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3 

Theoretical Details  
 
 
 
 
 DFT is the quantum mechanical computational approach used in physics, chemistry, and 
material science etc. for predicting the ground state properties of many electrons system. The 
precision of the physical and chemical properties mainly depends on the accuracy of the selected 
exchange-correlation functional, which leads to predict the accurate electron density. Various 
DFT based packages have been explored and also tried to overcome the limitation in last three 
decades. The recent developments in the DFT are able to compute the accurate and wide range 
of properties by post-processing of data. The DFT results help the development of new materials 
and also in understanding the detailed insight of experimental results. The importance of DFT 
study can be understood by the fact that the number of publications on DFT study exponentially 
increasing in every year, shown in Figure 3.1.   

 
 

Figure 3.1 Density functional theory based per year publications from 2000 to 2019 (Source: Web of Science) 

 
 

3.1 Many-Body Problem 
The interactions between the electrons and nuclei play a vital role in computing the 

properties of an atom or a molecule. Such interactions can be defined with the help of quantum 
mechanics. In quantum mechanics, wave functions are used for the mathematical description of 
a quantum state. This complex interaction can be used in the form of different exchange potentials 
and the many electrons wave function can be solved using the Schrödinger equation. 

H ̂Ψ(r𝟏, r𝟐, r𝟑 … . . , Ra, Rb, Rc ……) = E Ψ(r𝟏, r𝟐, r𝟑 … . . , Ra, Rb, Rc ……)          (2.1) 
Where ri denotes the position of electrons and Rj is the position of nucleus. Ĥ symbolizes the 
Hamiltonian operator which is the sum of kinetic energy of the nuclei and the interaction between 
them; E signifies the total energy and Ψ denotes the many-body wave function. A material 
consists of various types of interaction including, electron-electron (rij), electron-nucleus (Ria) and 
nucleus-nucleus interactions (Rab), as schematically represented in Figure 3.2.  If someone is only 
interested in the ground state energy, then the time can be neglected and the energy can be found 
out by solving the time independent Schrödinger equation. 
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Figure 3.2Schematic representation of Schrödinger system for electrons and nuclei interaction  
 

Considering all the possible interactions, the total Hamiltonian is written as: 

Ĥ = (T̂N + V̂N−N) + (T̂el + V̂el−el) + V̂el−N + V̂ext                               (2.2) 

Where T̂Nand T̂el are the kinetic energy of nuclei and electrons, respectively.�̂�𝑵−𝑵, �̂�𝒆𝒍−𝒆𝒍and 

�̂�𝒆𝒍−𝑵are the columbic repulsion between nuclei - nuclei, electron - electron and nuclei– electron, 
respectively. Kinetic and potential energies are expressed as: 

�̂�𝑁 = ∑ (−
−ℏ2

2𝑀𝑖𝑜𝑛,𝑎
∇𝑎

2)𝑎 , 

 V̂N−N =
1

2

1

4πϵ0
∑

ZaZbe2

|Ra−Rb|a,b                                                       (2.3) 

Where a and b refer to the nuclei present in materials.  

�̂�𝑒𝑙 = ∑ (
−ℏ2

2𝑚
∇𝑖

2)𝑖     

V̂el−el =
1

2

1

4πϵ0
∑

e2

|ri−rj|
i,j                                                          (2.4) 

V̂el−N =
1

4πϵ0
∑

−Zae2

|ri−Ra|i,a                                                         (2.5) 

The mass of nuclei is much higher than the electron. The nuclei and electrons possess the equal 
amount of force, which ensure that the electron can move with relatively much higher speed with 
respect to the nuclei. That’s why nuclei are considered as frozen. This decoupling of electron and 
nucleus is called as Born Oppenheimer approximation [Born and Oppenheimer et al, 1927]. By 
considering such constraint, the kinetic energy of nuclei and potential energy of nuclei-nuclei 
interaction are not considered. Due to so called “frozen nucleus”, the wave function depends only 
on electronic configurations. 
The electronic part of Hamiltonian for a fixed/frozen nuclei is given as: 

Ĥel = ∑ (
−ℏ2

2𝑚
∇𝑖

2)𝑖 +
1

2

1

4πϵ0
∑

e2

|ri−rj|
i,j +

1

4πϵ0
∑

−Zae2

|ri−Ra|i,a                                   (2.6) 

  Ĥel = T̂el + V̂el−el + V̂el−N                                                       (2.7) 
The exact solution of the Schrödinger equation with all possible interactions is possible for 
hydrogen atom and helium atom. However, the molecules or crystals consist of large number of 
atoms, where each atom contains large numbers of electrons. Thus, it becomes challenging to 
consider the interaction of electron with other electrons at the same time. Such systems are not 
solvable exactly by treating the complex interactions. So, some approximations are needed to 
solve for the same and are covered briefly in the following sections.  

