
3
Quantum phase properties of
photon added and subtracted

displaced Fock states

In this chapter, the motive is to observe the phase properties of PADFS and PSDFS. The
main findings of this chapter are published in Malpani et al. [2019b]

3.1 Introduction
In the previous chapter, the nonclassical properties of PADFS and PSDFS were studied.

Here, our specific interest is to study the phase properties of PADFS and PSDFS and their limiting
cases. In the recent past, the nonclassical properties of this set of engineered quantum states, many
of which have been experimentally generated Lvovsky et al. [2001]; Lvovsky and Babichev [2002];
Zavatta et al. [2004, 2005, 2008], were focus of various studies (see Malpani et al. [2019a] and
references therein). In Section 1.3.2, we have already expressed PADFS and PSDFS as superposition
of Fock states. Further, in Section 1.6 we have described the parameters used for the study of phase
properties of a quantum state. In that context we have already mentioned several applications of
quantum phase distribution and quantum phase fluctuation.

To stress on the recently reported applications of quantum phase distribution and quantum
phase fluctuation, we note that these have applications in quantum random number generation Xu
et al. [2012]; Raffaelli et al. [2018], cryptanalysis of squeezed state based continuous variable quan-
tum cryptography Horak [2004], generation of solitons in a Bose-Einstein condensate Denschlag
et al. [2000], in phase encoding quantum cryptography Gisin et al. [2002], phase imaging of cells
and tissues for biomedical application Park et al. [2018]; as well as have importance in determining
the value of transition temperature for superconductors Emery and Kivelson [1995]. Keeping these
applications and the general nature of engineered quantum states PADFS and PSDFS in mind, in
what follows, we aim to study phase distribution, Q phase, phase fluctuation measures, phase disper-
sion, and quantum phase estimation using the concerned states and the states obtained in the limiting
cases. As PADFS and PSDFS are already described, we may begin this study by describing limiting
cases of these states as our states of interest.

We have already mentioned that our focus would be on PADFS and PSDFS. Due to the
general form of PADFS and PSDFS, a large number of states can be obtained in the limiting cases.
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Reduction of state Name of the state Reduction of state Name of the state
|ψ+(u,n,α)〉 u-PADFS |ψ−(v,n,α)〉 v-PSDFS
|ψ+(0,n,α)〉 DFS |ψ−(0,n,α)〉 DFS
|ψ+(0,0,α)〉 Coherent state |ψ−(0,0,α)〉 Coherent state
|ψ+(0,n,0)〉 Fock state |ψ−(0,n,0)〉 Fock state
|ψ+(u,0,α)〉 u-Photon added

coherent state
|ψ−(v,0,α)〉 v-Photon

subtracted coherent
state

Table 3.1: Various states that can be obtained as the limiting cases of the PADFS and PSDFS.

Some of the important limiting cases of PADFS and PSDFS in the present notation are summarized
in Table 3.1. This table clearly establishes that the applicability of the results obtained in the present
study is not restricted to PADFS and PSDFS; rather an investigation of the phase properties of PADFS
and PSDFS would also reveal phase properties of many other quantum states of particular interest.

3.2 Quantum phase distribution and other phase properties
Quantum phase operator φ̂ was introduced by Dirac based on his assumption that the an-

nihilation operator â can be factored out into a Hermitian function f (N̂) of the number operator
N̂ = â†â and a unitary operator Û Dirac [1927] as

â = Û f
(
N̂
)
, (3.1)

where

Û = eιφ̂ . (3.2)

However, there was a problem with the Dirac formalism of phase operator as it failed to provide a
meaning to the corresponding uncertainty relation. Specifically, in the Dirac formalism, the creation
(â†) and annihilation (â) operators satisfy the bosonic commutation relation,

[
â, â†

]
= 1, iff

[
N̂, φ̂

]
=

ι , which leads to the number phase uncertainty relation ∆N ∆φ ≥ 1. Therefore, in order to satisfy the
bosonic commutation relation under Dirac formalism, the phase uncertainty should be greater than
2π for ∆N < 1

2π
which lacks a physical description. Subsequently, Louisell Louisell [1963] proposed

some periodic phase based method, which was followed by Susskind and Glogower formalism based
on Sine and Cosine operators Susskind and Glogower [1964]. An important contribution to this
problem is the Barnett-Pegg formalism Barnett and Pegg [1986] which is used in this thesis. In
what follows, we will also briefly introduce notions, such as quantum phase distribution, angular Q
phase function, phase fluctuation parameters, phase dispersion, quantum phase estimation to study
the phase properties of the quantum states of our interest.

