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Introduction

Understanding the motion of constituent atoms in molecules and mechanisms of chemical
reactions lies at the heart of chemistry which addresses the most fundamental questions: Why
chemical reactions occur? How the constituent atoms in reacting molecule(s) evolve in time as
the chemical transformation occurs? Answers to these questions is essential since they have a
profound influence on all aspects of life. Chemical kinetics [Steinfeld et al., 1989] describes the rates
of transformation from reactants to products. It is based on chemical intuition and experimental
observations and calculates the rates of reactions using appropriate rate laws. At the macroscopic
level, the celebrated Transition State Theory (TST), Rice-Ramsperger-Kassel-Marcus (RRKM)
theory and Collision Theory were used to find the rates of reactions. Although these statistical rate
theories consider the molecular nature of the reactants and the energy distribution in molecules
to some extent, they do not provide a detailed atomistic picture and the dynamics of the reacting
molecular system. In the last few decades, the subject of Molecular Reaction Dynamics [Steinfeld
et al., 1989; Levine, 2009] have gained a lot of attention. Reaction dynamics is the study of motion
of atoms at the microscopic level which describes the elementary aspects of a chemical reaction. It
is also concerned with the individual quantum states of the reactant(s) and the product(s). Study
of reaction dynamics deepens our understanding of molecular systems at the atomic scale and
shows how the macroscopic thermal rate constant k(T), obtained from chemical kinetics, arises as
average of the state-to-state rate constants which are related to the individual quantum states of
reactants and products. Statistical rate theories give rate constants by averaging out the details. To
extract microscopic properties such as energy dependent cross sections, rate constants, and atomic
level mechanisms, it is necessary to design a theoretical model (such as a molecular dynamics
simulation) or an experiment (such as molecular beam and laser based experiments) [Herschbach,
1987; Lee, 1987; Polanyi, 1987] and with the help of these sophisticated techniques, state-to-state
properties can be estimated and can be related to conventional experimental observations. Atomic
level classical trajectory simulation methods are state-of-the-art modeling techniques to unfold
the atomistic and microscopic insights of chemical reactions [Henriksen and Hansen, 2018; Levine
et al., 1988; Foresman and Frish, 1996]. The technique complements the experiments and provides
microscopic information about how the system evolves in time and hints clues to what external
parameters can be used to control the reactions. Such detailed studies on microscopic properties
also enables one to derive rate laws and determine rate constants from time evolved molecular
properties. A great advantage of doing computer simulations is that experimental conditions
which are difficult to setup in a laboratory can be successfully modeled using appropriately
designed simulations. In the present thesis, a few important reactions relevant to atmospheric and
prebiotic chemistry were investigated in detail using electronic structure theory calculations and
classical dynamics simulations. In the literature, there are several examples where an accurately
performed dynamics simulation has provided insights about mechanisms and other properties
which otherwise cannot be established from conventional experiments. For example, identification
of roaming mechanism in formaldehyde [Townsend et al., 2004] and roundabout mechanism in SN2
reactions [Mikosch et al., 2008] were established via dynamics simulations.
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1.1 REACTION DYNAMICS IN GAS‐PHASE
In a chemical reaction, reactants are converted into products by breaking and making of

bonds.

AB + CD→ AC +BD

The reaction path may involve formation of intermediate species, transition states, and
various elementary steps. An elementary step in a reaction is one which cannot be broken
down further into smaller steps. These elementary steps form the reaction mechanism of a
reaction and determining the mechanism is important to completely understand a chemical
reaction. Such a detailed understanding is required for not only to provide correct interpretation
of the experimental spectra but also to achieve a chemist’s long standing goal of mode selective
chemistry [Gruebele, 2003; Gruebele and Wolynes, 2004]. An unimolecular reaction involves a
single reactant and it may be excited by optical or thermal processes or by collision with an
inert atom or a molecule. A bimolecular reaction involves collision between two molecules.
Typically, bimolecular reactions in the gas phase are of the ion-molecule type as neutral-neutral
reactions involve large barriers in the gas phase [Henriksen and Hansen, 2018]. A great advantage
of studying gas-phase dynamics is that it provides a solvent-free environment and enables the
study of elementary reactions without much interference from the surroundings. Energetics of
several reactions are much lower such that the solvation energies are larger and studying the
condensed phase dynamics may not provide the required details. There are several experimental
techniques available today to perform gas phase dynamics studies. For example, pump-probe
techniques, mass analyzed threshold ionization (MATI), resonance-enhanced multi-photon
ionization (REMPI), pulsed field ionization, ion-beam mass spectrometry and kinetic energy
photo-electron spectroscopy are some of the widely used techniques today [Hudgens et al., 1983;
Rose et al., 1987; Zhu and Johnson, 1991; Yang et al., 1995; Weibel et al., 2003; Ashfold et al., 2006]. In
the present work, state-of-the-art electronic structure theory calculations and dynamics simulation
methods were used to study gas phase atomic level reaction dynamics of select reactions.

