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Theoretical Methods and Techniques

To understand the fundamental processes involved in a chemical reaction at the atomic
level, the study of reaction dynamics is required. Any dynamical study of chemical reactions starts
with an appropriate potential energy surface. A brief overview of the potential energy surface is
provided in this chapter along with descriptions of Born-Oppenheimer direct dynamics method.

2.1 POTENTIAL ENERGY SURFACE
A chemical reaction is a dynamical process depending primarily on the interaction forces
between atoms and molecules:

_dV(R)

F=—7-
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where V(R) is the potential energy of the system and dependent on the nuclear
coordinates. V(R) is the potential energy function of a system and in a multidimensional
system, it becomes potential energy surface (PES). In order to establish the dynamics of a chemical
system, understanding of all the forces operating within a system is required. PES provides
information about the interactions depending on the nuclear configuration of the system during
the transformation of the reactants into products. A knowledge of PES is necessary to investigate
molecular properties and the processes that occur during a chemical reaction [Domcke et al.,
2004; Lagana and Riganelli, 2012; Zhang, 1999; Gerratt, 1985; Varandas, 2000]. Hence an accurate
description of a PES is the key step in any successful dynamical calculation to characterize the
atomic level motion of the reaction system [Truhlar, 2013]. Some features of the PES are presented
below.

2.1.1 Dimensionality

A polyatomic molecule containing N atoms requires 3N coordinates for a successful
description of its vibrational, rotational, and translation motions. Rotational and translational
degrees of freedom do not alter the PES which depends only on the relative (internal) coordinates
of all the atoms. Hence, six (five) coordinates corresponding to overall translations and rotations
can be subtracted from the 3N coordinates of non-linear (linear) molecules from the overall
dimensionality [Jaquet, 1999]. Hence,

Dimension of a PES = 3N -5 (for linear molecules)
3AN—-6 (for non-linear molecules)

In the case of a linear molecule, only two rotational degrees of freedom exist. For a diatomic
molecule AB, where N =2, V(R) is called as potential energy curve [as presented in Figure 2.1(a)]
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Figure 2.1. : Schematic Potential energy (a) curve for a molecule AB where PE depends upon one
geometric parameter (b) surface for a ABA type molecule in which PE is a function of two
geometric parameters, (c) hyper-surface for such molecules where N>3 and PE depends
on more than two geometric parameters.

and, in this case, potential energy is only a function of the inter-nuclear bond distance of A-B.
The potential energy graph, V vs. two geometric parameters i.e., bond angle and bond length, for
example, is known as potential energy surface [Figure 2.1(b)]. Note that for a non-linear triatomic
molecule, the PE depends on 3 coordinates. Figure 2.1(b) is only for representation purposes. If
the potential energy depends on more than two geometric parameters, it is termed as potential
energy hyper-surface [Figure 2.1(c)]. Such hyper-surfaces cannot be completely projected in three
dimensional space. However, mathematically such high dimensional spaces can be treated with

appropriate tools.

2.1.2 Geometry Optimization and Stationary Points
A standard theoretical technique for determining molecular structures is the optimization
of geometries. Generally, two kinds of molecular geometries viz., equilibrium and transition state
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Figure 2.2. : Characterization of Points on the PES (Reprinted from Reference [Schlegel, 2011].)
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(saddle point) geometry are important which are stationary points in a PES i.e., points of
nuclear configurations at which dV(R)/dR=0. The process of trying to find such points in a
multidimensional PES using various mathematical tools is called geometry optimization [Schlegel,
1982]. A single point energy calculation is the process of finding V(R) for a fixed nuclear configuration
for a given R by solving the electronic Schrodinger equation. The process of geometry optimization
starts with a “guess’ input geometry resembling the required geometry to a computer algorithm
which efficiently changes the geometry until it finds a desired stationary point [Deaven and Ho,
1995]. Finding a minimum is called energy minimization, and finding a transition state is called
transition state optimization. Such processes require a suitable computer algorithm such as a Newton
based method [Schlegel, 2011]. The nature of a stationary point as a minimum or a saddle point
is determined using the second derivatives of the potential with respect to the coordinates or the
Hessian [Fernandez et al., 1988]. Features of a PES are shown in Figure 2.2. A reaction coordinate or
an intrinsic reaction coordinate [IRC] in a PES is the minimum energy path connecting the reactants
to products [Fukui, 1970]. At the stationary points on a PES, the surface is flat i.e., horizontal or
parallel with respect to the reaction coordinate. Mathematically, a stationary point is a point where
the first derivative of potential energy is zero with respect to all the coordinates.

ov. oV
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Here, q1,q>,--- are the coordinates. These stationary points can be further classified based
on the second derivatives of the potential energy with respect to the coordinates.

