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Theoretical Methods and Techniques

To obtain the potential energy surface (PES) of a molecule, one needs to solve the electronic
Schrödinger equation for all possible (fixed) nuclear coordinates. PES helps us to understand
the energetics of a reaction. However, the issue is the dimensionality of the PES. A molecule
containing N number of atoms has 3N nuclear coordinates. Subtracting the translational and
rotational degrees of freedom, a nonlinear molecule has 3N6 and a linear molecule has 3N5
vibrational degrees of freedom. PES of a molecule containing 10 atoms is 24 dimensional which is
very hard to visualize. Solving the electronic Schrödinger equation for a medium sized molecule is
achievable easily today due to the developments in computational techniques. In this thesis, PES
were computed from quantum mechanics by solving the electronic Scrödinger equation.

2.1 GEOMETRY OPTIMIZATION
A single point energy calculation is solving the electronic Schrödinger equation at a fixed

nuclear geometry. Stationary points on a PES such as a minimum or a saddle point can be found
by performing a geometry optimization. To begin the process of optimizations, a guess geometry
that resembles the desired stationary point is required. Then using a suitable algorithm[Baker,
1987; Deaven and Ho, 1995; Schlegel, 1982] such as a Newton based method[Schlegel, 2011],
the stationary point is found. It is desirable to assess once geometry optimization has found a
point that whether it is a transition state or a minimum. The stationary point is found using
first and secondorder derivatives, where the first derivatives confirm the stationary points and
secondorder derivatives confirm the nature of the stationary points. The second order derivative
provides the normalmode frequencies of a molecule. The matrix of the second order derivatives
of the PES with respect to geometry is termed a Hessian (or force constant) matrix. A transition
state will have (3N5) real and one imaginary normalmode frequency (corresponding to reaction
coordinate) and for minima all (3N6) frequencies are real and positive. Mathematically, a
stationary point is the one on a multidimensional PES where the first derivative of potential energy
with respect to each geometrical coordinate becomes zero.

dU
dq1

=
dU
dq2

= .....= 0 (2.1)

Here, q1,q2... are the normal coordinates. To decide the nature of a stationary point, the
sign of the second order derivative of potential energy with respect to the coordinates is checked.
For a minimum,

d2U
dq2

i
> 0 (2.2)

for all qi, whereas, a saddle point is one where
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d2U
dq2

i
> 0 (2.3)

for all qi except the reaction coordinate qrc, for which

d2U
dq2

rc
< 0 (2.4)

So, a stationary point is known as minima if all the eigenvalues of hessian matrix are
positive, and if this minima is lowest on whole PES, than it is called global minima. The number of
hessian evaluations depends on the order of integrator (described in the next section). A transition
state (first order saddle point) is maximum in the direction of reaction coordinate but along all
other directions, it is a minimum. The above description is for a first order saddle point. For a
second order saddle point, two imaginary frequencies are obtained, i.e., it is a maximum along two
pathways connecting stationary points. Zeropoint energy (ZPE) is the energy which a molecule
has even at absolute zero temperature. Energies U(R⃗) obtained as described above are classical
energies without ZPE corrections. The vibrational frequency data can be used to calculate ZPE
which can be added to the classical energies to obtain the zero point corrected energies. The ZPE of
a molecule is not often small but it tends to cancel out for the whole reaction energy profile when
ZPE is added to all the reactant, transition states, and products. To compare with experimental
data, ZPE corrected energies are used. The computer program which was used for the electronic
structure calculations reported in this thesis is the NorthWest computational chemistry (NWChem)
program, an opensource computational chemistry package[Valiev et al., 2010; Kendall et al., 2000].