1.2 ELECTRONIC STRUCTURE CALCULATIONS
Electronic structure theory calculations are used to study detailed energy profiles and

time independent molecular properties of a system such as equilibrium geometry, energy, normal
mode vibrational frequencies of stable and transient species, dipole moment, etc. Typically, time
independent Schrödinger equation is solved in an electronic structure calculation [Helgaker et al.,
2014]. There are four main approaches used in computational chemistry to describe the electronic
structure of molecules: ab initio methods, semi-empirical methods, density-functional methods,
and molecular mechanics methods. Ab initio and semi-empirical methods are wave function
based approaches whereas density functional theory is based on electron densities. Ab initio
methods [Ben-Nun and Martínez, 2002] use exact Hamiltonian to solve the Schrödinger’s equation
under various approximations. The most popular ab initio methods are Hartree-Fock (HF)
[Roothaan, 1951; Pople and Beveridge, 1970], Møller-Plesset (MP) perturbation [Cremer, 2011] and
couple-cluster (CC) [Bartlett, 1981] theories. Ab initio methods use adequate approximations in the
selected method to solve the Schrödinger equation using an appropriate basis set. Semi-empirical
methods [Thiel, 2014; Segal, 2012; Purcell and Singer, 1967] are quantum-mechanical but use
a much simpler Hamiltonian than the exact Hamiltonian and adjust the parameters in the
Hamiltonian to achieve the results of ab initio calculations or experimental data. However, due
to the empirical nature of these methods, they are limited by accuracy but can be applied to larger
systems such as proteins. Molecular mechanics [Engler et al., 1973] is not a quantum mechanical
method. It is based on the laws of classical physics and considers molecules as composed of balls
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and springs. This is typically used for studying large systems under conditions where the quantum
effects are minimal. Another approach is the density functional theory (DFT) [Becke, 2014] which
uses electron density (ρ) instead of molecular wave function (ψ) to calculate ground state molecular
properties of a system. Among the above mentioned methods, DFT is one of the most popular
and versatile methods available to do electronic structure calculations in today’s computational
chemistry world. Computational time for DFT calculations is comparable to Hartree-Fock method
and the accuracy can be close to higher level ab initio methods.

Molecular Schrödinger equation
The time-independent Schrödinger equation is the fundamental equation of quantum

mechanics [Rota, 1977]. The wavefunctions and energies can be obtained by solving the
Schrödinger equation

Ĥψ (⃗r, R⃗) = Eψ (⃗r, R⃗) (1.1)

where Ĥ is the Hamiltonian operator and it is the sum of kinetic energy and potential energy
of the system (Ĥ = T̂ + V̂ ), ψ is the many-particle wave function, r⃗ and R⃗ are the electronic and
nuclear coordinates, respectively, and E is the total energy of the system. The non-relativistic
Hamiltonian for a system is given below.
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Ĥ = T̂e(r)+ T̂N(R)+V̂eN(r,R)+V̂NN(R)+V̂ee(r) (1.3)

In the above equations, subscripts (i, j) and (A,B) are used for electrons and nuclei,
respectively. ∇2

i and ∇2
A denote the Laplacian operators. MA and ZA are the mass and atomic

number of nucleus A, respectively, and m is the electron mass. T̂N and T̂e are the kinetic energy
operators of nuclei and electrons, respectively. V̂eN , V̂NN , and V̂ee are the electron-nuclei attraction,
nucleus-nucleus repulsions, and electron-electron repulsions, respectively. Beyond Hydrogenic
species, Schrödinger’s equation becomes non-separable and several approximations [Langhoff
et al., 1966; Born and Oppenheimer, 1927; Millam et al., 1999] are made to find solutions. The first
approximation is the Born-Oppenheimer approximation.

