List of Figures

Figures	Title	Page
1.1	Photocatalytic degradation of five different industrial dyes using the synthesized hydrogen and HfQ ₂ doped TiQ ₂ nanomaterials.	3
1.2	Accelerated soot oxidation activity of hydrogenated HfO ₂ nanocatalysts a result of annealing under hydrogen giving rise to enlarge of pores in the synthesized nanomaterials compared to the pristine.	4
1.3	Use of sustainable local Rajasthani clay incorporated with Ni and Co oxides for use as catalysts in soot oxidation.	5
1.4	Nitrogen doped hollow carbon nanobubbles and solid carbon spheres for use as photoanode and counter electrode in DSSC, CO ₂ capture and as a material for supercapacitor application.	6
1.5	Schematic representation of the synthesis of cesium leads halide all-inorganic perovskite.	6
3.1	(a) XRD of the material with JCPDS data (b) XRD of highest intense peak (1 0 1) denoting	12
	shift and intensity change. (c) XRF spectra of doped TiO_2 .	
3.2	TEM images, HR-TEM images and the SAED images of pristine TiO_2 (a, d, g) HfO_2/TiO_2 (b, e, h) and (c, f, i) H-HfO ₂ /TiO ₂ . The inset of a, b and c show the respective spherical structure.	13
3.3	(a-c) Degradation of five different dyes using TiO ₂ , HfO ₂ /TiO ₂ and H-HfO ₂ /TiO ₂ at pH 7. (d-f) show the degradation of MB dye at different pH using H-HfO ₂ /TiO ₂ . Tauc plot of TiO ₂ (g), H-TiO ₂ (h) and H-HfO ₂ /TiO ₂ (i) respectively for band gap estimation.	14
3.4	Histogram plot of TiO_2 , HfO_2/TiO_2 and $H-HfO_2/TiO_2$ showing different degradation efficiency of respective five dyes as indicated in the inset. (f) Plot of recyclability test for MB dye using $H-HfO_2/TiO_2$ as photocatalyst.	15
3.5	BET isotherm plots of pristine (a) TiO ₂ , (b) H-HfO ₂ /TiO ₂ , (c) H-HfO ₂ /TiO ₂ and (d) H-HfO ₂ /TiO ₂ .	16
3.6	HPLC chromatogram of MB dye before (a) and after (b) photocatalytic degradation using $H-HfO_2/TiO_2$ as photocatalyst.	17
4.1	(a) Schematic demonstrating the synthesis of HfO ₂ solid nanosphere aggregates by sol-gel and hydrothermal methods. (b) Schematic representation of soot oxidation activity.	20
4.2	(a) XRD patterns of p-HfO ₂ nanoparticles annealed in air and H-HfO ₂ _2h, H-HfO ₂ _6h, and H-HfO ₂ _1oh, (b) Plot showing peak intensity against with a 2 θ shift, (c) Plot showing variation in particle size of the synthesized HfO ₂ nanoaggregates, (d) variation of strain calculated from Williamson Hall plot and inset is the difference in color of p-HfO ₂ showing white color and H-HfO ₂ with off-white color after annealing in H ₂ and (d) Williamson Hall plot of the synthesized HfO ₂ nano aggregates, the strain is found from the slope and the crystallite size from the y-intercept by linear fitting.	21
4.3	(a) TEM and HRTEM images of air annealed HfO ₂ (a, d), 2 h (b, e), and 6 h (c, f) hydrogen annealed HfO ₂ . The SAED patterns of air annealed (g) and hydrogen annealed 2h (h) and 6h (i) samples, respectively, indicating the polycrystalline nature of HfO ₂ .	22
4.4	(a) BET adsorption-desorption isotherm and pore size desorption curve for $p-HfO_2$ (a, b), H-HfO_2_2h (c, d), H-HfO_2_6h (e, f), and H-HfO_2_1oh (g, h), respectively.	22
4.5	X-ray photoelectron spectra (XPS) of Hf 4f and O 1s in (a, c) pristine and (b, d) hydrogenated HfO_2 , respectively. The background-subtracted raw experimental data is deconvoluted for identifying the peak contributions of Hf metal and suboxides.	24
4.6	O ₂ -TPD profile and (b) desorption peak temperature for adsorbed oxygen calculated from peak for HfO ₂ nanoaggregate samples.	25
4.7	(a) TGA profiles of carbon soot/HfO ₂ mixtures (catalyst/soot ratio of 4:1) of different HfO ₂ samples annealed in air and hydrogen, % weight loss curve and inset is the derivative of weight loss function indicating oxidative peak profile. (b) Bar graph showing the T10, T50, and T90 temperatures in (°C) for all of the prepared samples; the values are indicated in Table 4.5. (c) Thermogravimetric analysis of pristine and hydrogenated HfO ₂ . (d) TGA data showing the weight loss curve of carbon with T50 at 746 °C. (e) Plot of Strain and catalytic activity of the synthesized nanomaterials.	27
4.8	Reusability test of the synthesized nanomaterials as catalyst, TGA plot of the as synthesized samples of HfO ₂ with and without accelerated thermal test.	27
5.1	XRD pattern of NCS and pristine clay without doping (a), XPS survey scan (b), pore size	30