Minimum: A minimum corresponds to stable or meta-stable species i.e., reactants,
products, or reactive intermediates and the second derivative is positive with respect to all the
coordinates.

8%v
52 0 (2.3)

Transition state: Transition states are those points which are minimum in all the
dimensions but maximum along the reaction coordinate ¢,. i.e., second derivatives are positive
along all the coordinates except the reaction coordinate.

5%y

for all i except the reaction coordinate.

5%y

52 < 0 (2.5)

The above description is for a first order saddle point. For a second order or higher order
saddle points, correspondingly the second derivatives are maxima in two or more dimensions. The
stationary point which is the lowest energy point on the whole PES is called the global minimum.
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The transition state, which connects two minima, is a maximum along IRC, but it is minimum in
all other directions. TS is a first-order saddle point and has one imaginary frequency and higher
order saddle points will have more than one imaginary frequencies depending upon the nature of
the saddle point.

Valley-ridge inflection point: Valley-ridge inflection point on the PES is the place where
an eigenvalue of the hessian orthogonal to the gradient direction changes from ”+” to ”-” through
zero, or vice versa. A valley inflects into a ridge. Valley-Ridge Inflection point is located where at
least one main curvature of the PES becomes zero i.e. the second derivative of the potential with
respect to the reaction coordinate is equals to zero. These points represent non-stationary points

of the PES [Quapp, 2003; Lourderaj et al., 2008a].

Zero-point energy (ZPE) is the energy which a molecule has at absolute zero temperature.
The energies V(R) obtained by solving above equations are classical energies without ZPE
corrections. The vibrational frequency data can be used to calculate ZPE that can added to the
classical energies to obtain the zero point corrected energies. The ZPE of a molecule is not often
small but it tends to cancel out for the whole reaction energy profile when ZPE is added to all the
reactant, transition states, and products. ZPE corrected energies are used for comparison with the
experimental data. The process of determining normal mode frequencies is described below.

2.1.3 Normal Mode Analysis

After optimizing the geometry of a molecule, it is necessary to check whether the stationary
point is a minimum or a saddle point (transition state). Normal mode vibrational frequency
calculations are used to determine whether a stationary point is a minimum or a saddle point.
In a normal mode vibration of a molecule, all the atoms in the molecule move in phase with same
frequency, i.e., they all reach their equilibrium positions, maximum and minimum displacements
simultaneously. Local mode vibrations of the molecule can be written as linear combinations of
these vibrations. A nonlinear molecule with N atoms has 3N-6 independent normal modes of
vibrational motions, and a linear molecule has 3N-5 normal modes. The normal-mode frequency
for a molecule is given by:

1 |k

_ 1]k 2.
% 7\ i (2.6)

where v is the normal mode vibrational frequency, k is the force constant associated with
the vibration, and u is the reduced mass. The force constant £ measures the stiffness of a bond.
Larger is the value of the force constant, the more difficult it is to bend or stretch the molecule in
that mode. Thus the frequency of a vibrational mode is related to the force constant. A matrix of
second-order energy derivatives with respect to geometric coordinates (e.g., cartesian or internal
coordinates) is called the force constant matrix (Hessian, H;;).

o 8%v
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Diagonalization of the Hessian matrix provides the eigenvectors which describe the normal
mode vibrations of the molecule, and the corresponding eigenvalues are directly proportional to
the square of the vibrational frequencies. Maxima and minima on the PES can be recognized by the
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sign of the second derivative of energy. The maxima or saddle points (maximum in one direction
but minimum in other directions) have at least one negative (imaginary) frequency whereas
minima on the PES have only positive vibrational frequencies i.e. positive eigenvalues. Thus
normal mode calculations must be carried out to determine the sign of the vibrational frequencies
to characterize the stationary points on PES.

2.2 BORN-OPPENHEIMER MOLECULAR DYNAMICS (BOMD)

Direct dynamics simulations [Pratihar et al., 2017] are widely used to interpret experimental
results and study the atomistic dynamics of chemical reactions and energy transfer processes.
Essential components of a classical trajectory simulation [Bunker, 2012] is shown in Figure 2.3 as a
flowchart and are described below.