2.2 TRAJECTORY INTEGRATION
To perform a classical trajectory simulation, either Hamilton’s or Newton’s equation of

motions are numerically integrated. A flowchart describing the steps involved in a classical
trajectory simulation is shown in Figure 2.1. A number of different integration algorithms such
as Gear, GaussRadau, AdamsMoulton, Rungekutta and BulirschStoer[Press et al., 1992; Stoer
and Bulirsch, 2013; Bolton and Nordholm, 1994] algorithms are available. These algorithms
are commonly used for smaller systems and accuracy order of these algorithms lies either at or
higher than fourth order. These algorithms allow a maximum possible integration timestep,
thus reducing the number of quantum chemistry single point calculations. Another class of
integration method is, symplectic integrator scheme[Gray et al., 1994; Janezic and Merzel, 1995]
used for integrating the classical equations of motion. Symplectic integrators are better than
the nonsymplectic methods in various aspects. Symplectic integrators provide good energy
conservation for longtime trajectories of large systems. The Verlet[Verlet, 1967] algorithm is
an example of symplectic integrator which is generally used to integrate Newton’s equation
of motion. Symplectic integration scheme is favorable to study large systems for longer times
but they are slow in comparison to nonsymplectic methods. Further study about higher order
integrators can be found in the literature[Schlier and Seiter, 1998, 2000]. In this thesis, two different
symplectic integration schemes were used. One is Velocity Verlet and other is 6th order symplectic
integrator. Symplectic integrators are used to solve explicitly singlestep ordinary differential
equation. These are based on RungeKutta methods[SanzSerna and Calvo, 2018]. Consider a
differential equation of the form
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q̈(t) = f [q] (2.5)

The Verlet algorithm[Verlet, 1967] to solve the above equation is

q(t +δ t) = 2qi(t)−qi(t−δ t)−δ t2 f [q(t)] (2.6)

To solve the differential equation, one needs to start with the value of q(0) and q(δ t) and
calculate consecutive values of q from above mentioned equation. To calculate the velocity in the
verlet algorithm following approximation is used

q̇(t) =
q(t +δ t)−q(t−δ t)

2δ t
(2.7)

By using the above expression, error after the iterative procedure to integrate the equation
of motion for finite time interval is the order of δ t2[Andersen, 1983]. The velocity and position
both give the error of order δ t2. The magnitude of error varies with the size of qδ t and precision of
the computer. This problem can be avoided by using velocity version of Verlet algorithm[Swope
et al., 1982].

q(t +δ t) = q(t)+δ tq̇(t)+
δ t2 f [q(t)]

2
(2.8)

q̇(t +δ t) = q̇(t)+
δ t
[

f [q(t)]+ f [q(t +δ t)
]

2
(2.9)

These equations are equivalent to verlet algorithm. Above mentioned both equations allow
one to calculate position and velocities at time t+δ t when the staring time is t. Also this procedure
solves the differential equation with more accuracy on computers of fixed precision.

Integrators which belong to type S, compose of single symplectic steps[McLachlan, 1995].
These can be used to integrate any Hamiltonian system which can be written in partitioned form
i.e. total energy is sum of kinetic and potential energy H = T (p)+V (q). One complete step of S6
is given by

do i = 0,2,4, .......,14,16
q = q+δ ta(i)q̇
p = p+δ ta(i+1)ṗ
end do
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q = q+δ ta(18)q̇

The vector components which are defined in the righthand sides of the differential
equations ṗi = − ∂H

∂qi
, q̇i =

∂H
∂ pi

and δ t is the (full) time step. Further information about coefficients
a(i) and integrator can be found in literature[Schlier and Seiter, 1998].

2.2.1 Integration Timestep
The selection of an appropriate integration timestep for numerically integrating the

classical equations of motions is very important as it plays an essential role in the formation of
products and energy conservation of the trajectories. The value of integration timestep varies with
systems due to their different vibrational frequency values. To select an appropriate timestep, one
needs to take the largest vibrational frequency among all possible vibrational modes of the system
and divide the corresponding period (T = 1

ν ) by 10. The chosen timestep should not be as large, so
the solution get altered and not too small as it increases the computational time of a trajectory.

2.3 TRAJECTORY INITIAL CONDITIONS
Selecting suitable initial conditions i.e., positions and momenta of all the atoms of a system

at time t = 0 is a crucial step for a successful classical trajectory simulation. Initial conditions
are selected to mimic experimental conditions. Various initial condition selection schemes are
available. For example, classical and quantum microcanonical sampling (fixed total energies)
and thermal sampling (fixed temperature sampling) can be used for unimolecular reactions. A
few barrier sampling schemes are also available. Review articles[Peslherbe et al., 1999; Cho et al.,
1992] discussing these different sampling schemes are present in the literature. In the present
work, classical microcanonical sampling technique was used primarily. This scheme is used for
mimicking gas phase experimental conditions. A description of this method is given below.

