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Assessment against multiple experts

In the last chapter we discussed an Approximate String Matching approach to compare a test

sequencewith an expert sequence. The techniquewas able to provide details ofmissed and anomalous

segments in a test sequence and an overall action assessment. However, it was seen that there are

multiple templates possible for an action typewhich could differ in the count of edits required tomatch

a test sequence. Thus, comparison with a single template is insufficient and we need techniques that

can adapt to multiple expert templates while assessing a performance. To this end, we introduce a

novel sequence-to-sequence autoencoder-based model which learns the representation using only the

expert performances and generates scores for an unknown performance based on how well it can

be regenerated from the learned model. We evaluated our model in predicting scores of a complex

Sun-Salutation action sequence, and demonstrate that our model gives remarkable skill assessment

accuracy compared to the baselines developed towards human action scoring.

6.1 INTRODUCTION
Template Matching Approaches towards human action assessment differ in feedbacks as the

template changes. Among all the possible templates, the correct template for a given test performance

is not known aprior. This calls for a technique that can adapt to all the templates while making an

assessment. Further, till now we have been talking about reporting missed and anomalous action

segments in a performance. Providing an extra incentive in terms of performance scores can encourage

people to perform better than their previous execution everytime.

Conventional human action scoring methods [Pirsiavash et al. [2014]; Venkataraman et al.

[2015]] used pose features and regressed them against ground truth scores using Support Vector

Regression(SVR). Pose features are often wrongly estimated and fail to capture segments of videos

that do not involve humans. Recent works [Parmar and Tran Morris [2017]; Li et al. [2018]; Xiang et al.

[2018]] instead use 3D convolution features to model human actions and regress these features with

the scores. These features outperform pose features, but lack in capabilities as they require a lot of

videos to train the system to make it able to predict the scores for a variety of performances.

In order to do the correct scoring, the training data needs to constitute a spectrum of good

to bad performances from humans of different proficiency and their respective scores, however, this

requires domain experts to annotate large number of action videos and this is a labor intensive and an

expensive task. The question arises: Can we compare the human actions to expert’s performance and

map the discrepancies to their scores? This would give us an unsupervised technique of human action

quality scoring.

In this chapter, we develop a novel unsupervised sequence-to-sequence autoencoder-based

assessmentmodel for humanactionquality scoreprediction. Thismodel is trained to reconstruct expert

performances. Any unseen sequence reconstructed from this trainedmodel would result in generation

of a sequence that is interpreted as an adaptedbenchmarkperformancewhich takes into account all the

correct performances. We propose a scoring technique where the variations between the input video

and the reconstructed video are exploited and the final score for the test performance is evaluated.
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Figure 6.1 : Sequence-to-Sequence Autoencoder model to learn temporal evolution of expert videos

The efficacy of themodel is tested on Sun Salutation Assessment Dataset that we have discussed

in the last section where the test videos have been augmented with their respective scores provided

by a yoga trainer. The training videos for our model are all expert videos and the test videos have

performances of different proficiency levels. The technique is compared with the state-of-the-art

regression-based action scoring techniques [Pirsiavash et al. [2014]; Parmar and TranMorris [2017]] and

template-based assessment technique proposed in last chapter. It is seen that with fewer number of

expert videos and without score annotations, our model outperforms regression models that require

wide range of performances and their respective scores.

6.2 PROPOSEDMETHODOLOGY

The method described here is based on the principle that as the proficiency of the human

performing a certain action decreases, it varies significantly from the expert videos. The variations

of a subject’s performance from an expert performance leads to penalties that are reflected in the

subject’s score. We train a sequence-to-sequence autoencodermodel that learns the temporal patterns

of the human poses across frames. The model is trained with action sequences that consist of expert

sequences only, with an objective to minimize the reconstruction error between the input sequence

and the output sequence reconstructed from the learned model. After the model is trained, the

performances that are close to experts are expected to have low reconstruction error, whereas the