* Development of a potential energy surface for the chemical problem under investigation
using appropriate electronic structure theory or experimental data;

* Selection of proper initial conditions (coordinates ¢’s and the conjugate momenta p’s) for
the ensemble of trajectories to be calculated that mimics given experimental conditions or a
chemical phenomenon;

* Numerical integration of the classical equations of motion (either Hamilton’s or Newton’s)
to determine the motion of atoms;

* Converting the trajectory’s final values of atomic coordinates and momenta
to obtain properties which can be compared with theoretical models such as
Rice-Ramsperger-Kassel-Marcus (RRKM) theory and/or experiments.

Various initial condition sampling schemes [Paranjothy et al., 2013] are available such
as classical microcanonical sampling, quantum microcanonical sampling, thermal sampling,
transition state sampling, etc. After selecting the initial conditions, an ensemble of trajectories are
generated. Trajectories are integrated till an appropriate #,,, is reached or until a reaction occurred.
Once the dynamics simulation is completed, the time evolved dynamical variables [g;(), pi(f)] are
analyzed for reaction products, pathways, mechanisms, etc. Using the time evolved coordinates, a
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movie on molecular motion can be established to directly visualize the reaction mechanism using
softwares such as molden [Schaftenaar and Noordik, 2000] or visual molecular dynamics (VMD)
program [Humphrey et al., 1996]. The vibrational, rotational, and relative translational energies
of the products, amount of energy in individual molecular degrees of freedom, the lifetime of
a vibrationally excited molecule, and scattering angles can be computed using the time evolved
coordinates and momenta [Sun and Hase, 2003].

2.2.1 Integration Methods

As discussed above, Newton’s or Hamilton’s equations of motion are numerically
integrated in classical trajectory simulations. Coordinates required for the integration can be
represented in the form of internal, cartesian, or instantaneous normal modes [Wilson et al., 1980;
Adams and Stratt, 1990; Miller et al., 1989]. Potential energy functions are easily represented in
internal coordinates. But these coordinates are efficient only for smaller systems. Since kinetic
energy depends upon both the coordinates and momenta, it is efficient to integrate the classical
equations of motion using instantaneous normal-mode coordinates or cartesian coordinates. There
are several algorithms available for numerical integrations in cartesian coordinates such as Gear,
Adams-Moulton, fourth-order Runge-Kutta, sixth-order Adams-Bashforth-Moulton methods [Sun
and Hase, 2003; Thompson, 1998; Press et al., 1992; Stoer and Bulirsch, 1993; Bolton and Nordholm,
1994]. These are predictor-corrector algorithms consisting of a prediction and a correction at each
integration step. The predictor requires largest possible integration time-step for evaluations of
the potential energy and its gradient during each time step to reduce the number of quantum
chemistry single point calculations in a direct dynamics simulation. The accuracy order of these
algorithms is usually at or higher than fourth order. Another class of integration method is the
symplectic integrator schemes [Gray et al., 1994; Schlier and Seiter, 1998], often used to integrate
the Hamilton’s equations of motion. These are based on Runge-Kutta methods. Symplectic
integrators give good energy conservation because they preserve the symplectic structure of the
phase space and are particularly useful to study long time integration of large systems. They
are superior to non-symplectic methods which usually give a continuous drift in energy and
hence suitable for short time integration. Although symplectic methods are slow in comparison
to non-symplectic algorithms, they are favorable when integrating large systems for longer time
duration. Description of symplectic integrations is given below.

Consider a system with a separable Hamiltonian i.e., H is written as sum of kinetic and
potential energy

H(p,q) =T(p)+V(q) (2.8)

For a given dynamical variable z = (¢, p), the Hamilton’s equations can be expressed as

= {2H(2) 29)

Here {-, -} stands for the Poisson bracket. On introducing a differential operator Dy, above equation
can be simplified as:

2=Dpyz (2.10)
The solution z(r) from ¢ = 0 to r = 7 is given by a matrix exponential

2(%) = [exp(tDw)}2(0) 211)
Here 7 is step-size. Hamiltonian of the form of Eq. (2.8) can be written as:

2(7) = exp[z(Dr + Dy)]z(0) (2.12)
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Suppose, ¢; and d; are real numbers, where

and satisfy the given equality,
exp[t(Dr + Dy)] = exp(c;tDr) exp(ditDy) + O(t" ) (2.14)

Here n is an integer called the order of the integrator.
Since D3z = {{z,T},T} = {{¢,0},T} = (0,0) for all z

D3 =0 (2.15)

