List of Figures

Figure	Title	page
2.1	The $arepsilon-\mu$ domain for lossless and isotropic materials.	6
2.2	Metamaterials: Journey through time	7
2.3	Example of a metamaterial perfect absorber (a) Top view and (b) Side view.	9
2.4	(a) Electric Ring Resonator (b) Cut wire (c) Unit cell structure and (d) Simulated absorption spectrum of the reported structure. Source: [Landy <i>et al.</i> , 2008]	10
2.5	(a) Unit cell structure of the reported absorber (b) Simulated absorption spectrum of the reported structure. Source: [Li <i>et al.,</i> 2011]	10
2.6	(a) Dual resonator based unit cell structure (b) Simulated and experimental absorption spectrum. Source: [Tuong <i>et al.</i> , 2013]	11
2.7	Conventional designs for broadband metamaterial absorbers (a) Horizontal Integration (b) Vertical Integration (c) Lumped Component Loaded.	12
2.8	(a) Two different ELC resonators combined into a single unit cell (b) Fabricated structure	12
2.9	(a) Reported unit cell structure (b) Absorption spectrum of the reported structure. Source: [Lee and Lim. 2011]	13
2.10	Reported unit cell structure (a) Side view (b) Schematic (c) Absorption spectrum of the reported structure. Source: [Wen <i>et al.</i> , 2013]	13
2.11	(a) Side view of the unit cell (b) Fabricated structure (c) Absorption spectrum of the reported structure. Source: [Ding et al., 2012]	14
2.12	(a) Unit cell structure (b) Fabricated structure (c) Absorption spectrum of the reported structure. Source: [Zhi Cheng <i>et al.</i> , 2012a]	14
2.13	(a) Fabricated structure (b) Absorption spectrum of the reported structure. Source: [Yang and Shen, 2007]	15
2.14	(a) Scanning electron microscope image of the deposited silver nanocubes with 17.1% surface coverage (b) Experimental results for normalized reflectance of the gold film with surface coverages of 7.3% silver nanocubes (thin solid line) and with 17.1% silver nanocubes (thick solid line). These experimental results were compared with simulated reflectance of uniform cubes (4.2% surface coverage, dotted line) and that of a model including size dispersion (dechad line) for permal incidence. Source: [Moreou et al. 2012]	16
2.15	Four fabricated samples of disordered closed rings with different filling fractions. Source:	10
2.16	(a) Fabricated Rossler chaos patterned absorber, (b) Measured and simulated reflectivity of the Rossler chaos absorber. Source: [Yuan <i>et al.</i> , 2018]	17
2.17	Schematic of a 1D metasurface positioned at the interface of two media (refractive indices n_i and n_t) requires generalization of the Snell's laws of reflection and refraction.	
	Source: [Yu <i>et al.</i> , 2011]	19
2.18	(a) Fabricated metasurface structure (b) RCS reduction spectrum form both the horizontal and vertical polarization. Source: [Paquay <i>et al.</i> , 2007]	20
2.19	(a) Fabricated metasurface structure (b) RCS reduction spectrum for both the simulated and measured structure (c) 3D far field scattering pattern at 4.7 GHz under normal incidence.	71
		∠1