 
 

3.2 Density functional theory 
In DFT, electron density is considered as the basic variable for solving the n electron 

system. Electron density reduces the 3n dimensional equation to n separate 3 dimensional 
equations. It is defined as the number of electrons per unit volume. The electron density in DFT 
is written as: 

𝜌(𝑟) = ∑ |𝜙𝑖|𝑖 ² = 2∑ |𝜙𝑖|²
𝑜𝑐𝑐
𝑖                                              (2.8) 
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In DFT, the orbital 𝜙𝑖is used instead of Ψ𝑖for denoting the electron density. 𝜙𝑖is known as the 
Kohn-Sham (KS) orbital. Integrating the electron density all over the space gives total number of 
electrons: 

∫𝜌(𝑟)𝑑𝑟 = 𝑛                                                                  (2.9) 

3.2.1 Hohenberg-Kohn Theorem    
Hohenberg and Kohn [Hohenberg and Kohn et al, 1964] proposed that the electron density 

plays an important role in the electronic calculations. Hohenberg-Kohn proposed two important 
theorems as: 
Theorem 1: The external potential 𝑉𝑒𝑥𝑡 is uniquely determined from electron density, (𝜌[𝑟])within 
the limits of an additive constant. 
Theorem 2: Energy functional (𝐸[𝜌]) can be defined in terms of electron density (𝜌[𝑟]) for any 
external potential.  
The minimum value of 𝐸[𝜌] is the ground state energy, and corresponding electron density is 
known as ground-state electron density. A new method in terms of 𝜌(𝑟) was introduced by 
Hohenberg and Kohn to determine the ground state energy. The energy in DFT is written in 
functional form of 𝜌(𝑟) as: 

𝐸𝑣(𝜌) = 𝑇(𝜌) + 𝑉𝑒𝑒(𝜌) + 𝑉𝑛𝑒(𝜌)                                          (2.10) 

= 𝐹𝐻𝐾[𝜌] + ∫𝜌(𝑟)𝑉(𝑟)𝑑𝑟                                               (2.11) 

𝐹𝐻𝐾(𝜌) represents the sum of kinetic and electron–electron interaction energy. 𝑉(𝑟) is the 
external potential. Its dependence on external potential is denoted by v in the subscript of E. To 
determine the ground state energy, second theorem is used. A function (G here) is formed using 
the Lagrange method of undetermined multipliers and minimized to get the ground state energy 
of the system. 

𝛿 {𝐸𝑣[𝜌] − 𝜇 [∫𝜌(𝑟)𝑑𝑟 − 𝑛]} = 𝛿𝐺 = 0 

𝜇 being the Lagrange multiplier. Euler Lagrange equation gives: 

𝜇 =
𝛿𝐸𝑣[𝜌]

𝛿𝜌(𝑟)
= 𝑉(𝑟) +

𝛿𝐹𝐻𝐾[𝜌(𝑟)]

𝛿𝜌(𝑟)
                                                         (2.12) 

V(r) being the external potential. 𝐹𝐻𝐾[𝜌(𝑟)] known as the universal functional and is independent 
of the external potential. Its exact form for a system of interacting electrons is not known yet.  
 

3.2.2 Kohn-Sham Theorem 
The idea of the Kohn-Sham scheme is to replace many-electron interaction problems to the 

non-interacting electron with the same ground state energy equal to the original interacting 
many-electrons. The non-interacting electrons were considered to be moving in an effective 
potential, known as KS potential, VKS. Due to the non-interacting condition, the electron-electron 
interaction vanishes. Hartree atomic units (e=1, m=1, ħ=1, [1 (4𝜋 ∈)] ⁄ =1) are used for further 
discussion. The Kohn-Sham Hamiltonian becomes: 

𝐻𝐾𝑆 = ∑ −
1

2𝑖 ∇𝑖
2 + ∑ 𝑉𝐾𝑆(𝑟𝑖)𝑖                                           (2.13) 

For a non-magnetic material containing n number of electrons, n/2 orbital will be occupied with 
each containing two electrons of opposite spins. The wave function for KS system using the Slater 
determinant is written as: 

Ψ𝐾𝑆 =
1

√(
𝑛

2
)!

|𝜙1𝜙2𝜙3 … . 𝜙𝑛

2
|                                                       (2.14) 