5.1 XRD pattern of NCS and pristine clay without doping (a), XPS survey scan (b), pore size distribution (inset), and adsorption-desorption isotherm (c) and FTIR spectra (d) of the synthesized catalysts.

5.2	High Resolution XPS (a) C is of NCS catalyst, O is spectra (b, c) of clay and NCS catalyst, (d)	31
5.3	High-resolution O_2 TPD of (a) clay and (b) NCS catalyst with its corresponding	33
<i>J</i> • <i>J</i>	deconvoluted profile, and 1^{st} order derivative (c) and deconvoluted H ₂ TPR (d)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	thermograms of clay and NCS catalyst and (f) H ₂ TPR of Ni clay and Co clay catalyst.	
5.4	TEM image (a, b and c) at different scale, HRTEM image (d) and IFFT image (e and f) with	34
	corresponding FFT image (f, h) of the selected area in (e), schematic representation of soot	
	oxidation of NCS catalyst using soot (i) and soot oxidation activity of NCS (j).	
6.1	Scheme 1. Schematic illustration of the reaction mechanism of CS and CNB formation by	36
	modified Stöber reaction. NH_2 Atm. is NH_2 atmosphere, where (1) Si(OR) ₄ , (2) 3D Si-	
	polymer network, (3) Resorcinol, (4) Formaldehyde, (5) Ethylenediamine (EDA), (6)	
	Intermediate compound of (4) and (5) and (7) After excess reaction in between (3) and (4)	
	forms polymer framework.	
6.2	FESEM at different magnifications of (a, b and c) CNB and (d, e and f) CS, N_2 adsorption and	37
	(inset) in the range of a a to to to relative process (i) Raman and (i) YPD spectra (con rate	
	(inset) in the range of 0.0 to 1.0 relative presses, (i) Kaman and (j) AKD spectra (scan fate	
6.3	TEM images of group, single and HRTEM of CNB (a-c) with mesoporous shell (7 nm) and CS	38
•••	(d-f) with respective SAED pattern (g) and (f). (i) XPS survey spectra of CNB and CS.)0
6.4	TGA curves and FTIR spectra of CNB and CS	39
6.5	High resolution XPS spectra of N 1s (a, d), C 1s (b, e) and O 1s (c, f) spin orbits of the	40
	synthesized CNB and CS respectively.	
6.6	CO_2 adsorption (a) and Cycle stability (b) of both the synthesized CS and CNB at 298 K.	41
6.7	(a, b) Plot summing up the PCE of increasing loading % of CNB and CS based photoanodes	42
	with our earlier reported material (Shejale, Laishram et al. 2016, Shejale, Laishram et al.	
	2017) (c) UV measurement of dye loading of different photoanodes for DSSC (d, f) Device	
	parameters of rabricated DSSCs using the synthesized nanomaterials (dye N719, 0.5 mM	
	different $\%$ ZnO depend TiO and TiO synthesized at the $\%$ (e and g). Nyquist plot (i) and	
	bode plot (i) of the best performing solar cell (b) equivalent model circuit used in fitting	
6.8	(a) Tafel plot, (b) cyclic voltammetry curves at 20 mV/s scan rate, (c) Nyquist plot with its	44
	equivalent circuit diagram (inset) of dummy cell (Consists of FTO coated Pt/CS/CNB	