Using a Taylor series expansion, exp(aDr) can be expressed as

(a(Dr)"

explaDr| = nz:;) . (2.16)
Using Eq. (2.15) and (2.16),

explaDr] = 1+aDr (2.17)
Similarly,

explaDy| = 1+aDy (2.18)
where a is an arbitrary real number. The simplified form of equations are:

Gi+1 =qi T Ci bl (2.19)

m

pit1 = pi+diF (q;)t (2.20)
In Lagrangian coordinates:

Xit1 = X;j +civip1t (2.21)

Viyl = Vi +dia(x;)t (2.22)

where F(x) is the force vector at x, a(x) is the acceleration vector at a, and m is the scalar quantity
of mass.

Symplectic integrator uses position x; and velocity v; of a particle at time ¢ and calculate
the position x; ) at (# + 1) by adding to its velocity v(; ) (previously updated) multiplied by c;.
Velocity of the particle v(;, ) at (£ + 1) is obtained by adding to its acceleration (at updated position
x;) multiplied by d;. Several higher order symplectic integrators [Schlier and Seiter, 2000; Yoshida,
1990] are available in the literature. The 6 order symplectic integrator is used in the present work.

2.2.2 Integration Time-step

Value of the integration time-step is a very important parameter while performing any type
of dynamics simulation. Larger time steps accelerate the calculations, but can affect the accuracy
of the simulation. The maximum recommended value depends upon the fastest movements that
happen during the simulation. The selection of optimal integration time-step At is one of the most
important pointers for a successful numerical integration of the equations of motion. It is not
practical to use constant step size in a numerical integration. If the chosen time-step is too large,
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the calculated solution may differ from the exact solution. When it is too small, the number of
arithmetic operations, calculation time, and the calculation errors begin to increase. Thus, if the
solution is changing quickly, the chosen time-step must be checked. Conversely, one can choose
a longer time step if the solution is changing slowly. For selecting the best possible time-step,
the largest frequency among all the vibrations in a system can be selected and the corresponding
"period” (inverse of the frequency) can be divided by 10 and can be selected as the time-step. In
this way, one will have fastest motion sampled at least ten times during each vibration.

2.2.3 Trajectory Initial Conditions

Direct dynamics simulations have been used to identify decomposition mechanisms of
gas phase reactions and to make comparisons with experiments and theoretical models such
as Rice-Ramsperger-Kassel-Marcus (RRKM) theory. A crucial step for a successful classical
trajectory simulation is to choose appropriate initial conditions to mimic experimental conditions
or a theoretical model i.e., selection of coordinates and momenta for simulating an ensemble of
trajectories. A detailed description of different initial condition sampling schemes is given by
Peslherbe et al. [Peslherbe et al., 1999] and Cho et al. [Cho et al., 1992]. Two different sampling
schemes were primarily used in the present work, classical microcanonical sampling and to model
a collision induced dissociation (CID) experiment. A brief description of initial condition selection
schemes for trajectory simulations is given below.

2.2.4 Unimolecular Dynamics

Unimolecular reaction dynamics reported in the thesis were performed using classical
microcanonical sampling method which is typically used to model gas phase experiments [Sun
and Hase, 2003].

Classical Microcanonical Sampling

In order to produce a microcanonical ensemble, random values for p; and g; are selected
such that total energy is a constant in all the trajectories [Hammersley, 2013]. This sampling
is appropriate for modeling experiments in which the dynamics is well represented by classical
mechanics [Dobbyn ef al., 1995]. Trajectories are numerically integrated under the condition that
total energy is constant until the dissociation products are well separated. Total energy for a
molecule consisting of s harmonic oscillators is given by:

E=YE (2.23)
i=1

where E; are the individual harmonic oscillator energies. If an oscillator i has energy
between E; and (E; + dE;) then the corresponding probability P(E;)dE; is directly proportional to
the (classical) density of states of the remaining s — 1 oscillators [Hase and Buckowski, 1980]. P(E;)
is given by:

i—1 i—1 -1
P(E)=[E-Y E;j—E]""""x { /[E -Y E- E{]slidE;} (2.24)
Jj=1 j=1

In the above equation, the integral is in the range of 0 to (E — Zj;ll E;). P(E;) is evaluated
by cumulative distribution function [Hammersley, 2013] or by the rejection method such as von
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Neumann technique. The random values of energy is distributed to coordinates and conjugate
momenta by either associating a random classical phase [Peslherbe et al., 1999] to the normal mode
or a quantum mechanical distribution function [Mayer and Band, 1947; Husimi, 1940; Takahashi,
1986] such as Wigner sampling. In the present work, purely classical sampling were performed.