𝜙𝑖is the KS orbital wave function. The Schrödinger equation is modified as: 

[−
1

2
∇2 + 𝑉𝐾𝑆(𝑟)]𝜙𝑖(𝑟) = 𝐸𝑖𝜙𝑖(𝑟)                                               (2.15) 

Using the above equations, kinetic energy in KS system is written as: 

𝑇𝐾𝑆 = 2 ⟨Ψ𝐾𝑆| ∑ −
1

2
∇𝑖

2𝑛/2
𝑖 |Ψ𝑘𝑠⟩ 
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= 2∑⟨𝜙𝑖|−
1

2
∇2|𝜙𝑖⟩

𝑛/2

𝑖

 

= 2∑ ∫𝜙𝑖
∗(𝑟) (−

1

2
∇2)𝜙𝑖(𝑟)𝑑𝑟

𝑛/2
𝑖                                           (2.16) 

Charge density in KS system using the single orbital is written as: 

𝜌𝐾𝑆 = 2∑ 𝜙𝑖
∗(𝑟)𝜙𝑖(𝑟)

𝑛/2
𝑖                                                         (2.17) 

Due to non-interacting electrons in KS system, energy functional is given by: 

𝐸[𝜌𝐾𝑆] = 𝑇𝐾𝑆[𝜌𝐾𝑆] + ∫𝑉𝐾𝑆(𝑟)𝜌𝐾𝑆(𝑟)𝑑𝑟                                     (2.18) 
The above expression should be minimized for all densities to get the ground state energy. This 
can be done using the Lagrange method of undetermined multipliers and minimizing a 
functional G (here). 

𝐺[𝜌𝐾𝑆] = 𝑇𝐾𝑆[𝜌𝐾𝑆] + ∫𝑉𝐾𝑆(𝑟)𝜌𝐾𝑆(𝑟)𝑑𝑟 − 𝜇[∫ 𝜌𝐾𝑆(𝑟)𝑑𝑟 − 𝑛]                    (2.19) 
As already discussed above, 𝜇 is the Lagrange multiplier and the functional 
minimization 𝛿𝐺[𝜌𝐾𝑆] = 0 will result in: 

𝜇 = 𝑉𝐾𝑆(𝑟) +
𝛿𝑇𝐾𝑆[𝜌𝐾𝑆]

𝛿𝜌𝐾𝑆(𝑟)
                                                      (2.20) 

We know that the properties of an interacting system are different from that of the non-interacting 
system. The correlation between these two can be expressed as in terms of KE: 

𝑇[𝜌] = 𝑇𝐾𝑆[𝜌] + (𝑇[𝜌] − 𝑇𝐾𝑆[𝜌])                                            (2.21) 
The term in the bracket shows the deviation. In the same way, electron-electron interaction energy 
for an interacting system is written as the sum of a classical and non-classical term representing 
charge energy distribution and exchange and correlation energy, respectively. 

𝑉𝑒𝑒[𝜌] = 𝐽𝑒𝑒[𝜌] + (𝑉𝑒𝑒[𝜌] − 𝐽𝑒𝑒[𝜌])                                    (2.22) 
𝐽𝑒𝑒is calculated as: 

𝐽𝑒𝑒[𝜌] =
1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

|𝑟1−𝑟2|
𝑑𝑟1𝑑𝑟2                                         (2.23) 

Using the above equations, the energy functional of the interacting system in terms of KS scheme 
is written as: 

𝐸[𝜌] =  𝑇𝐾𝑆[𝜌] + 𝐽𝑒𝑒[𝜌] + ∫𝜌(𝑟)𝑉(𝑟)𝑑𝑟 + (𝑇[𝜌] − 𝑇𝐾𝑆[𝜌] + 𝑉𝑒𝑒[𝜌] − 𝐽𝑒𝑒[𝜌]) 

= 𝑇𝐾𝑆[𝜌] + 𝐽𝑒𝑒[𝜌] + ∫𝜌(𝑟)𝑉(𝑟)𝑑𝑟 + (𝐸𝑋𝐶[𝜌])                              (2.24) 
The 𝐸𝑋𝐶  is the exchange-correlation functional, consisting of two parts: i) difference in kinetic 
energies of interacting and non-interacting system and ii) non-continuum part due to electron-

electron interaction. The exact form of this functional is not known yet. The accuracy of our result 
using the KS scheme will depend on the accuracy of this functional.  
 