Born‐Oppenheimer Approximation
Born-Oppenheimer approximation (BOA) [Born and Oppenheimer, 1927] proposed by Max

Born and Robert Oppenheimer separates the electronic and nuclear motion to simplify the
many-body problem. As nuclei are heavier than electrons they move on different time scales.
During nuclear motion, electrons will rearrange themselves instantaneously and the electronic
quantum state remains unchanged and because of this reason, BOA is also known as adiabatic
approximation. By making BOA, kinetic energy operator of nuclei is dropped from the Hamiltonian
operator and the total wavefunction becomes

ψ (⃗r, R⃗) = ψel (⃗r; R⃗)ψN(R⃗) (1.4)
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Here, ψel (⃗r; R⃗) is the electronic wavefunction which depends only parametrically on the
nuclear coordinates and ψN(R⃗) is the wavefunction for nuclear motion. The Hamiltonian operator
can be written as

Ĥ = Ĥel +V̂NN + T̂N (1.5)

where the first term (Ĥel) denotes the purely electronic Hamiltonian, the second term
(V̂NN) the internuclear repulsion, and T̂N is kinetic energy operator of nuclei. For a given nuclear
configuration, the electronic Schrödinger equation is given by:

Ĥelψel (⃗r; R⃗) = Eelψel (⃗r; R⃗) (1.6)

Here, Ĥel is the purely electronic Hamiltonian containing T̂e, V̂ee and V̂eN only. The energy
Eel is the electronic energy. Adding the internuclear repulsion (V̂NN) to electronic energy gives the
potential energy U(R⃗).

U(R⃗) = Eel +V̂NN (1.7)

Thus, BOA provides a way of separating the nuclear and electronic motion. For fixed
nuclear configurations, electronic Schrödinger equation can be solved and the potential energy
U(R⃗) can be obtained as a function of nuclear coordinates. Plot of U(R⃗) as a function of nuclear
coordinates leads to the concept of potential energy surface (PES) which is central to understand
chemical reactivity. Determining the properties of PES is the primary goal of doing electronic
structure calculations.

Density Functional Theory
DFT is primarily used for performing electronic structure calculations in the present work

and the principles of DFT are briefly mentioned here. DFT differs from wavefunction based
methods in that the electron density is the central quantity. For a system containing n electrons, the
wavefunction depends on all the 3n coordinates of the electrons but the electron density depends
only on three Cartesian coordinates of the system. This aspect enormously simplifies the DFT
methods in applicability. Detailed discussions on DFT can be found in a number of textbooks
[R. G. and Yang, 1989; Dreizler and Gross, 2012] and excellent review articles [Parr, 1983; Ziegler,
1991; Geerlings et al., 2003; Jones and Gunnarsson, 1989] available in the literature. DFT is based
on two theorems. In 1964, Kohn and Hohenberg [Hohenberg and Kohn, 1964; Kohn and Sham,
1965] proposed two theorems in which they proved that the energy obtained from the Schrödinger
equation is a functional of the electron density. These are applicable to non-degenerate ground
state only. The first theorem states that the ground-state electron density (ρ0) of a molecule with
a non-degenerate ground state uniquely determines the ground-state energy, wave function, and other
properties.

E0 = E0[ρ0] (1.8)

By this theorem, knowing the electron probability density, all the ground state properties
of a molecule can be calculated. The second theorem states that true ground state electron density
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(ρ0) minimizes the functional that gives the ground state energy of the system (E0). It was proved that
the energy of the ground state can be obtained using a variational approach and the density which
minimizes the total energy is the exact ground state electron density. The exact density functional
is not known and the success of a DFT approach depends on how the functional is approximated.
There is a list of functionals with different levels of approximations are available in the literature
and excellent review articles on modern DFT methods has been published [Becke, 1993; Lee et al.,
1988; Perdew et al., 1996; Vosko et al., 1980]. The most appropriate DFT functional for the dynamics
calculations is selected by comparison of the reaction energetics calculated using different DFT
functionals with benchmark wavefunction based calculations such as a CCSD(T) method. The
level of electronic structure theory will be chosen by optimizing the required accuracy and the
computational cost. DFT methods provide an affordable way to achieve sufficient accuracy in
limited computational time. In the present work, on-the-fly direct classical trajectory simulations
were performed which require a large number of single point electronic structure calculations. For
this purpose, DFT is an excellent choice and has been used extensively in this thesis.

