List of Figures

Figures	Title	Page
1.1	Kinetic and dynamic events of ligand-protein interaction.	2
1.2	Schematic representation of ligand-protein interaction and binding parameters involved.	3
1.3	Segmentation of Different biophysical methods available for ligand-protein interaction.	6
1.4	The number of NMR data published for ligand-protein interaction.	6
1.5	Different NMR approaches to study the ligand-protein interaction.	7
1.6	NMR parameters of ligand-protein interaction in the free and bound state.	8
1.7	Number of published data on pesticide-protein interaction from 2009 onwards.	10
1.8	General structure of OP.	10
1.9	Importance of OP pesticides-protein interaction study.	11
1.10	Schematic representation of the general overview OP/OP metabolites-protein	
	interaction under in vitro conditions.	13
1.11	The degradation pathway of CPF.	-
1.12	The degradation pathway of Diazinon.	14
1.13	The degradation pathway of Parathion.	15
2.1	Schematic drawing of different solvent presaturation pulse sequence.	16
2.2	¹ H NMR spectrum for tryptophan to show the efficiency of different solvent suppression	21
	pulse sequences.	
2.3	¹ H NMR spectral region (A) free Biotin (red spectra) (B) biotin in the presence of tyrosine	22
	phosphatases (blue) (C) biotin in the presence of HRAS recorded in tris-HCl buffer (10%	
	DMSO) at 300 K.	
2.4	STD NMR Mechanism (A) off-resonance spectrum (B) on-resonance spectrum (C)	25
	Difference spectrum where only bound ligand resonance is observed.	
2.5	Conventional STD NMR pulse sequence with excitation sculpting.	26
2.6	Schematic drawing of NMR spin-lattice relaxation pulse sequence (A) non-selective spin-	27
	lattice relaxation (B) selective spin-lattice relaxation.	
2.7	(a) Fluorescence emission spectra (280 nm) of BSA (1 μ M) with different concentration	31
	of 5FU and PC and effect of PC on binding of BSA-5FU, (b) Stern-Volmer plot for BSA-	
	5FU, BSA-PC & BSA-5FU:PC, (c) The plot of log(F₀–F)/F versus log[Q].	
3.1	The schematic representation of OP-BSA interaction.	33
3.2	¹ H NMR spectra of CPF, DZN, and PA in absence and presence of BSA recorded at room	36
	temperature and pH 7.4.	
3.3	(A) 1H NMR spectrum and 1H STD NMR spectrum of CPF in the presence of BSA in 40:1 ratio;	37
	(B) 1H NMR spectrum and 1H STD NMR spectrum of DZN in the presence of BSA in 40:1	
	ratio; (C) ¹ H NMR spectrum and ¹ H STD NMR spectrum of PA in the presence of BSA in 40:1	
	ratio.	
3.4	The pictorial representation of GEM for CPF, DZN and PA. The relative degree of	38
	saturation of hydrogen is mapped for CPF, DZN, and PA. The ratio of intensity was	
	normalized using the highest STD H_a for CPF and PA and H_b for DZN (100%) as a	
	reference. (Color code represents the relative STD %).	
3.5	STD amplification factor of CPF, DZN, and PA as a function of saturation time.	40
3.6	STD amplification factor (A _F) curves with varying ligand concentration (CPF, DZN, and	41
	PA) from 400 μM -1.2 mM, keeping BSA concentration constant (10 μM).	
3.7	(A) (a) ^{1}H STD NMR of 10 μM BSA, 400 μM CPF without the site probe; (b) ^{1}H STD NMR of 10	43
	μ M BSA, 400 μ M CPF in the presence of 400 μ M WAR; (c) 1 H STD NMR of 10 μ M BSA, 400	
	μM CPF in the presence of 400 μM IBU, (B) (a) ¹H STD NMR of 10 μM BSA, 400	
	μΜ DZN without the site probe; (b) ¹H STD NMR of 10 μΜ BSA, 400 μΜ DZN in the	
	presence of 400 μM WAR; (c) ¹H STD NMR of 10 μM BSA, 400 μM DZN in the presence of	
	400 μM IBU, (C) (A) (a) ¹ H STD NMR of 10 μM BSA, 400 μM PA without the site probe; (b) ¹ H	
	STD NMR of 10 μM BSA, 400 μM PA in the presence of 400 μM WAR; (c) ¹ H STD NMR of 10	
	μΜ BSA, 400 μΜ PA in the presence of 400 μΜ IBU.	
3.8	The STD NMR spectra of the (A) CPF-BSA in the presence of DZN, (B) DZN-BSA in the	44
-	presence of PA.	