Classical Micro‐canonical Sampling
One of the widely used scheme for initial condition selection is microcanonical sampling

where total energy available in the molecule is uniformly distributed over the entire classical phase
space of the molecule[BenNaim, 2013]. For uniform distribution of total energy in the classical
phase space energy shell H(p,q), position qi and momenta pi are selected randomly. There are
two ways to do this, classical and quantum microcanonical sampling. The classical sampling
randomly distributes the energy among the normal modes of the molecule without considering
quantization and zero point energy restrictions. In the quantum algorithm, energy quanta are
distributed among the modes considering zero point energy restrictions. Classical microcanonical
sampling technique is used in the present dynamics calculations.

In the normalmode microcanonical sampling, random values are chosen for the mode
energies Ei, which are then used to select random values of position and momenta coordinates. The
total energy of a molecule containing s harmonic oscillators is E = ∑s

i=1 Ei where Ei is the energy
associated with individual modes. Probability P(E1)dE1 for oscillator 1 having energy between
E1 to E1 + dE1 is proportional to the density of states of all the remaining oscillators[Hase and
Buckowski, 1980]. The probability can be written as

P(Ei) =

[
E−∑i−1

j=1 E j−Ei
]s−1−i∫ [

E−∑i−1
j=1 E j−E ′i

]s−1−idE ′i
(2.10)
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where the integral is solved between the limit 0 to ∑i−1
j=1 E j. The von Newmann rejection

method or cumulative distribution function[Hammersley and Handscomb, 1964] can be used to
calculate P(E). The randomly selected energy values are than used to get the values of position and
conjugate momenta, which are than used in classical trajectory simulations. Since constant energy
is involved in microcanonical sampling technique, this method is useful for studying intrinsic
RRKM (RiceRamspergerKasselMarcus) behavior of molecules[Baer et al., 1996].

Figure 2.1 : Flowchart of a classical trajectory simulation.

2.4 RRKM RATE CONSTANT CALCULATIONS
This thesis is focused on studying the unimolecular dynamics of reactions in the gas

phase. Initial conditions mimicking experiments are time propagated and the trajectory results
are analyzed for different reaction pathways, mechanisms, and product energy distributions.
The trajectory results are compared with experimental data or a statistical reaction rate theory
predictions. Comparing the trajectory results with rate theory predictions provide information
about the nature of the intramolecular dynamics. One of the most celebrated unimolecular
reaction rate theories is RiceRamspergerKasselMarcus (RRKM) theory. RRKM theory is based
on the assumption of (a) equal probability of distribution of internal energy in all the modes of
an energized molecule and (b) steady state approximation[Levine, 2009; Di Giacomo, 2015]. A
molecule is assumed as a collection of coupled harmonic oscillators and each state of the molecule
is equally probable. An ensemble of molecules are activated to a state possessing a certain amount
of total energy E out of which E∗rot exists as rotational energy and remaining as internal vibrational
energy. Activation of molecule (A∗) can be done via thermal, collisional or photochemical methods.
These activated molecules have energy E−E∗rot distributed randomly among the vibrational degree
of freedom[Callear, 1983; Berne et al., 1988]. RRKM theory further assumes that intramolecular
vibrational energy redistribution (IVR) is spontaneous and fast and occurs well before the molecule
undergoes dissociation. The RRKM rate constant is

k(E,Erot) =
G(E‡)

N(E−Erot)h
(2.11)
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Here, G(E‡) is the sum of states for the active degrees of freedom in the transition state
and N(E −Erot) is the density of states for the active degrees of freedom in the reactant. RRKM
rate constants were calculated using the computer program developed by William Hase and
coworkers[Zhu and Hase, 1994].

2.5 SOFTWARE
Electronic structure calculations reported in the present work were carried out using the

electronic structure theory package NWChem[Valiev et al., 2010]. The dynamics calculations were
performed using the general chemical dynamics program VENUS[Hase et al., 1996; Hu et al., 1991].
The two programs were compiled together using a tight coupling algorithm[Lourderaj et al., 2014].
Classical trajectories were integrated by VENUS with potentials and gradients computed onthefly
using the NWChem program.

…
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