for contrast change (RIOMC)	
	Gu et al. [2016c]. (c) Structural degradation model (SDM). (d) Fourier transform-based	
	scalable image quality measure (FTB) Narwaria <i>et al.</i> [2012], (e) Wavelet-domain natural	
	image statistic model (WNISM) Wang and Simoncelli [2005], (f) Divisive normalization-based	
	image representation (DNT-RR) Li and Wang [2009]	76

- 4.10 Distortion wise Plot of Mean Opinion Score versus FQI on SIQAD dataset
- 4.11 Distortion wise Plot of Mean Opinion Score versus six state-of-the-art RR-IQA Methods on QACS dataset (a) Reduced-reference wavelet-domain quality measure for SCIs (RWQMS) Wang et al. [2016], (b) reduced-reference image quality metric for contrast change (RIQMC) Gu et al. [2016c], (c) Structural degradation model (SDM), (d) Fourier transform-based scalable image quality measure (FTB) Narwaria et al. [2012], (e) Wavelet-domain natural image statistic model (WNISM) Wang and Simoncelli [2005],(f) Divisive normalization-based image representation (DNT-RR) Li and Wang [2009]
- 4.12 Distortion wise Plot of Mean Opinion Score versus FQI on QACS dataset

78 79