1.3 CLASSICAL TRAJECTORY SIMULATIONS
Potential energy surface (PES) is time independent and the features of PES such as energies

and minimum energy paths provide some information about a reaction. Only the dynamics i.e.,
time dependent nuclear motion provide a complete picture of the reaction. Due to the quantum
mechanical nature of atoms and molecules, time dependent Schrödinger equation must be solved
for dynamics. Modeling the nuclear motion using time dependent Schrödinger equation is called
quantum dynamics and is employed for smaller systems only due to computational complexities
[Kosloff, 1994; Marx and Hutter, 2000]. Quantum dynamics simulation is accurate and the results
are comparable to experiments [Blatt, 1967] but it is computationally unfavorable even for smaller
molecules to perform full quantum dynamics calculations [Sinanoglu, 1964]. On the other hand,
classical mechanics provides an affordable way to model dynamics of chemical reactions and
this method is called classical dynamics [Sutmann, 2002]. Dynamics calculations, irrespective of
quantum or classical, provide a complete picture of a reaction event as reactants proceed to form
products. The method of choice depends on the nature of the system under investigation and
the properties of interest [Lubich, 2008]. Classical dynamics simulations have been used to study
chemical reactions for the past several decades and the advantages and limitations of using classical
mechanics are known [Baer and Hase, 1996; Lourderaj et al., 2008b; Paranjothy et al., 2013]. Some
phenomena such as zero point energy (ZPE) [Guo et al., 1996], tunneling [Thornber et al., 1967]
and resonances [Pratihar et al., 2017] are purely quantum effects and cannot be modeled using
classical equations. Unphysical flow of ZPE into the reaction coordinate is less probable in smaller
molecules and faster processes. However, ZPE effects are non-negligible for large molecules and
on longer timescales. This unphysical flow of ZPE may alter the estimated reaction rate constants
and the deviations from true rate constants may be large [Schatz, 1983]. When quantum effects
are unimportant, classical simulations have ability to predict dynamics correctly comparable to
experimental measurements. Initial conditions for the classical trajectories may be selected to
mimic quantum states of reactant molecules but the time evolution of the trajectories are controlled
by the classical equations of motion.

Classical trajectory simulations have been used to investigate various problems including
reaction mechanisms, intramolecular vibrational energy flow, intermolecular collisional energy
transfer, conformational changes, molecular motions under external parameters, gas-surface
collisions, transitions between adiabatic surfaces (surface hopping), unimolecular and bimolecular
reactions [Baer and Hase, 1996; Lourderaj et al., 2008b; Paranjothy et al., 2013; Bunker, 1962; Blais
and Bunker, 1962; Karplus et al., 1965; Bosio and Hase, 1997; Lu and Hase, 1988; Preston and Tully,
1971]. In a classical trajectory simulation, the time evolution of the atoms of a system is simulated
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by solving classical equations of motion [Bunker, 2012] and an ensemble of classical trajectories are
required. The classical equations of motion are either Newton’s equations

−δV (qi)

δqi
= mi

d2qi

dt2 (1.9)

or Hamilton equations

δqi

δ t
=

H(qi, pi)

δ pi
(1.10)

δ pi

δ t
=−H(qi, pi)

δqi
(1.11)

where the Hamiltonian [H(qi, pi)] is the total energy of a system i.e. the sum of the kinetic
[T (pi)] and potential [V (qi)] energy. The index i represents atom indices and qi are coordinates and
pi are momenta.

H(qi, pi) = T (pi)+V (qi) (1.12)

The potential energy function V (qi) of the system is required for solving either Newton’s
or Hamilton’s equations of motion. The traditional way to compute potentials V (qi) and
its gradients δV (qi)/δqi required to perform classical dynamics simulation is constructing
analytic potential energy functions using model potentials such as Lennard-Jones potentials,
London-Eyring-Polanyi-Sato (LEPS) function [Steinfeld et al., 1989] and other analytical functions.
These analytical functions are generated by fitting experimental data and/or quantum chemistry
calculations. Using these analytical potential energy functions, large molecular systems can be
modeled because they are computationally not expensive. However, they are limited by accuracy
due to the parametric nature of the potential functions. One of the known problems with this
approach is that higher order mode-mode couplings are neglected.