sequences consisting of non-experts/amateurs are expected to have high reconstruction error. The

reconstruction error can then be used to predict the score of a performer. Our approach consists of

three stages : 1) Preprocessing ; 2) Sequence Learning ; 3) Score Prediction

Preprocessing

The task of this stage is to convert raw videos to an admissible input for the model. Following
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the same feature representation technique used in the last chapter, we use the stacked hourglass

networks [Newell et al. [2016]] for human pose estimation. For each frame, the network estimates a

pose with 16 joint points (2 for left and right ankles, knee, hip, wrist, elbow and shoulder and for pelvis,

neck, thorax, head). The joints of a pose are normalized relative to the head position thus making

them translation invariant. However in the last chapter we saw that the edits varied even with a little

difference in the poses of the performers which arises due to flexibility of performers. With a fixed

distance threshold we could not make an allowance of these little variations. Thus here in this chapter

we encode pose features to unique pose words (7 in our case) using K−means algorithm. This helps us

to learn the sequence-to-sequence autoencoder such that it is invariant to little changes in the poses.

The videos are padded with zeros to give us fixed length videos of size N (N = 75 in our case), as an

input to the sequence-to-sequence autoencoder.

Sequence Learning Model

Long Short Term Memory architecture [Hochreiter and Schmidhuber [1997]] can solve many

sequence-to-sequence learning problems. We use the sequence-to-sequence learning model as in

[Sutskever et al. [2014]]where the encoder LSTM reads the input pose sequence, one step at a time, and

gives a fixed-dimensional vector representation, and decoder LSTM extracts the output pose sequence

from that vector (Figure 6.1). Thedecoder LSTM is essentially conditionedover the encoder. The LSTM’s

ability to successfully learn data with long range temporal dependencies makes it a good choice for our

application as the score awarded depends on the entire execution sequence.

The goal of the LSTM is to estimate the conditional probability p(y1, ...,yT ′ |x1, ...,xT ) where

(x1, ...,xT ) is the input sequence and (y1, ...,yT ′) is its corresponding output sequence whose length

may differ from the input length. The LSTM first obtains a fixed-dimensional representation v of the

input sequence given by the last hidden state of the LSTM, and then computes the probability of output

sequence as :

p(y1, ....yT ′ |x1, ....xT ) =
T ′

∏
t=1

p(yt |v,y1, ...,yt−1)

Our goal is to develop amodel that canwell represent all the expert videos. The input and the output of

our sequence-to-sequence model are identical. For our work the input sequence is the pose sequence

of expert Sun Salutation videos. A model trained with the same input and output learns to reconstruct

the input video.

We envisage that such amodel is able to learn all variations of expert videos. The reconstructed

video can be interpreted as a template indicating the correct performance that is most relevant to the

input video. This avoids the computations involved in the explicit step of trying out all the templates to

choose a right one to compare with as is done in the template based approaches.

Scoring of Test Video Performances

A video performance by a personwith high proficiency can be reconstructed correctly using this

sequence-to-sequencemodel trained over all expert videos. However, videos fromamateur performers

that deviate from these expert videos cannot be reconstructed well as the model has been trained to

construct expert videos and the reconstructed video in the case of amateurs would resemble an expert

rendering of the action.

The score of a human performance can be calculated using its discrepancy from the expert

performance. We use the Levenshtein Distancewhich gives us theminimumnumber of single-character
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Figure 6.2 : Scoring of Test Sequences

edits (i.e. insertions, deletions or substitutions) required to change apose sequence to its reconstructed

output.

In the worst case, when an entirely different action is performed by a subject, the edit distance

would be N (the maximum length of the video) and when an expert video is encountered the edit

distance would be close to zero. In other words, if the edit distance is denoted by D, the similarity

between the reconstructed (expert rendering) and the input pose sequence is givenbyN−D. Figure 6.2

shows the steps of scoring an test sequence.

This can also be treated as a score of the performer. The range of scores thus would be 0−N.