Now to get the ground state energy, this 𝐸[𝜌] functional should be minimised. A similar method 
of Lagrange undetermined multiplier will be followed which will give the Euler-Lagrange 
equation as: 

𝜇 = 𝑉𝑒𝑓𝑓 +
𝛿𝑇𝐾𝑆[𝜌]

𝛿𝜌(𝑟)
                                                     (2.25) 

𝑉𝑒𝑓𝑓(𝑟) = 𝑉(𝑟) + ∫
𝜌(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟′ + 𝑉𝑋𝐶(𝑟) 

= 𝑉(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑋𝐶(𝑟)                                              (2.26) 
Here, V(r) is nuclear potential, 𝑉𝐻(𝑟) is the Hartree potential which is due to the distribution of 
electron charge and 𝑉𝑋𝐶(𝑟) is the exchange-correlation potential. So, the density of ground state 
of system can be calculated by replacing 𝑉𝐾𝑆 by 𝑉𝑒𝑓𝑓. The final equation will be as follows: 

[−
1

2
∇2 + 𝑉𝑒𝑓𝑓]𝜙𝑖(𝑟) = 𝐸𝑖𝜙𝑖(𝑟)                                            (2.27) 

In the next section, we will be discussing the approximations used for the exchange-correlation 
functional. 
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3.3 Exchange-Correlation Functional 
As mentioned earlier, the accuracy of ground-state properties depends on how accurately 

we can approximate the exchange-correlation functional. The two most widely used 
approximations are described briefly in the following subsections: 

 
 

Figure 3.3 Jacob's ladder of exchange correlation functional 

 

3.3.1 Local Density Approximation (LDA) 
 The exchange correlation (XC) term in the local density approximation is approximated 
by homogeneous electron gas model, in which electrons are distributed evenly with a uniform 
positive external potential, and the overall charge neutrality is preserved. In LDA, the XC energy 
per electron at a point r is considered the same as that for a homogeneous electron gas (HEG) that 
has the same electron density at the point r. The Local Density Approximation XC functional can 
be written as (Kohn & Sham, 1965a). 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌(𝑟)] =  ∫ 𝜌(𝑟)𝐸𝑋𝐶

ℎ𝑒𝑔 {𝜌(𝑟)}𝑑3𝑟                                          (2.28) 

Where 𝐸𝑋𝐶
ℎ𝑒𝑔

 refers to the XC energy possessed by an electron in a homogenous gas of electron 

(heg) density 𝜌(r). Exchange correlation energy is the summation of the exchange and correlation 

energy, can be expressed using the equation given below 

= ∫𝜌(𝑟)[𝐸𝑋
𝐻𝑒𝑔{𝜌(𝑟)} + 𝐸𝐶

𝐻𝑒𝑔{𝜌(𝑟)}] 𝑑3𝑟 

The above equation can be modified to include the spin, and the approximation now will be called 
Local spin density approximation (LSDA). 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌 ↓, 𝜌 ↑] =  ∫ 𝜌(𝑟)𝐸𝑋𝐶

ℎ𝑒𝑔 {𝜌 ↓ (𝑟), 𝜌 ↑ (𝑟)}𝑑3𝑟                                   (2.29) 

This method has produced results with a quite good accuracy and successfully used to 
understand the materials’ properties. However, there are certain drawbacks associated with it: 

i) It usually underestimates the lattice parameter, 
ii) Calculated adsorption energy and diffusion barrier are too high and low, respectively, 
iii) Usually underestimates spin moments, and 
iv) Does not produce accurate results for materials having weaker hydrogen bonds. 

 

3.3.2 Generalized Gradient Approximation (GGA) 
Generally, the real systems are not homogenous and have a varying electron density. For 

more accurate XC functional, both the density 𝜌, and its gradient are considered in define GGA 
approximation. As a result, it returns better results compared to LDA (Langreth & Mehl, 1983).  

𝐸𝑋𝐶
𝐺𝐺𝐴[𝜌 ↓, 𝜌 ↑] = ∫𝜌(𝑟) 𝐸𝑋𝐶

𝐺𝐺𝐴[𝜌 ↓, 𝜌 ↑, ∇𝜌 ↓, ∇𝜌 ↑]𝑑𝑟                                 (2.30) 
There are certain other approximations such as meta-GGA which even takes the second order 
derivative into account to produce better results for semiconductor materials. Unlike the LDA 
method, there is no simple functional that can be used to represent the GGA energy functional. It 
is usually fitted to be in accordance with various constraints. Hybrid GGA further improve the 
accuracy. The bonding description of GGA is far better than LDA. Earlier Sun and co-workers 
(Sun et al., 2016)investigated the new parameterization, which makes Meta-GGA more accurate 
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than GGA and equivalent to hybrid functional. Jacob’s ladder of exchange correlation energy for 
predicting the more accurate physical and chemical properties is shown in Figure 2.3. The 
accuracy of exchange correlation energy is increase from ground to heaven and computational 
time follows the reverse trend (Perdew, 2001).    
 