Another approach to do classical trajectory simulations is direct dynamics which is used
from the early 1990s. In this method, classical trajectories are integrated on-the-fly and the required
potential energies V (qi) and its derivatives δV (qi)/δqi with respect to the atom’s coordinates (also
the second derivatives known as Hessian) are directly computed from a quantum mechanical
electronic structure theory and avoids the need for analytic potential energy functions. With
the advancement in computer speeds and well written algorithms, direct dynamics simulation
is suitable to study the atomistic dynamics of chemical reactions. In direct dynamics, there is no
need of analytic potential energy functions for the numerical integration of classical equations of
motion and at each integration step, time-independent Schrödinger equation is solved. Single
point energy calculations for fixed nuclear coordinates are performed and updated at each time
step [Thompson, 1998] which makes computational time higher for trajectory integrations. For
numerical integration of the trajectories, Hamilton’s Eq. (1.10) are preferred as being first-order
ordinary differential equations, they minimize the computational time. Direct dynamics provides
accurate results within the limits of the electronic structure theory as it uses exact Hamiltonian.
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Direct dynamics is computationally very expensive and applicable to medium sized molecules.
Using analytic potentials, thousands of trajectories can be generated but in direct dynamics,
number of trajectories that can be generated is limited. For a successful direct dynamics simulation,
an appropriate electronic structure theory is needed balancing computational cost and accuracy.
The first direct dynamics study using the CNDO semi-empirical method was performed by Wang
and Karplus to study the CH2 + H2→ CH4 reaction [Wang and Karplus, 1973]. Several years later,
the first ab initio direct dynamics using HF/STO-3G theory was reported by Leforestier for the
study of H− + CH4→ CH4 + H− SN2 reaction [Leforestier, 1978].

Two broad approaches are available in the literature for performing direct dynamics
simulations. The first is Born-Oppenheimer (BO) direct dynamics [Sun and Hase, 2003; Wang and
Karplus, 1973] in which the Born-Oppenheimer approximation is used to separate the electronic
and nuclear coordinates. The other approach is Car-Parinello (CP) direct dynamics [Marx and
Hutter, 2000; Car and Parrinello, 1985] in which the electronic and nuclear coordinates are
propagated simultaneously. The two approaches have their own advantages and limitations.
In the CP approach, within the DFT framework, the wavefunction is propagated by introducing
fictitious electronic mass parameter µ . It was assumed earlier that CP approach is more efficient
as it does not require the optimization of the wave function at each integration step. Later,
it was realized that the reoptimization of CP wavefunction is required at each integration step
to avoid the coupling between nuclear and electronic degrees of freedom which increases the
computational time. In order to obtain accurate results in the CP approach, one needs to choose a
small value of µ , which decreases the computational efficiency significantly. On increasing µ , the
computational cost is decreased but this reduces accuracy. Computationally, both the approaches
have comparable cost, but the BO method assures correct classical direct dynamics results. In
the present work, BO method is used to simulate classical trajectories to study the dynamics of
interesting reactions.

1.4 ORGANIZATION OF THESIS
Direct dynamics simulations play an important role in modeling chemical reactions and

used to explore the atomistic dynamics and energy transfers. The advancements in this field in
the past few decades are noteworthy. In the present thesis, direct dynamics simulations were
used to study unimolecular decompositions for (bio)organic reactions and mass spectrometry
fragmentation dynamics.

Chapter 2 provides description of the fundamental principles and techniques of electronic
structure calculations and direct dynamics simulations that have been used in the present study.

In Chapter 3, the decomposition pathways of formamide (NH2CHO) in the electronic
ground state were investigated using electronic structure calculations and direct chemical
dynamics simulations at three different energies using B3LYP/aug-cc-pVDZ theory. This was
inspired by previous work done by Nguyen et al. [Nguyen et al., 2011] to explore the unimolecular
dissociation of formamide in the gas phase. This molecule is the simplest molecule containing an
amide functional group and serves as a model to study protein chemistry.

In Chapter 4, the investigation of gas phase dissociation chemistry of formyl halides HXCO
(X = F, Cl, Br, and I) were undertaken using electronic structure theory, classical chemical dynamics
simulations, and Rice-Ramsperger-Kassel-Marcus (RRKM) rate constant calculations. This work
was motivated by the important role of formyl halides in atmospheric and combustion chemistry.
Dissociation products of formyl halides are known to play an important role in the ozone depletion.

In Chapter 5, gas phase dissociation of glycolaldehyde anion are reported. The study
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was performed to model a recently reported collision induced dissociation (CID) experiment on
the same molecule to investigate the retro formose reaction. Trajectories were launched with
two different deprotonated forms of glycolaldehyde anion for a range of collision energies. The
simulations were performed under CID conditions. Reverse formose reaction was observed
primarily from the high energy isomer.

Chapter 6 summarizes the research work carried out in the thesis and provides possible
future extensions of the work.

…
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