Mass Spectrometry Simulations: Collision-Induced Dissociation (CID)

Direct dynamics simulations have been used to study the collisional activation of small
organic and biological molecules. In these simulations, the reactant molecule is energized by a
collision with an unreactive molecule (e.g., N») or a rare gas atom (e.g., Ar) at a fixed amount of
collision energy and impact parameter b [Levine, 2009]. The reactant vibrational and rotational
energies are selected from Boltzmann distributions at fixed temperatures [Peslherbe et al., 1999].
The reactant molecule is oriented differently about their Euler angles in different trajectories to
mimic the experimental conditions. If electronic excitations are not important which is usually
the case, the collisions transfer a fraction of the translational energy to the internal vibrational
and/or rotational energy of the ion in the limit of low-energy collisions so that the ion can
eventually dissociate. These CID simulations play an important role [Pratihar et al., 2017] in
studying the mechanisms of unimolecular dissociations, predicting fragmentation mechanisms of
new structures such as different isomers having same chemical formula, identifying the neutral
molecules which cannot be observed in mass spectrometry experiments, and calculating the
vibrational and rotational energy distributions of the excited molecules. Simulations of CID
unimolecular dissociations have shown that [Martin Somer et al., 2019] two types of mechanisms
may occur: (1) the traditional, statistical RRKM mechanism with efficient IVR (intramolecular
vibrational energy redistribution) and (2) shattering type mechanism in which dissociation occurs
during the collision or within a very short time following the collision. The shattering type of
mechanisms may be identified only via direct dynamics simulations.

2.2.5 Non-RRKM behavior

One of the fundamental assumptions of RRKM theory is that IVR is instantaneous and the
dissociation process is random [Bunker, 1964; Bunker and Hase, 1973; Baer and Hase, 1996]. This
will be the situation if a molecule A is microcanonically excited i.e., molecules are excited randomly
at constant total energy and this total energy is conserved throughout the trajectory integration.
In this process, each vibrational state of an excited molecule has an equal probability of being
populated in the energy interval E — E + AE. For a nonlinear molecule, each state has a random
energy E; in each of the 3N — 6 vibrational normal modes and the sum of the E; equal to total E in
the interval E — E + AE. For an initial microcanonical ensemble, the RRKM rate constant k(E) can
be expressed as

N(r) = N(0)e KE) (2.25)

where N(0) is the total number of trajectories and N(¢) is the number of trajectories that
did not dissociate at time ¢. For RRKM dynamics, the lifetime distribution [N(r)/N(0)] is single
exponential as shown in Eq. (2.25). When the unimolecular dissociation dynamics is intrinsically
Non-RRKM [Lourderaj and Hase, 2009], the lifetime distribution is multi-exponential i.e., sum of
two or more exponential functions are required to fit the lifetime distribution.

N(t) =N(0) ). fie™ (2.26)
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where Y, fi = 1.

RRKM theory assumes that the classical phase space of the dissociating system is
adequately chaotic to keep the microcanonical ensemble of states as the reactant decomposes.
Classical microcanonical unimolecular RRKM rate constant is expressed as [Baer and Hase, 1996]:

K(E) = ——2 (2.27)

where N(E) is the sum of states at the transition state and p(E) is the density of states of
the excited reactant. Further, RRKM theory assumes that the trajectories do not recross once the
transition barrier is crossed. However, trajectory recrossings may happen and the rate constants
may deviate from the RRKM predictions [Steinfeld et al., 1989; Bunker and Pattengill, 1968].

2.3 SOFTWARE

NWChem [Valiev et al., 2010] quantum chemistry software package was used to perform
electronic structure calculations reported in the present work. For dynamics simulations, the
general chemical dynamics program VENUS developed by Hase and coworkers [Hase et al., 1996]
was used. This dynamics program was interfaced with NWChem to perform the single point
energy calculations required for the on-the-fly integrations. The coupling is considered to be tight
coupling [Lourderaj ef al., 2014] as the two codes are compiled together and work through routine
calls very frequently. At each time step, the dynamics program makes a call to the electronic
structure theory program to obtain the energies and gradients. Conservation of total energy is
monitored continuously and trajectories were animated with molden [Schaftenaar and Noordik,
2000] and VMD (visual molecular dynamics) [Humphrey et al., 1996] to understand the reaction
mechanisms.
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