List of Figures

Figure 1-1:(a) Transmission line with load (ZL), (b) Schematic of Transmission Line with circuit quantities [Source: Pozar, 2005] Figure 1- 2: Material classifications based on constitutive parameters (Source: Engheta and Ziolkowski, 2006) Figure 1-3: Physical realization of negative ε: thin conducting wires (Source: Engheta and Ziolkowski, 2006) Figure 1-4: Physical realization of negative μ: Split Ring Resonator (SRR) (Source: Engheta and Ziolkowski, 2006)	: 5 7 8 8
Figure 2- 1: (a) Schematic of SSMA (Source: Chambers, 1994) (b) Typical performance of SSMA for Rs=308 Ω /sq, d=3.2mm and ε =4.2 Figure 2- 2: (a) Variation of sheet resistivity with reflection level (b) variation of sheet resistivity for maximum bandwidth with the angle of incidence and polarization (Source: Chambers, 1994) Figure 2- 3: Normalized bandwidth vs reflectivity level for specified spacer permittivity (Source: Chambers, 1994) Figure 2- 4: (a) Schematic of Jaumann absorber (b) Typical response of Jaumann absorber (Source: Chambers and Tennant, 1996)	11 13)13 d 14
profile for N=7 and ε =1.1 (Source: Chambers and Tennant, 1996) Figure 2- 6: Unit cell of absorber consists of (a) Electric ring resonator (ERR) on the front side (b) cut wire on the backside (c) unit cell of the designed absorber (Source: Landy et al., 2008) Figure 2- 7: Simulated transmission, absorption and reflectance of the absorber formed by infinite periodic arrangement of the unit cell shown in Figure 2-6 (b) Loss mechanism in the absorber using field quantities (Source Landy et al., 2008)	14 e 16 ce: 16
Figure 2- 8: (a) Unit cell of wire-based absorber along with equivalent circuit model (b) simulated response of the absorber [Source: Pang et al., 2013] Figure 2- 9: (a) and (b) Unit cell design and simulated response of wideband absorber using copper metal and FR substrate (Source: Bhattacharyya, et al., 2015) (c) and (d) Design and simulated response of wideband absorber using copper metal absorber using copper metal and FR substrate (Source: Source: Cource: Source: Cource: Source: Source: Source: Source: Source: Source: Source: Cource: Cource: Cource: Source: Cource: Cource: Cource: Cource: Source: Sourc	e 17 4 18 e
effective absorbance (Source: Tian et al., 2016) Figure 2- 11: (a) Unit cell of designed dual-band absorber (b) simulated response (c) and (d) simulated field quantities at 11.15 GHz and 16.01 GHz respectively (Source: Li et al., 2010) Figure 2- 12 :(a), (b) and (c) Unit cell design of single, dual and triple-band absorber by scaling of the unit cell respectively (d), (e) and (f) simulated response (Source: Li et al., 2011) Figure 2- 13: (a) and (b) Unit cell design and the simulated response of the absorber respectively (Source: Dimitriadis et al., 2012) Figure 2- 14: (a) and (b) Unit cell design and the simulated response of the absorber (Source: Yang et al., 2013) Figure 2- 15: (a), (b) and (c) Unit cell design, equivalent circuit and the simulated response of the resistive ink-bas absorber respectively (Source: Pang et al., 2011)	 19 20 21 22 22 22 32 32
Figure 3-1 :(a) Side view multiband absorber, Front view of (b) single (c) dual (d) triple-band absorber Figure 3-2: Fabricated (a) triple, (b) dual and (c) single-band absorber Figure 3-3: Return loss (measured & simulated) and variation of polarization angle (simulated) (a, d) for single, e) dual, and (c, f) triple-band absorber Figure 3-4: (a) Side View (b) Front view of metamaterial absorber Figure 3-5: (a) Fabricated Absorber (b) Experimental and simulated Return loss for normal incidence, (c) Simulated Return loss for 0-600 incidence, (d) Bandwidth variation with incidence angle Figure 3-6: Side view of proposed absorber along with wave vector, electric field and magnetic field directions Figure 3-7: Representative and retrieved values of the real and imaginary part of permittivity [Source: Zhang, et	28 28 (b, 29 31 32 33
al., 2014] Figure 3-8: (a) Simulated return loss of the dielectric absorber for different thickness (b) Simulated return loss of wire-based metamaterial absorber for different wire length and tfr = 1mm Figure 3-9: (a) Simulated return loss of the designed absorber for different wire element length (l), (b) Simulated absorptivity (c) Co and Cross polarization reflection of the absorber for I = 5.2mm and d = 2mm (d) Simulated return loss for a different angle of incidence Figure 3-10: Electric field and power loss density at absorbing frequencies 9.7 GHz and 12.5 GHz of the proposed absorber for I=5.2mm and d=2mm	34 f 35 d 35 36