3.3 Phase properties of PADFS and PSDFS
The description of the states of our interest given in the previous section can be used to

study different phase properties and quantify phase fluctuation in the set of quantum states listed in
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Table 3.1. Specifically, with the help of the quantum states defined in Eqs. (1.19)-(1.20), we have
obtained the analytic expressions of phase distribution and other phase parameters defined in Section
3.2.

3.3.1 Phase distribution function
From the definition of the phase distribution (1.54), it can be observed that for a Fock

state, Pθ = 1
2π

, implying it has a uniform distribution of phase. Interestingly, the states of our
interest, PADFS and PSDFS, are obtained by displacing the Fock state followed by photon addi-
tion/subtraction. Therefore, we will study here what is the effect of application of displacement op-
erator on a uniformly phase distributed (Fock) state and how subsequent photon addition/subtraction
further alters the phase distribution. Using phase distribution function, the information regarding un-
certainty in phase and phase fluctuation can also be obtained. To begin with, we compute the analytic
expressions of Pθ for the PADFS and PSDFS, using Eq. (1.54) as

Pθ (u,n) = 1
2π

|N+|2

n!

n
∑

p,p′=0

(n
p

)( n
p′
)

exp
[
− | α |2

]
|α|2n−p−p′

×
∞

∑
m,m′=0

(−|α|)m+m′
√

(m+p+u)!(m′+p′+u)!
m!m′! exp[ι (θ −θ2)(m′+ p′−m− p)],

(3.3)

and

Pθ (v,n) = 1
2π

|N−|2

n!

n
∑

p,p′=0

(n
p

)( n
p′
)

exp
[
− | α |2

]
|α|2n−p−p′

×
∞

∑
m,m′=0

(−|α|)m+m′ (m+p)!(m′+p′)!
m!m′!
√

(m+p−v)!(m′+p′−v)!
exp[ι (θ −θ2)(m′+ p′−m− p)],

(3.4)

respectively. Here, θ2 is the phase associated with the displacement parameter α (α = |α|eιθ2 ).
Since the obtained expressions in Eqs. (3.3) and (3.4) are complex in nature, we depict numerical
(graphical) analysis of the obtained results in Figs. 3.1 and 3.2 for PADFS and PSDFS, respectively.
Specifically, in Figure 3.1 (a), we have shown the variation of phase distribution with phase parameter
θ for different number of photon added in the displaced single photon Fock state (D(α) |1〉) for
θ2 = 0. A uniform phase distribution for Fock state (with a constant value of 1

2π
) is found to transform

to one that decreases for higher values of phase and possess a dip in the phase distribution for θ = 0,
which can be thought of as an approach to the Fock state. In fact, in case of classical states, Pθ has
a peak at zero phase difference θ − θ2, and therefore, this contrasting behavior can be viewed as
signature of quantumness of DFS. However, with the increase in the number of photons added to the
DFS, the phase distribution of the PADFS is observed to become narrower. In fact, a similar behavior
with increase in the mean photon number of coherent state was observed previously Agarwal et al.
[1992]. It is imperative to state that Pθ in case of higher number of photon added to DFS has similar
but narrower distribution than that of coherent state. In contrast, with increase in the Fock parameter,
the phase distribution is observed to become broader (cf. Figure 3.1 (b)). Thus, the increase in the
number of photons added and the increase in Fock parameter have opposite effects on the phase
distribution. The same is also illustrated through the polar plots in Figure 3.1 (c)-(d), which not only
reestablish the same fact, but also illustrate the dependence of Pθ on the phase of the displacement
parameter. Specifically, the obtained phase distribution remains symmetric along the value of phase
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Figure 3.1: Variation of phase distribution function with phase parameter for PADFS with displace-
ment parameter |α| = 1 for different values of photon addition ((a) and (c)) and Fock
parameters ((b) and (d)). The phase distribution is shown using both two-dimensional
((a) and (b) with θ2 = 0) and polar ((c) and (d)) plots. In (c) and (d), θ2 =