 

3.4 Self-Consistent Field calculation 
The first step for calculation is to guess the initial electron density and compute the 

effective potential, which is the addition of 𝑉(𝑟), 𝑉𝐻(𝑟)  and 𝑉𝑋𝐶(𝑟). Then Kohn-Sham equation is 
solved to find the single-particle wave functions. The new electron density is constructed based 
on calculated single-particle wave function and compared with the old electron density. If the 
new and old electron density is the same, then we considered the optimized ground-state electron 
density. In addition, if both the electron densities are not the same, then we used the mixed 
electron density (X% of initial electron density and Y% of final electron density) and repeat the 
whole process and compare the new and old electron density again. This process is repeated until 
the convergence is achieved. The schematic diagram of SCF cycle is shown in Figure 3.4.  

 

 
 

Figure 3.4 Flow chart of self-consistent field cycle iteration 

 

3.4.1 Crystal Structure  
The crystal structure in the DFT is defined through the unit cell, in which atoms are 

arranged in a specific position to possess the symmetry. The lattice vector R is written as  

𝑅 = 𝑚1𝒃𝟏 + 𝑚2𝒃𝟐 + 𝑚3𝒃𝟑 
Where, 𝑚1, 𝑚2 and 𝑚3 are the integer numbers and 𝒃𝟏, 𝒃𝟐 and 𝒃𝟑 are the reciprocal lattice vectors, 
which are computed from the direct lattice vectors. The crystal structure is the periodic 
arrangement of the atoms, and this periodicity may be in one, two, and three dimensions for 1D, 
2D and 3D systems.  
 

3.4.2 Bloch’s Theorem   
In a periodic system, the Kohn-Sham potential for a unit cell is also periodic because of 

the periodicity of crystalline materials i.e., 

                                                              u(r) = u(r+R)                                                            (2.31) 
In a similar way, the electron density is also periodic because of equation 2.31 is dependence on 
the position: 

(r) = (r+R) 
The electron density is periodic but wave functions are not periodic in general because of the 
complex number in the phase factor. Bloch resolve the periodicity problem by mapping the same 
plane waves on to the repeating pattern of solids, which made the system periodic with the 
introduction of a periodic function, uk(r): 
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k(r) = uk(r)exp(ik.r)                                                      (2.32) 
The wave function of the periodic potential can be expressed as: 

k(r+R) = uk(r+R)exp[ik.(r+R)] 

k(r+R) = k(r) exp(ik.R)                                               (2.33) 
The periodic wave function differs from the plane wave function of free electrons. The electrons 
in an atom are considered as perturbed free electrons. The periodic function, uk(r) in Fourier series 
can be expressed through reciprocal lattice vector G and Fourier expansion coefficient ck (G) as: 

uk(r) = ∑ 𝑐𝑘(𝐺) exp(𝑖𝐺. 𝑟)  𝐺                                                (2.34) 
The wave function is modified as  

k(r) = ∑ 𝑐𝑘(𝑮) exp(𝑖𝑮. 𝒓) exp(𝑖𝑲. 𝒓)𝐺  
= ∑ 𝑐𝑘(𝑮) exp[𝑖(𝑮 + 𝑲). 𝒓𝐺 ]                                                 (2.35) 

This equation reduces the infinite number problem to a finite number of problems. 
 

3.4.3 Basis Sets 
The KS-DFT method poses numerous difficulties because of different shapes in the core 

and valence region that’s why the wave function is not the same everywhere. The wave functions 
are described through the basis sets. Various types of basis sets including, plane wave, a linear 
combination of atomic orbitals, linear augmented plane wave, and linear muffin orbital waves, 
are developed and employed in computations. Plane-wave is the most widely used basis sets for 
solving the Kohn-Sham equation. The Kohn-Sham orbitals are written as the linear combination 
of plane waves as: 

k(r) = 
1

√
∑ 𝑐𝑘(𝑮) exp[𝑖(𝑮 + 𝑲). 𝒓𝐺 ]                                              (2.36) 

Where, 
1

√
 is the renormalization factor. The Kohn-Sham equations are modified as  

[−
1

2
∇2 + 𝑉𝐾𝑆(𝑟)]𝑘

(𝑟) = 𝐸𝑘𝑘
(𝑟) 

Substitute k(r) in the above equation 

∑ [
1

2
|𝑲 + 𝑮|2 + 𝑉𝐾𝑆(𝑮 − 𝑮′)]𝐺′ 𝑐𝑘(𝑮) = 𝐸𝑘𝑐𝑘(𝐺)                                    (2.37) 

The solution of the above equation is obtained by diagonalization of the Hamiltonian matrix. The 

size of the matrix can be determined in terms of the cutoff energy 𝐸𝑐𝑢𝑡 =
1

2
|𝑲 + 𝑮|2.  