To compare the predicted and the ground truth scores, we normalize the scores to a range of 0−1.

In the next section we evaluate our scoring model and compare it with state-of-the-art human

action scoring models.

Scoring of Test Video Performances

A video performance by a personwith high proficiency can be reconstructed correctly using this

sequence-to-sequencemodel trained over all expert videos. However, videos fromamateur performers

that deviate from these expert videos cannot be reconstructed well as the model has been trained to

construct expert videos and the reconstructed video in the case of amateurs would resemble an expert

rendering of the action.

The score of a human performance can be calculated using its discrepancy from the expert

performance. We use the Levenshtein Distancewhich gives us theminimumnumber of single-character

edits (i.e. insertions, deletions or substitutions) required to change apose sequence to its reconstructed

output.

In the worst case, when an entirely different action is performed by a subject, the edit distance

would be N (the maximum length of the video) and when an expert video is encountered the edit

distance would be close to zero. In other words, if the edit distance is denoted by D, the similarity

between the reconstructed (expert rendering) and the input pose sequence is givenbyN−D. Figure 6.2

shows the steps of scoring an test sequence.

This can also be treated as a score of the performer. The range of scores thus would be 0−N.

To compare the predicted and the ground truth scores, we normalize the scores to a range of 0−1.

In the next section we evaluate our scoring model and compare it with state-of-the-art human

action scoring models.
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Figure 6.3 : Rank correlation of individual template videos

6.3 EXPERIMENTS

6.3.1 Sun Salutation Assessment Dataset
The assessment datasets proposed in the previous works [Pirsiavash et al. [2014]; Parmar and

Tran Morris [2017]] for Diving, Vaults, Figure Skating have a mix of examples of varying proficiency and

there are a very fewexpert videos. Thus to evaluateour ideaweupdatedour SunSalutationAssessment

Dataset as follows :

1. The training videos of our dataset are organized as two subsets : 1) 35 expert performances to

evaluate our model 2) 35 videos which are a mix of expert and non-expert videos to evaluate

regression models.

2. The test set contains 15 videos of varied proficiency, where some videos are similar to experts

and others with a variable number of missed sub-actions.

6.3.2 Baseline and Experiment Settings
We compare ourmodel with 3 baseline works - 1) Pose vs SVR [Pirsiavash et al. [2014]], 2) C3D vs

SVR, LSTM+SVR [Parmar and Tran Morris [2017]] 3) Expert Template Matching Approach (Discussed

in last chapter) For Pose + SVR-based scoring [Pirsiavash et al. [2014]], the pose sequences are

pre-processedusingDCTandDFToperations. Weextracted 20DCT/DFT coefficients from 10windowsof

each video to give the final features. For C3D + LSTM-based approach [Parmar and Tran Morris [2017]],

we evaluated the C3D features using C3D model [Tran et al. [2015]] pre-trained over Sports1M Dataset.

The LSTM architecture of the scoring network is as proposed in [Parmar and Tran Morris [2017]].

For the template based approach discussed in last chapter, and our approach, the poses are

converted to 7 codebook words considering 7 distinct poses. The pose-word sequences are used as

input to training models. Our architecture has a single layer of LSTM for both encoder and decoder

with 64 hidden units for each LSTM layer.

We constrain our baselines to these, as the other models [Li et al. [2018]; Xiang et al. [2018]] use

a segment based approach for scoring, that are not suitable as the videos consist of missed sub-actions

and thus the segments in such videos do not cover proper sub-action boundaries.

Similar to [Pirsiavash et al. [2014]], we use the Spearman Rank correlation, ρ =
cov(Rp,Rg)/σRpσRg as our evaluation metric where Rp is the predicted rank by the model (based
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Figure 6.4 : Reconstruction Results on some sample videos. Top to Bottom: First bar shows the

ground truth sun salutation sequence followed by five test sequences and their respective

reconstructed videos. Different actions are missed in different videos. The reconstructed

sequence matches the ground truth sequence in every case.(Different colors denote

different poses. Black color denotes padding used to generate fixed length video)

on predicted scores) and Rg denotes the ground-truth rank of test videos. A higher Spearman

correlation implies a better rank prediction. Further, compare the models using the mean square error

(MSE) between the 0−1 normalized predicted and the ground truth scores.