2.20	(a) Fabricated metasurface structure (b) Experimentally measured RCS reduction spectrum of TE polarization for obliques incidences. Source: [Shen <i>et al.</i> , 2015]	21
2.21	(a) Fabricated metasurface structure (b-c) Experimentally measured RCS reduction spectrum for both the horizontal and vertical polarization at different obliques incidences. Source:	
	[Su et al., 2016]	22
2.22	(a) Fabricated metasurface structure (b) Experimentally measured reflectivity for both the TE and TM polarization. Source: [Li <i>et al.,</i> 2014]	22
2.23	(a) Phase gradient distribution cycles (b) 3D far-field pattern at three different frequencies i.e., 8, 12 and 18 GHz repectively. Source: [Chen <i>et al.</i> , 2018b]	23
3.1	Top and side view of the unit cell of the designed periodic circular patch absorber	26
3.2	Equivalent electrical circuit model for the periodic patch resonator absorbers.	26
3.3	The simulated (a) Top and (b) side view of the unit cell displaying the losses occurring in the dielectric substrate at the resonance frequency.	27
3.4	Simulated absorption spectrum for the circular patch resonator absorber.	28
3.5	Simulated absorbance versus periodicity for the circular patch resonator absorber.	_== 28
3.6	(a,b) Anti-parallel surface currents on the top and ground metallic plane (c,d) are E-field	20
3.7	(a) Disordered structures corresponding to three different disorder parameters. (b)	29
54	Absorption spectrum for three different disorder structures.	30
3.8	Simulated absorption spectrum for disordered absorber: (a) 10 % FF, (b) 20 % FF, (c)	
	30 % FF, and (d) 40 % FF. Three different structures were simulated per filling factor	01
	Configuration at normal incidence for TE polarization.	51
3.9	at (a) 8 GHz, (b) 9 GHz and (c) 10 GHz.	32
3.10	Simulated absorption spectrum of circular patch resonator based absorber for (a) TE and (b) TM polarization for 30 % FF case for oblique incidences.	33
3.11	Simulated absorption spectrum for square patch absorbers. Inset is the unit cell structure for the square patch resonator absorbers.	33
3.12	Simulated absorption spectrum for square patch disordered absorbers: (a) 10% FF and (b) 30% FF. Three different structures were simulated per filling factor configuration.	34
3.13	E-field maps for the 30 % FF case (normal incidence) for TE polarization at (a) 8 GHz, (b)	01
	9 GHz and (c) 10 GHz.	34
4.1	Fabricated samples (a-b) non-overlapping 10% and 30% FF respectively, (c-d) overlapping 205 and 615 resonators respectively (e) Experimental setup for reflection coefficient	
	measurement of the fabricated sample inside the anechoic chamber.	38
4.2	Simulated absorption spectrum for two different radius of the circular patch resonator based absorber $r = 4.3$ mm was used in Chapter 3. Here we use $r = 3.5$ mm.	39
4.3	Experimental absorption spectrum for (a) non-overlapping 10% and 30% FF and (b) overlapping 205 and 615 circular patch resonators for TE polarization.	40
4.4	Experimental absorption spectrum for oblique incidences for (a,c) non-overlapping 30% FF for TE and TM polarization respectively and (b,d) overlapping 615 circular patch	
	resonators for TE and TM polarization respectively.	41
4.5	Simulated absorption spectrum for normal incidence and non-overlapping setting: (a) For spatially disordered 10% Filling Factor circular disks in the supercell (b) For spatially	
	disordered 30% Filling Factor circular disks in the supercell.	42
4.6	(a-f) E-field plots at different frequencies of the two cluster configurations (g) Simulated	± -
	configuration.	43

5.1	Schematic of a metasurface comprised of $P = M \times N$ supercells illuminated by a incident plane wave.	46
5.2	(a) Circular unit cell, (b) Square loop unit cell. Here $a = 10$ mm, $h = 3$ mm, $w = 0.4$ mm.	
2	The d and l are varied from 4.8 mm to 9.7 mm and 1.2 mm to 7.2 mm, respectively.	47
5.3	(a,b): Reflection amplitude and phase of the circular meta-atom with change in diameter	
2.2	d (c,d): Reflection amplitude and phase of the square loop meta-atom with change in	
	length <i>l</i> .	48
5.4	(a) Designed Metasurface (b) Simulated and Theoretical RCS reduction versus frequency	
	spectrum at normal incidence.	49
5.5	Simulated RCS reduction versus frequency spectrum at normal incidence for both the	
	TE and TM polarization	49
5.6	3D far-field scattering patterns of the proposed metasurface under TM polarization	
	(a-c) and metallic plate under TM polarization (d-f).	50
5.7	Comparison of the scattering field at 8 GHz along the normal direction of the designed	
	metasurface and an equally sized PEC.	50
5.8	Simulated Reflection (a,c) magnitudes and (b,d) phases for the circular patch and the	
	circular loop unit cells respectively for different values of d .	52
5.9	(a) The designed horizontal phase gradient metasurface, (b-c) 3D far field scattering	
	patterns of the horizontal phase gradient metasurface at $10~{ m GHz}$ and $12~{ m GHz}$ respectively.	53
5.10	Phase gradient profile of the eight different supercells.	53
5.11	(a) One of the designed random phase gradient metasurface (b) Simulated RCS reduction	
	versus frequency at normal incidence of three different structures for TM polarized waves	54
5.12	Simulated RCS reduction versus frequency at normal incidence of the first structure for	
	both TE and TM polarized wave.	54
5.13	3D far-field scattering pattern of the designed metasurface and an equal sized PEC	
	surface under normal incidence at 12 GHz, 15 GHz and 20 GHz.	55
5.14	Comparison of the scattering field at 12 and 20 GHz along the normal direction of the	
	designed metasurface and an equally sized PEC.	55