nπ

2 with integer
n ∈ [0,3], and the legends are same as in (a) and (b), respectively.

θ2 (i.e., Pθ is observed to have a mirror symmetry along θ = θ2) of the displacement parameter. The
phase distribution of Fock state is shown by a black circle in the polar plot.

Instead of photon addition, if we subtract photons from the DFS, a similar effect on the
phase distribution to that of photon addition is observed. Further, a comparison between photon
addition and subtraction on the phase distribution establishes that a single photon subtraction has
a prominent impact on phase distribution when compared to that of single photon addition, i.e.,
the distribution can be observed to be narrower than that of coherent state in most of the cases for
u = v. For instance, single photon added (subtracted) DFS is broader (narrower) than corresponding
coherent state. Similarly, with the increase in the value of Fock parameter, we can observe more
changes on PSDFS than what was observed in PADFS, i.e., the phase distribution broadens more
with Fock parameter for PSDFS. Note that Pθ has a peak at θ = θ2 only for photon addition u > n,
while in case of photon subtraction it can be observed for v≥ n. With the increase in the amplitude
of displacement parameter (|α|) initially the phase distribution becomes narrower, which is further
supported by both addition and subtraction of photons, but it becomes broader again for very high
|α| (figure is not shown here).

40



Pθ 0,1)

Pθ 1,1)

Pθ 2,1)

Pθ 3,1)

Pθ Fock)

Pθ 0,0)

-π - 3π

4 - π

2
- π

4

π

4

π

2

3π

4 π
θ

0.2

0.4

0.6

0.8

Pθ(v,n)

Pθ 1,1)

Pθ 1,2)

Pθ 1,3)

Pθ 1,4)

-π - 3π

4 - π

2
- π

4

π

4

π

2

3π

4 π
θ

0.2

0.4

0.6

0.8

Pθ(v,n)

(a) (b)

(c) (d)

Figure 3.2: Variation of phase distribution function with phase parameter for PSDFS with displace-
ment parameter |α|= 1 for different values of photon subtraction ((a) and (c)) and Fock
parameters ((b) and (d)). The phase distribution is shown using both two-dimensional
((a) and (b) with θ2 = 0) and polar ((c) and (d)) plots. In (c) and (d), θ2 =

nπ

2 with integer
n ∈ [0,3], and the legends are same as in (a) and (b), respectively.
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3.3.2 Angular Q function of PADFS and PSDFS
The relevance of the Q function as witness of nonclassicality Thapliyal et al. [2015] and

in state tomography Thapliyal et al. [2016] is well studied. On top of that, non-Gaussianity of the
PADFS and PSDFS using Q function was recently reported by us Malpani et al. [2019a]. We further
discuss a phase distribution based on Q function using Eq. (1.57). In this particular case, we have
obtained the angular Q function from the Q functions of the PADFS and PSDFS reported as Eqs.
(15)-(16) in Malpani et al. [2019a]. Specifically, we have shown the effect of photon addition on the
DFS (D(α) |1〉) for a specific value of the displacement parameter in Figure 3.3 (a) for angular Q
function. One can clearly see that the polar plots show an increase in the peak (located at θ1 = θ2)
of the distribution with photon addition. Further, one can compare the behavior of Qθ1 with Pθ in
Figure 3.1 and observe that they behave quite differently (as reported in Agarwal et al. [1992] for
the coherent states), other than increase in the peak of the distribution. Specifically, Pθ has a peak at
θ = θ2 only for u > n, while Qθ1 is always peaked at the phase of the displacement parameter which
also becomes a line of symmetry. Interestingly, the effect of increase in the Fock parameter of PADFS
on Qθ1 is similar but less prominent in comparison to photon addition. This is in quite contrast of
that observed for Pθ (in Figs. 3.1 and 3.3 (b)). In case of PSDFS, both photon subtraction and Fock
parameter have completely different effects on Qθ1 (cf. Figure 3.3 (c)-(d)) which is also in contrast to
that on corresponding Pθ (shown in Figure 3.2). Specifically, with increase in photon subtraction the
angular Q function becomes narrower peaked at θ = θ2, but for larger number of photon subtraction
the peak value decreases quickly. However, with increasing Fock parameter (cf. Figure 3.3 (d)), Qθ1