6.3.3 Results
Startingwith Template BasedApproach, we compare the test videos to each of the expert video

individually. The Levenshtein distance between the test videos and an expert template is computed to

get the scores of all test videos. The rank of the test videos(based on the predicted score) is compared

to the ground truth rank to get the Rank Correlation(RC). With experiments it is seen that the rank

correlation varies as the expert video changes. Moreover only a single expert template out of 15

templates has rank correlation more than our model(Figure 6.3). Thus, individual expert videos do not

suffice to assess the test performances.

Table 6.1 gives the comparison results of our model with the supervised regression-based

baseline scoring models. It can be seen that with only a set of expert videos, our model outperforms

regression based models [Pirsiavash et al. [2014]; Parmar and Tran Morris [2017]] that requires a mix of

correct and incorrect performances. This comes with an added advantage of our model not requiring

ground truth scores and thus being completely unsupervised.

Figure 6.4 shows five sample test sequences and their respective reconstructed sequences. It

is seen that the reconstructed sequence is always an adaptation of the ground truth Sun Salutation

Sequence (topmost sequence on the plot) and serves as the benchmark to compare a given sequence.

This is irrespective of the test performance being complete and close to an expert or with variable

number of missed poses. (Note : Here we illustrate a single ground truth expert sequence in the figure.

However, there can be multiple such expert sequences which may have variable execution speeds.)
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Table 6.1 : Comparison of Rank Correlation and Mean Square Error of various techniques for Sun

Salutation performance scoring

Model MSE Rank Correlation

SVR-DCT [Pirsiavash et al. [2014]] 0.35 -0.46

SVR-DFT [Pirsiavash et al. [2014]] 0.33 -0.39

Pose Words + LSTM 0.18 0.19

Pose Words +LSTM+SVR 0.22 0.23

C3D + SVR [Parmar and Tran Morris [2017]] 0.23 -0.026

C3D + LSTM + SVR [Parmar and Tran Morris [2017]] 0.17 0.37

Template Matching 0.33± 0.026 0.13

Ours 0.12 0.48

It is seen that the variations in speed of the test performance result into variable length

reconstructed sequences. Thus the reconstructed sequence is similar to an expert renderingwith speed

adapted to individual performers.

Thus our model outperforms both the template based matching technique and supervised

regression models both in terms of maximum rank correlation and minimummean square error.

However this approach encodes the poses into fixed number of pose words (7 in case of Sun

Salutation). This in turn quantizes the anomalous poses to one of these fixed number of pose words

which does not allow us to handle anomalies efficiently. Thus we require a technique that can cluster

the poses such that the number of codewords is not fixed and the poses naturally cluster such that the

codewords of an anomalous pose varies from one of the key poses.

6.4 CONCLUSION

Wehave proposed an unsupervised, autoencoder-based human action scoringmodel that helps

compare a test sequence tomultiple expert renderings unlike single templatematching discussed in the

last chapter. Our model outperforms both the template-based and regressionmodels and provides the

following advantages: 1) There is no added overhead of annotating the videos with their respective

scores during training. Our approach requires only expert videos during training. 2) Dataset collection

for training the regression models is more tedious because it requires a carefully balanced set of

examples in terms of good and bad performances.

However, we saw that encoding the poses to a fixed number of clusters leads to all poses,

irrespective of correct or anomalous, to belong to these fixed clusters. Thus theproposedmodel cannot

help identify anomalies. Thus we require a pre-processing step such that the anomalous pose belongs

to a cluster different from the key pose i.e. the clustering happens naturally without pre-specifying the

count of the clusters.

…
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