 

3.4.4 Pseudopotentials 
The key consideration for the pseudopotentials is to separate the atomic electrons into two 

parts according to the significant contribution in the ground state properties. The nucleus and 
core electrons are considered frozen. These electrons are localized and oscillate because of strong 
Coulomb interaction by nuclei, shown in Figure 3.5. They are not contributing significantly to 
materials properties because of their negligible influence on the bond formation. The core 
electrons are strongly bound with the nuclei and remain fixed in most of the circumstances. 
Moreover, the valence electrons are considered because of their participation in the formation of 
bonds and other ground-state properties. The consideration of nucleus and core electrons as 
frozen, significantly reduces the number of electrons in the atoms present in the crystal structure 
used for calculation. This approach reduced the computational time for predicting the ground 
state properties. In a pseudopotential approach, the core of an atom is removed, and deal with 
only active valence electrons, shown in Figure 3.5.  
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Figure 3.5 Schematic representation of approximation of full potential to pseudopotentials  

 

 
3.4.5 Force and Energy Minimization 

In this thesis, we have optimized all the crystal structures before computing the 
properties. The optimization of crystal structures is performed using the Hellmann-Feynman 
theorem (Feynman, 1939; Hellmann, 1933) to get the atoms in the ground state.   

𝐹𝐼 = −
𝜕𝐸

𝜕𝑅𝐼
                                                                       (2.38) 

Hellmann-Feynman equation modified as: 

𝐹𝐼 = − 〈Ψ |
𝜕�̂�

𝜕𝑅𝐼
| Ψ〉 − 〈

𝜕Ψ

𝜕𝑅𝐼
|�̂�|Ψ〉 − 〈Ψ|�̂�|

𝜕Ψ

𝜕𝑅𝐼
〉                                   (2.39) 

Where, Ψ is the Kohn-Sham wave functions. The second and third term in above equation 
becomes zero. 

𝐹𝐼 = − 〈Ψ |
𝜕�̂�

𝜕𝑅𝐼
| Ψ〉                                                                (2.40) 

This force theorem is used to calculate the relax atomic positions.  
 
 

3.5 Software Packages 
 
3.5.1 Quantum ESPRESSO and WIEN2k 

In this thesis, we have used the DFT based Quantum ESPRESSO [(Giannozzi et al., 2009a)] 
and WIEN2k software (Blaha & Madsen, 2016) package for ground-state properties. Quantum 
ESPRESSO is based on the plane wave pseudopotentials and allows to compute the properties. 
The GGA-PBE exchange-correlation functional used for the calculation of structural and 
electronic properties. The Monkhorst-Pack scheme used for sampling of the Brillouin zone. The 
structural parameters are optimized until the forces and energy are well converged. The van der 
Waals interaction is chosen by considering the DFT-D2 approximation (Grimme, 2006). The 
tetrahedron method is used for calculating the density of state calculation. WIEN2k is based on 
the full potential linearized augmented plane wave for computing the electronic and optical 
properties. The muffin tin radius (Rmt) is chosen sufficiently large to avoid the charge leakage. 
The energy cutoff parameter RmtKmax is selected sufficiently high to get the accurate results. The 
modified Becke-Johnson (mBJ) exchange-correlation is used for computing the accurate 
optoelectronic properties (Tran & Blaha, 2009). 

 
3.5.2 BoltzTrap Package 

BoltzTrap package is based on the semi-classical Boltzmann transport equation. It is useful 
for calculating the thermoelectric properties of the materials except for the lattice thermal 
conductivity [(Madsen & Singh, 2006)]. The electrical current due to the existence of the electric 
field, magnetic field, and temperature are described through the conductivity tensor.   