3.9	STD-NMR (CPF/DZN/PA with BSA) spectra in a mixture with equal concentration.	45
3.10	The molecular docking results for CPF, DZN, and PA.	46
3.11	ITC Raw data for the titration of 200 μM OP with 25 μM BSA at pH 7.4.	48
<i>/</i> 1 1	Craphical representation of TCPV-RSA and PM-RSA	T O

4.2	PM degradation study (integration versus time) in D_2O : DMSO (2:3) with increasing BSA concentration.	54
4.3	The hydrolysis for TCPy in different solvents in the absence and presence of BSA.	55
4.4	The hydrolysis for PM in the absence of BSA in DMSO.	56
4.5	PM degradation study (integration versus time) in DMSO and DMSO:D ₂ O (3:2). For	56
	DMSO:D ₂ O, both PM free and in bound state with BSA.	
4.6	¹ H NMR stack plot of the breakdown of PM in to p -nitrophenol (NP) at 7.4 pH (A) The	57
•	hydrolysis of PM in absence of BSA and (B)The hydrolysis of PM in presence of BSA (1	7,
	μM) at different time intervals.	
4.7	Degradation of PM (H_b) represented as a function of time in the absence of BSA and in	58
4.7	the presence of 1 μ M BSA and 2 μ M BSA at pH 7.4 as determined by ¹ H NMR analysis.	50
. 0		
4.8	¹ H and STD NMR spectra of TCPy (inset) and PM in the presence of BSA. NMR spectra are	60
	recorded at 300 K with 2.0 s saturation time, 400 μM concentration of ligand and 1:40	
	receptor-to-ligand ratio in 40 mM PB (pH = 7.4±0.5), and 30% DMSO-d ₆ at 500 MHz.	_
4.9	Comparison of the linear regression analysis of TCPy and PM (H _b) by selective relaxation	62
	rate enhancement of TCPy and PM against BSA concentration to calculate "normalized	
	Affinity index" $[A_N]_L^T$.	
4.10	(a) Plot of 1/ ΔR_1^{SE} versus TCPy and (b) Plot of 1/ ΔR_1^{SE} versus PM (H _b) concentration both	63
	are ranging from 1 mM to 4 mM with fixed protein concentration 5 μ M for binding	
	constant (K _a) calculation.	
4.11	Interaction of TCPy with the BSA (PBD ID 4F5S): (a) The green coloured highlighted	65
	region is the Site of Interaction. (b)displays a snap shot of BSA-TCPy complex with its	
	respective interacting residues.	
4.12	Interaction of PM with the BSA (PBD ID 4F5S): (a) The red coloured highlighted region is	65
	the Site of Interaction. (b) displays a snap shot of BSA-PM complex with its respective	
	interacting residues.	
4.13	Fluorescence spectra of BSA in the presence of various concentrations of (a)TCPy; (b)	67
	PM. BSA=1.0×10 ⁻⁶ mol L ⁻¹ , TCPy=PM=0-10 ⁻⁶ mol L ⁻¹ , λ_{ex} =280 nm, pH=7.4, room temperature.	
4.14	Competition of (a) TCPY and (b) PM with warfarin and ibuprofen with BSA fluorescence	68
	quenching.	
5.1	Schematic representation of OP-trypsin interaction as analyzed by 1H NMR,	72
	Fluorescence quenching and molecular docking studies.	•
5.2	The enzyme catalysis of BAEE to BA in the presence of trypsin.	74
5.3	The ¹H NMR spectra of BAEE (before the addition of trypsin) and BE (after addition of	74
J-J	trypsin). T = 298 K, pH = 7.40.	, ,
5.4	¹H spectra shows the relative effect of CPF,DZN, TCPy, and IMP on trypsin activity with	76
J• - T	increasing concentration from 100-500 µM. (peak at 1.15 ppm is considered for further	, •
	analysis of the residual activity of trypsin).	
5.5	The activities of trypsin in the different concentrations of CPF, DZN, TCPy, and IMP.	76
5.6	(A) ¹ H NMR spectrum and ¹ H STD NMR spectrum of CPF in the presence of trypsin in 40:1	70 77
5.0	ratio; (B) ¹ H NMR spectrum and ¹ H STD NMR spectrum of DZN in the presence of trypsin in	//
	40:1 ratio; (C) 'H NMR spectrum and 'H STD NMR spectrum of TCPy in the presence of	
	trypsin in 40:1 ratio; (D) (C) 1H NMR spectrum and 1H STD NMR spectrum of IMP in the	
	presence of trypsin in 40:1 ratio;	
	The representation of GEM for CPF, DZN, TCPy, and IMP. The relative degree of saturation	-0
5.7	·	78
- 0	of hydrogen is mapped for CPF, DZN, TCPy, and IMP.	70
5.8	STD amplification factor of CPF-trypsin, DZN-trypsin, TCPy-trypsin, and IMP-trypsin, as a	79
	function of saturation time.	0 -
5.9	STD amplification factor (A _F) curves with varying ligand concentration (CPF, DZN, TCPy,	80
E 45	and IMP) from 200 μM -600 μM, keeping BSA concentration constant (10 μM).	ο.