	sandwiched together and filled with 150 mM electrolyte where the active area was 0.25	
	cm ²). Rs: series resistance, Rct, Rw: charge transfer resistance, CPE: constant phase	
	element and (d) schematic of a symmetrical dummy cell constructed using the synthesized	
	carbon nanomaterials and Pt.	
6.9	(a) Cyclic voltammetry plots (0.1 mM Na ₂ SO ₄ , applied voltage 0-0.8V and scan rate 100 mV/s)	45
	with inset plot shows Nyquist plot and (b) Tafel curves with inset bar graph summarizing	
	latel parameters and other electrokinetic parameters (Ecorr corrosion potential (mV), I _{corr}	
	corrosion current (μ A), p _a anotic and p _c canodic p Tatel constant (π V) of CS and CNB, CV obtained from CS (c) and CNB (d) at various scap rates	
71	Schematic representation of the thesis overview	18
7.2	PL spectra (a) and UV-vis spectra (b) of the synthesized different CsPbBr ₃ composites. Inset	49
	(b) shows the band adsorption edge of GCN -CsPbBr ₃ at 520 nm.	.,
7.3	Photographic images of pristine CsPbBr ₃ (a) under day light and under UV light (λ = 365	49
	nm) of Sn-CsPbBr ₃ (b), Ta-CsPbBr ₃ (c), Ti-CsPbBr ₃ (d), Mo-CsPbBr ₃ (e) and GCN-CsPbBr ₃ (f)	
	deposited on glass.	
7•4	High resolution TEM images of Mo-CsPbBr $_3$ (a) and GCN-CsPbBr $_3$ (b) showing lattice fringes	50
	and d-spacing.	
7•5	Survey scan (a) and High resolution XPS spectra of Mo-CsPbBr ₃ and GCN-CsPbBr ₃ in Cs 3d	50
- ((D), PD 4T (C), Br 3d (d) and Mo 3d (e) region.	
7.0	High resolution APS spectra of GCN-CSPDBr ₃ in C is (a), O is (b) and N is (c) region and Mo- CSPbBr, in C is (d) and O is (e) region	51
77	Linear sween voltammetry (LSV) under AM1 5 G solar simulated light with and without 420	57
/•/	nm UV cut-off filter for GCN-CsPbBr ₂ (a) and Mo-CsPbBr ₂ (b) and LSV of Ti-CsPbBr ₂ . Ta-	2
	$CsPbBr_3$ and $Sn-CsPbBr_3$ without UV filter.	
7.8	Photoelectrochemical study of GCN-CsPbBr ₃ . Current density vs applied voltage curve	52
	during an ON-OFF light cycle (a), Light On-OFF amperometric i-t curve under AM1.5G solar	-
	simulated light with and without 420 nm cut-off filter (b), Amperometric Ii-t curve at +0.6 V $$	
	applied bias when exposed to LEDs of different wavelength at 365, 420, 460, 580 and 640	

nm (c), EIS Nyquist plot (d) and Mott-Schottky (e).

- 7.9 Photoelectrochemical study of Mo-CsPbBr₃. Current density Vs voltage curve during an ON-OFF light cycle (a), Light On-OFF amperometric i-t curve under AM1.5G solar simulated light with and without 420 nm filter cut-off of (b), Amperometric i-t curve at +0.6 V applied bias when exposed to LEDs of different wavelength at 365, 420, 460, 580 and 640 nm (c), EIS Nyquist plot (d) and Mott-Schottky (e).
- **7.10** Photographic image of all inorganic perovskite CsPbBr₃ and CsPbI₃ demonstrating the change in photoluminescence (green to red) by changing the constituting anion.

•••

xvi