𝑗𝑖 = 𝜎𝑖𝑗𝐸𝑗 + 𝜎𝑖𝑗ℎ𝐸𝑗𝐵𝑘 + 𝑣𝑖𝑗∇𝑗𝑇                                              (2.41) 

Where, 𝑗𝑖, 𝜎𝑖𝑗, and 𝜎𝑖𝑗𝑘 are the electric current, and conductivity tensors. 𝐸𝑗, 𝐵𝑘, 𝑣𝑖𝑗 and ∇𝑗𝑇 are the 

electric field, magnetic field, group velocity, and temperature gradient, respectively.  
Group velocity can be defined through the slope of the energy bands: 
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    𝑣𝛼(𝑖, �⃗� ) =  
1

ħ

𝜕 (𝑖,�⃗� )

𝜕𝑘𝛼
     (2.42) 

The inverse mass tensor is using the energy band dispersion as:  

𝑀𝛽𝜇
−1(𝑖, �⃗� ) =  

1

ħ

𝜕2 (𝑖,�⃗� )

𝜕𝑘𝛽𝜕𝑘𝜇
     (2.43) 

Conductivity tensor is written as: 

𝜎𝛼𝛽(𝑖, �⃗� ) = 𝑒2𝜏𝑣𝛼(𝑖, �⃗� )𝑣𝛽(𝑖, �⃗� )  

 𝜎𝛼𝛽𝛾(𝑖, �⃗� ) = 𝑒3𝜏2𝜍𝛾𝑢𝑣𝑣𝛼(𝑖, �⃗� )𝑣𝛽(𝑖, �⃗� )𝑀𝛽𝜇
−1                              (2.44) 

Where, 𝜍𝛾𝑢𝑣 is the Levi-Civita symbol and 𝑣𝛼 is the group velocity 

Density of states based on the conductivity tensor is given as: 

𝜎𝛼𝛽(휀) =  
1

𝑁
∑ 𝜎𝛼𝛽(𝑖, 𝑘)

𝛿( − 𝑖,𝑘)

𝑑𝑖,𝑘     (2.45) 

Where N is the number of k points used for sampling. 
The transport tensor can be calculated through the conductivity tensor: 

𝜎𝛼𝛽(𝑇; 𝜇) =  
1

𝛺
∫𝜎𝛼𝛽(휀) [−

𝜕𝑓𝜇(𝑇; )

𝜕
] 𝑑휀   (2.46) 

𝑣𝛼𝛽(𝑇; 𝜇) =  
1

𝑒𝑇𝛺
∫𝜎𝛼𝛽(휀)(𝑒 − 𝜇) [−

𝜕𝑓𝜇(𝑇; )

𝜕
] 𝑑휀   (2.47) 

 

𝑘𝛼𝛽
𝑒𝑙𝑒𝑐(𝑇; 𝜇) =  

1

𝑒2𝑇𝛺
∫𝜎𝛼𝛽(휀)(𝑒 − 𝜇)2 [−

𝜕𝑓𝜇(𝑇; )

𝜕
] 𝑑휀                  (2.48) 

𝜎𝛼𝛽𝛾(𝑇; 𝜇) =  
1

𝛺
∫𝜎𝛼𝛽𝛾(휀) [−

𝜕𝑓𝜇(𝑇; )

𝜕
] 𝑑휀                  (2.49) 

Where, 𝑘𝛼𝛽
𝑒𝑙𝑒𝑐, 𝛺, 𝜇, 𝜎𝛼𝛽(휀) and 𝑓𝜇(𝑇; 휀) are electronic thermal conductivity, volume of unit cell, 

chemical potentials, density of states and distribution, respectively. The Seebeck coefficient and 
Hall coefficient are written as  

𝑆𝑖𝑗 = 𝐸𝑗(∇𝑗𝑇)−1 = (𝜎−1)𝜎𝑖𝑣𝛼𝑗                        (2.50) 

𝑅𝑖𝑗𝑘 =
𝐸𝑗

𝑖𝑛𝑑

𝑗
𝑖
𝑎𝑝𝑝𝑙

𝐵𝑘
𝑎𝑝𝑝𝑙 = (𝜎−1)𝜎𝑗𝜎𝛼𝛽𝑘(𝜎

−1)𝑖𝛽   (2.51) 

The lattice thermal conductivity is computed through the Phono3py package (Togo & Tanaka, 
2015). It requires second and third-order force constant. The force constants are computed 
through supercell and finite displacement method. The second-order harmonic force constant is 
written as:  

𝜙𝛼𝛽(𝑙𝑘, 𝑙′𝑘′) =  
𝜕2𝜙

𝜕𝑢𝛼(𝑙𝑘)𝜕𝛽(𝑙′𝑘′)
     (2.52) 

Third-order cubic anharmonic force method is given by: 

𝜙𝛼𝛽𝛾(𝑙𝑘, 𝑙′𝑘′, 𝑙′′𝑘′′) =  
𝜕3𝜙

𝜕𝑢𝛼(𝑙𝑘)𝜕𝛽(𝑙′𝑘′)𝜕𝛾(𝑙′′𝑘′′)
    (2.53) 