5.10	The molecular docking results for CPF, DZN, TCPy, and IMP.	81
5.11	Effect of OP on the fluorescence spectra of trypsin (a) CPF-trypsin (b) DZN-trypsin (c)	83
	TCPy-trypsin (d) IMP-trypsin. λ_{ex} = 280 nm; λ_{em} = 350 nm; pH = 7.40; T = 298 K.	0
5.12	Stern–Volmer plots for fluorescence quenching of the CPF-trypsin, DZN-trypsin, TCPy-	84
- 45	trypsin and IMP-tryspin system at different temperatures.	0
5.13	The double log plot of fluorescence of trypsin by CPF, DZN, TCPy, and IMP.	85
6.1	Schematic representation of CPF-BSA and TCPy-BSA interaction.	88

6.2	Fluorescence emission spectra of BSA at room temperature in presence of varying concentration of (I) TCPy: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5, 2, 2.5, 3, 4, 5 μ M] (II) CPF: [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 μ M] at (a) λ_{ex} = 280 nm (b) λ_{ex} = 295 nm. [BSA] = 0.5 μ M; pH = 7.40	90
6.3	Plot of fluorescence intensity maxima for BSA against [TCPY] and [CPF] in aqueous PB obtained at (a) λ_{ex} :280 nm (b) λ_{ex} :295 nm. [BSA] = 0.5 μ M; pH = 7.40. [CPF] in aqueous solution cannot exceed 5 μ M.	90
6.4	Fluorescence emission spectra of BSA at room temperature in presence of varying concentration(0-10 μ M) of (I)TCPy (II) CPF in 10% methanol in PB at (a) λ_{ex} :280nm (b) λ_{ex} :295nm.Plot of fluorescence intensity maxima for BSA against [TCPY] and [CPF] in 10% methanol in aqueous PB obtained at (c) λ_{ex} :280 nm (d) λ_{ex} :295 nm[BSA] = 0.5 μ M; pH = 7.40	90
6.5	Stern-Volmer plot for quenching of BSA fluorescence in presence of (a) TCPy (b) CPF and Double log plot for calculating binding parameters of the (c) BSA-TCPy and (d) BSA-CPF in aqueous PB at room temperature with concentration varying from 0-5 μ M; [BSA] = 0.5 μ M; pH= 7.40.	92
6.6	(a) Stern-Volmer plot for quenching of BSA fluorescence in the presence of TCPy (o-10 μ M) (b) Modified Stern–Volmer plot of BSA in the presence of TCPy in aqueous PB at room temperature; [BSA] = 0.5 μ M; pH = 7.40.	93
6.7	Stern-Volmer plot for quenching of BSA fluorescence in the presence of (a) TCPy (b) CPF & Double log plot for calculating binding parameters of the (c) BSA-TCPy and (d) BSA-CPF in 10% methanol in PB at room temperature with concentration varying from 0-10 μ M; [BSA] = 0.5 μ M; pH = 7.40.	95
6.8	Modified Stern–Volmer plot of BSA in the presence of TCPy in 10% methanol in PB at room temperature with concentration varying from 0-10 μ M; [BSA] = 0.5 μ M; pH = 7.40.	95
6.9	Stern-Volmer plot for quenching of BSA fluorescence in presence of (a) TCPy (b) CPF & Double log plot for calculating binding parameters of the (c) BSA-TCPy and (d) BSA-CPF in 10% methanol in PB at room temperature with concentration varying from 0-5 μ M;pH = 7.40.	96
6.10	UV-Vis absorption spectra of CPF (5 μ M), TCPy (5 μ M), BSA(5 μ M)at room temperature.	97
6.11	UV-vis absorption spectra of BSA with increasing concentration of (a) TCPy and (b) CPF at room temperature. [BSA]=5 μ M; pH = 7.40	98
6.12	CD spectra of BSA-TCPy and BSA-CPF system;[BSA]=10 μM; [TCPy]=50 μM; [CPF]= 50μM.	99
7.1	The grey area represents the work completed, and the light area is to show the future work.	102