Figure 4-1: Measured the real and imaginary part of the material parameters of the control sample and compos	ite
Figure 4-2: Side view of the dielectric absorber (b) Simulated reflection of synthesized dielectric absorber for	38
alfferent a values and tjr=1mm	39
Figure 4-3: (a) & (b) side and top view respectively, of the absorber along with wave vector, electric and magnet	
field for p=12mm, a=10mm, a=1.75 mm and tfr=1mm	39
Figure 4-4: (a) Orientation of the wave vector, electric field and magnetic field for different polarization angles ((b)
Simulated results for polarization angles 0° to 45°	40
Figure 4-5: (a) and (c) Orientation of the wave vector, electric field and magnetic field for oblique incidence und TM and TE modes respectively (b) and (d) Simulated results for oblique incidence 0° to 60° under TM and TE	er
modes respectively	40
Figure 4-6: Simulated reflection for different square patch sizes (d=1.75 mm and tfr=1mm)	41
Figure 4-7: Simulated electric field and power loss distribution at absorbing frequencies 12 GHz and 16 GHz	
respectively	42
Figure 4-8: (a) Synthesized dielectric absorber (b) Schematic of measurement setup (c) Simulated and measured	d
reflection of dielectric absorber	43
Figure 4-9: (a) Fabricated square patch-based dielectric absorber (b) Simulated and experimental results for	
square patch-based dielectric absorber ((c) to (f)) Measured reflection from metal and absorber for varied aspe	ect
angle at different frequencies	44
Figure 5-1: (a) Schematic of the SSMA (b) Simulated reflection of the SSMA for d = 2.2 mm and Bs = 208 O/sa	16
Figure 5-2: (a) Enlarged ton view of proposed absorber along with field directions (b) Simulated reflection for d	40 1 -
a same Be and Qlea in the mer and a the mer	1-
3.2 mm, RS = 200 S4SQ, $p = 12$ mm and $a = 10$ mm.	47 £
Figure 5-3: (a) Simulated reflection for different patch size (b) and (c) Simulated reflection for different angle of	r
Inclaence TE and TM modes respectively	47
Figure 5-4: Simulated field quantities at 13 GHz and 16 GHz for p=12mm, a=10mm, a=3.2mm (a) and (b) Electric fi	ela
at 13 GHz and 16 GHz respectively (c) and (d) Power loss density at 13	48
Figure 5-5: (a) Fabricated Absorber (b) Simulated and measured reflection (c) Measured reflection from the mea	tal
and the absorber at 13 GHz for different aspect angles	48
Figure 5-6: Simulated reflection of SS for Rs = 50, 100, 200 🛛 /sq and FR4 (permittivity 4.2 and loss tangent 0.02)	
spacer thickness = 3.0 mm	50
Figure 5- 7: (a) Front View of WMA (b) Simulated reflection in Co and Cross polarization of the WMA for $p = 10 \text{ m}$	٦m,
tfr = 1 mm, l = 6 mm, w = 0.8 mm	51
Figure 5-8: (a) Enlarged side view and (b) Simulated reflection in Co and Cross polarization of the proposed	
absorber for p=10mm, l=5.5mm, w= 0.8mm, tfr=3.0mm, tsp=2.0mm, tres=0.1mm and Rs=50 $arOmega$ /sq	51
