List of Figures

Figure	Title	page
2.1	Flowchart of a classical trajectory simulation.	13
3.1	Equilibrium geometry of 3-oxetanone molecule and the two considered thermal decomposition pathways forming ketene + formaldehyde and ethylene oxide + carbon monoxide.	15
3.2	Optimized geometries at B3LYP/6-31G*, bond angle values are in degree (°) and bond lengths in angstroms (Å).	17
3.3	Potential energy profile of 3-oxetanone dissociation pathways computed at the B3LYP/6-31G* level of theory. The numbers in bracket are energies in kcal/mol relative to the reactant 3-oxetanone molecule. The corresponding optimized geometries are also shown.	18
3.4	Total energy as a function of time for a few sample classical trajectories. First, second, and third columns correspond to E_{tot} = 150, 200, and 300 kcal/mol, respectively. Trajectory	10
3.5	outcomes (reaction products) are shown inside the plots. In all plots, x-axes ranges are same. Potential energy profiles for (a) 3-oxetanone dissociating to $CH_2OCH_2 + CO(b)$ isomerization of CH_2OCH_2 to ethylene oxide (c) dissociation of CH_2OCH_2 to $HCHO + CH_2$ and (d) ketene dissociation to $CH_2 + CO$. The numbers in brackets are energies in kcal/mol, relative to	19
3.6	the corresponding reactants. Snapshots of trajectories showing dissociation of 3-oxetanone to (a) HCHO + $CH_2CO \longrightarrow$ HCHO + $CH_2 + CO$ (b) $CO + CH_2OCH_2 \longrightarrow CO + c - C_2H_4O \longrightarrow CO + CH_3CHO$ and (c) $CO + CH = OCH \longrightarrow CO + CH + HCHO$	21
3.7	(a) Snapshots of a typical trajectory showing dissociation of 3-oxetanone to CO and CH_2OCH_2 which isomerizes to ethylene oxide (b) C_1-C_2 distance (in Å) (c) $\angle C_1-O-C_2$ angle (in degree) as a function of time. Isomerization of CH_2OCH_2 to ethylene oxide	21
	happens around 1700 fs.	23
3.8	Optimized geometries of two isomers of ethylene oxide at B3LYP/6-31G* level	24
3.9	Optimized geometries at B3LYP/6-31G*, bond angle values are in degree (°) and bond lengths in angstroms (Å).	25
3.10	Snapshots of a typical trajectory showing dissociation of (a) $c-C_3H_4O_2 \longrightarrow H_2+c-COCH_2CO - H_2+CO+CH_2CO \longrightarrow H_2+2CO+CH_2$ (b) $c-C_3H_4O_2 \longrightarrow CH_3COCHO \longrightarrow CH_3+CO+CHO$ (c) $c-C_3H_4O_2 \longrightarrow CH_2+CHOCHO \longrightarrow CH_2+CO+HCHO$ (d) $c-C_3H_4O_2 \longrightarrow CO+CH_2CHOH \longrightarrow CO+H_2O+C_2H_2$	\rightarrow 26
3.11	Fraction of trajectories f _T as a function of E _{tot} showing (a) CO elimination via primary dissociation of 3-oxetanone (red), secondary decomposition of reaction products (green), and the total amount of trajectories eliminating CO (black) (b) the branching of 3-oxetanone dissociation products into various different pathways	27
3.12	RRKM theory rate constants k _{RRKM} as a function of energy for the dissociation pathways of 3-oxetanone.	28
4.1	Potential energy profiles of dissociation pathways of halons computed using density functional PBE0/6-31G* level of theory. Energies given are relative to that of respective	
4.2	reactants and are without zero point energy corrections. Intrinsic reaction coordinate (IRC) data for the concerted elimination of X_2 from CF_2X_2	37
	(X=Cl,Br) computed using PBEo/6-31G* theory. Energies are in units of kcal/mol.	38