The finite difference method is used for approximation of first and second order force constant. 
The second-order force constant: 

𝜙𝛼𝛽(𝑙𝑘, 𝑙′𝑘′) ≈ − 
𝐹𝛽[𝑙′𝑘′;𝑢(𝑙𝑘)]

𝑢𝛼(𝑙𝑘)
   (2.54) 

Where, 𝑢𝛼(𝑙𝑘) is the atomic displacement and 𝐹𝛽[𝑙′𝑘′; 𝑢(𝑙𝑘)] is the atomic force measured at 

𝑟(𝑙′𝑘′) due to the displacement 𝑢(𝑙𝑘)] in the supercell. 
Third-order cubic anharmonic force constant  

𝜙𝛼𝛽𝛾(𝑙𝑘, 𝑙′𝑘′, 𝑙′′𝑘′′) ≈ − 
𝐹𝛾[𝑙′′𝑘′′;𝑢(𝑙𝑘),𝑢(𝑙′𝑘′)]

𝑢𝛼(𝑙𝑘)𝑢𝛽(𝑙′𝑘′)
                 (2.55) 

𝐹𝛾[𝑙
′′𝑘′′; 𝑢(𝑙𝑘), 𝑢(𝑙′𝑘′)]is determined by displacing the pairs of atoms in the supercell. A 

displacement length of 0.09 Å is used for computing the force constants. 
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Figure 3.6 Flow chart diagram of Density Functional Perturbation Theory  
 

3.5.3 Density Functional Perturbation Theory (DFPT) 
Density Functional Perturbation Theory is an efficient approach to predict the lattice dynamic 
properties of materials. In the present work, we have used the DFPT to predict the dynamic stability 
of monolayers. Phonon band structure are related to the second order derivative of energies with 
atomic displacements. The flow chart diagram of DFPT is shown in Figure 3.6.   

 

3.5.4 SCAPS Simulator 
SCAPS is the one-dimensional solar cell capacitance simulator developed at the university 

of Gent Belgium (Burgelman, Decock, Niemegeers, Verschraegen, & Degrave, 2018). This is a 
public domain software, used for predicting the photovoltaic performance of the homo/hetero 
structure solar cells. It solves the one-dimensional coupled semiconductor equations with certain 
boundary conditions:     

𝜕

𝜕𝑥
(휀0휀𝑟

𝜕𝜑

𝜕𝑥
) = −𝑞 (𝑝 − 𝑛 + 𝑁𝐷

+ − 𝑁𝐴
_ +

𝜌𝑑𝑒𝑓

𝑞
)  (2.56) 

−
𝝏𝑱𝒏

𝝏𝒙
− 𝑼𝒏 + 𝑮𝒏 = 

𝝏𝒏

𝝏𝒕
     (2.57) 

   −
𝝏𝑱𝒑

𝝏𝒙
− 𝑼𝒑 + 𝑮𝒑 = 

𝝏𝒑

𝝏𝒕
                                                   (2.58) 

         𝐽𝑛 = −
𝜇𝑛𝑛

𝑞

𝜕𝐸𝐹𝑛

𝜕𝑥
                    (2.59) 

    𝐽𝑝 =
𝜇𝑝𝑝

𝑞

𝜕𝐸𝐹𝑝

𝜕𝑥
                                                                   (2.60) 

Here 휀0 and 휀𝑟 are the permittivity values in vacuum and materials, respectively; 𝜑 is the 
electrostatic potential, 𝑞 is the electronic charge, 𝑝 𝑎𝑛𝑑 𝑛 are hole and electron concentrations, 
respectively, 𝑁𝐷

+𝑎𝑛𝑑 𝑁𝐴
_ are the ionized donor and acceptor density,  𝜌𝑑𝑒𝑓 is the charge defect 

density, 𝐽𝑛 𝑎𝑛𝑑 𝐽𝑝 are the current density due to electron and hole respectively, 𝜇𝑛 𝑎𝑛𝑑 𝜇𝑝 are the 

mobility of electron and hole respectively; 𝑈𝑛 and 𝑈𝑝 are the recombination rate of electron and 

hole respectively; 𝐺𝑛 and 𝐺𝑝 are the generation rate of electron and hole respectively; 
𝜕𝑛

𝜕𝑡
 and 

𝜕𝑝

𝜕𝑡
 

rate of change of electron and hole concentration respectively; 𝐸𝐹𝑛 and 𝐸𝐹𝑝 electron and hole 

Fermi level, respectively. 
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