Figure 5-9: Simulated reflection of the absorber for the wire length (I=7 and 8 mm), p = 10 mm, w = 0.8 mm, tfr=	-3.0
mm, tres = 2.0 mm and Rs = $50 \Omega/sq$	52
Figure 5-10: (a) Simulated reflection of the absorber for FR4 substrate thickness (tfr = 3 and 4 mm), I = 8 mm, tsp	p =
2 mm and Rs = 50Ω /sq and (b) Simulated reflection of the absorber for FR4 spacer thicknesses (tsp=1, 2 and 3mr	n),
$tfr = 3.0 \text{ mm}, l = 5.5 \text{ mm}, \text{Rs} = 50 \Omega/\text{sg}$	52
Figure 5-11: Simulated power loss density for $p = 10$ mm, $l = 5.5$, tfr = 3.0 mm, tres = 0.1 mm, tsp = 2.0 mm	53
Figure 5-12: Fabricated absorbers using low-cost screen printing technique with $p=10$ mm, $l = 5.5$ mm, $w=0.8$ mm,	tfr
= 3.0mm, tsp =2.0mm, Rs=50 ohm/sa and p=10mm, l = 8mm, w=0.8mm, tfr = 4.2mm, tsp =1.5mm, Rs=50 ohm/sa	1 53
Figure 5-13: Simulated and experimental data for (a) $p=10mm$, $l = 5.5mm$, $w=0.8mm$, tfr = 3.0mm, tsp =2.0mm.	1 00
$R_{s=50} \text{ ohm}/sa (h) n=10 \text{ mm} l = 8 \text{ mm} w=0.8 \text{ mm} tfr = 4.2 \text{ mm} tsn = 1.5 \text{ mm} R_{s=50} \text{ ohm}/sa$	54
13-50 of $13-50$	54
Figure (, , (, a) Side and (b) ten view of TLMA along with wave vector, electric and magnetic field directions	F7
Figure 6-1: (a) Side and (b) top view of TLIMA along with wave vector, electric and magnetic field directions	57
Figure 6-2: (a) Equivalent Circuit model for the TLMA (b) Simulated reflection of the TLMA	58
Figure 6-3: (a) Side and (b) Top view of the absorber along with wave vector, electric and magnetic field directio	ons
	58
Figure 6-4: (a) Simulated reflection of the absorber for Co and Cross polarizations (b) Simulated results for	
polarization angles 0° to 45° (c) and (d) Simulated results for oblique incidence 0° to 60° under TE and TM mode	es
respectively	59
Figure 6-5: Parametric analysis of the design parameters (a) square patch size ($p = 30 \text{ mm}$, tfr = 3 mm = tfr1) (b)	
thickness of base FR4 sheet (tfr1) ($p = 30$ mm, tfr = 3mm, $a = 7.7$ mm) (c) thickness of the upper FR4 sheet (tfr) ($p = 30$ mm, tfr = 3mm, $a = 7.7$ mm)	p =
30 mm, tfr1 = 3 mm, a = 7.7mm) and (d) periodicity (a=7.7 mm, tfr =3 mm = tfr1)	60
Figure 6-6: Simulated electric field and power loss density for the proposed absorber (a) and (b) Electric field at	t 6
GHz and 14 GHz respectively (c) and (d) Power loss density at 6 GHz and14 GHz respectively	61

•

Figure 6-7: (a) Fabricated TLMA without the square patch (b) Simulated an	d measured data of the TLMA (c)
Schematic of measurement setup (d) Fabricated TLMA with the metallic sq	uare patch (e) Simulated and measured
data of TLMA with metallic square patch	62
Figure 6-8: Measured reflection from a metal plate and the absorber for val	ried aspect angle at different
frequencies (a) 6 GHz (b) 8 GHz (c) 12 GHz (d) 14 GHz	63

х

•