4.3	Snapshots of $CF_2CI_2 \longrightarrow CF_2 + CI_2$ trajectories dissociating via (a) isomerization and (b) roaming pathway. (c) shows C-Cl(1) and C-Cl(2) bond distances (in Å) for the isomerization (red) and roaming (blue) trajectories. The numbers present inside each frame is time in fs.	40
4.4	Snapshots of $CF_2Br_2 \longrightarrow CF_2 + Br_2$ trajectories dissociating via (a) concerted (b) isomerization and (c) roaming pathway. Number inside each frame is time in fs at which the snapshot was taken. (d) shows $C-Br(1)$ and $C-Br(2)$ bond distances (in Å) for the concerted (black), isomerization (red), and roaming (blue) trajectories. Distributions of time gaps (in fs) between the two $C-Br$ bond cleavages dissociating via isomerization (black) and the concerted (red) pathway are shown in (e).	40
4.5	Snapshots of a CHBr ₃ trajectory forming (a) $Br_2 + CHBr$ and (b) $HBr + CBr_2$ products. (c) shows C-Br(1) and C-Br(2) distances for the trajectory given in (a). (d) shows C-Br distance in <i>x</i> -axis and C-H distance in <i>y</i> -axis for the trajectory shown in (b). The bond distances are given in units of Å.	42
4.6	Snapshots of CH_2BrCl trajectories forming HBr + CHCl via (a) concerted and (b) radical recombination pathway. Corresponding time evolved C-Br (<i>x</i> -axis) and C-H (<i>y</i> -axis) distances (in Å) are given in (c) and (d).	43
4.7	Snapshots of trajectories showing $CH_2BrCl \longrightarrow HCl + CHBr$ reaction via (a) concerted and (b) radical recombinations. (c) and (d) show C-Cl distance in <i>x</i> -axis and C-H distance in <i>y</i> -axis in units of Å.	43
4.8	Snapshots of trajectories showing (a) $CF_2CI_2 \longrightarrow CI + CF_2CI$ radical dissociation (b) $CF_2Br_2 \longrightarrow CFBr + BrF$ reaction via isomerization (c) $CF_2Br_2 \longrightarrow Br + CF_2Br$ radical dissociation (d) $CHBr_3 \longrightarrow Br + CHBr_2$ radical dissociation (e) $CHBr_3 \longrightarrow HBr + CBr_2$ via concerted mechanism (f) $CH_2BrCI \longrightarrow CI + CH_2Br$ via isomerization and (g) $CH_2BrCI \longrightarrow$ $Br + CH_2CI$ radical dissociation. Number inside each frame is time in fs at which the	
	snapshot was taken.	44
5.1	Dissociation energy profiles of $RC(O)N_3$ (R = CH_3 and F) computed using B3LYP/6-31+G* level of electronic structure theory. Energies are given in kcal/mol units and zero point energy not corrected.	51
5.2	Optimized geometries of the stationary points on the CH ₃ C(O)N ₃ potential energy surface	52
5.3	Optimized geometries of the stationary points on the $FC(O)N_3$ potential energy surface	53
5.4	Total energy as a function of time for a few sample classical trajectories. In all plots, x-axes ranges are same, y-axes show total energy in units of kcal/mol.	54
5.5	Numbering system used for discussion purposes in the text.	54
5.6	Density plots (a), (b), and (c) show time evolved N3-N4 (<i>x</i> -axes) and C2-N3 (<i>y</i> -axes) bond distances (in Å) for CH ₃ C(O)N ₃ dissociation. (a) shows data from E _{tot} = 90 kcal/mol simulation, (b) and (c) show data from 120 kcal/mol simulation. Red, and Blue colors	
	correspond to minimum and maximum density respectively.	55
5.7	(a) shows time evolved N3-N4 and C2-N3 bond distances (in Å) for $CH_3C(O)N_3$ dissociation for a few sample trajectories. Red circles correspond to a concerted trajectory and blue triangles correspond to a stepwise trajectory resulting in the CH_3NCO final product. The green squares correspond to a stepwise trajectory existing as nitrene when the calculation was stopped. The black thick line in this plot is the IRC data for the concerted pathway. (b) shows lifetimes τ (in fs) of the intermediate nitrene species calculated	
	from the trajectories.	56
5.8	Snapshots of few example trajectories, (a) concerted $CH_3C(O)N_3$ dissociation; (b) stepwise $CH_3C(O)N_3$ dissociation; (c) concerted $FC(O)N_3$ dissociation followed by FNCO \longleftrightarrow FC(O)N isomerization; (d) FC(O)N_3 stepwise dissociation followed by FNCO \longrightarrow FC(O)N isomerization.	
	The numbers inside each frame is time in fs at which the snapshot was taken.	57

- 5.9 Time evolved N3-N4 and F1-N3 bond distances (in Å) computed from the $FC(O)N_3$ trajectories are shown in density plots (a), (b), (d), and (e). Distributions of lifetimes τ (in fs) of the intermediate nitrene species are shown in (c) and (f). Top panels show data from the low energy ($E_{tot} = 90$ kcal/mol) simulation and the bottom panels show results of high energy (120 kcal/mol) simulation. Red, and Blue colors correspond to minimum and maximum density respectively.
- 5.10 Time evolved N3-N4 and F1-N3 bond distances (in Å) of the FC(O)N₃ system, for a concerted trajectory (red circles), stepwise trajectory (blue triangles), and a concerted trajectory forming the nitrene intermediate (green squares). The black thick line in this plot is the IRC data for the concerted pathway. Distributions of lifetimes τ (in fs) of the intermediate nitrene species are shown in (b).

59