behaves much like photon addition on DFS (shown in Figure 3.3 (a)). The observed behavior shows
the relevance of studying both these phase distributions due to their independent characteristics.

3.3.3 Quantum phase fluctuation of PADFS and PSDFS
Note that Carruthers and Nieto Carruthers and Nieto [1968] had introduced these parame-

ters in terms of Susskind and Glogower operators Susskind and Glogower [1964]; here we use them
in Barnett-Pegg formalism to remain consistent with Gupta and Pathak [2007], where U parameter
is shown relevant as a witness of nonclassicality Gupta and Pathak [2007]. Specifically, U is 0.5 for
coherent state, and reduction of U parameter below the value for coherent state can be interpreted
as the presence of nonclassical behavior Gupta and Pathak [2007]. In what follows, we will study
quantum phase fluctuations for PADFS and PSDFS by computing analytic expressions of U, S and
Q parameters in Barnett-Pegg formalism, with a specific focus on the possibility of witnessing non-
classical properties of these states via the reduction of U parameter below the coherent state limit.
Carruthers and Nieto Carruthers and Nieto [1968] introduced three parameters to study quantum
phase fluctuation (1.60)-(1.62). It was only in the recent past that Gupta and Pathak provided a
physical meaning to one of these parameters by establishing its relation with antibunching and sub-
Poissonian photon statistics Gupta and Pathak [2007]. Thus, the quantum phase fluctuation studied
here using three parameters will also be used to witness the nonclassical nature of the quantum states
under consideration. Here, the effect of photon addition/subtraction and displacement parameters on
these fluctuation parameters is also studied (shown in Fig. 3.4). Specifically, Figure 3.4 (a)-(c) show
variation of the three parameters of quantum phase fluctuation for different values of the number of
photons added in the displaced Fock state (D(α) |1〉) with displacement parameter |α|. It may be
clearly observed that two of the quantum phase fluctuation parameters, namely U (u,n) and Q(u,n)
decrease with the value of displacement parameter, while S (u,n) increases with |α|. Interestingly,
the photon addition and increase in the displacement parameter exhibit the same effect on all three
quantum phase fluctuation parameters for PADFS, while for higher values of displacement parameter
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Figure 3.3: The polar plots for angular Q function for PADFS (in (a) and (b)) and PSDFS (in (c) and
(d)) for displacement parameter |α|=1 and θ2 =

nπ

2 with integer n ∈ [0,3] for different
values of photon addition/subtraction and Fock parameters. In (a) and (c), for n = 1,
the smooth (blue), dashed (red), dot-dashed (magenta), and dotted (brown) lines corre-
spond to photon addition/subtraction 0, 1, 2, and 3, respectively. In (b) and (d), for the
single photon added/subtracted displaced Fock state, the smooth (blue), dashed (red),
dot-dashed (magenta), and dotted (brown) lines correspond to Fock parameter 1, 2, 3,
and 4, respectively.
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S (u,n) show completely opposite effect of photon addition. In contrast, U (v,n) for v subtracted pho-
tons from D(α) |1〉 is found to increase (decrease) with photon subtraction while decrease (increase)
with the displacement parameter for small (large) value of |α| (cf. Figure 3.4 (d)). On the other hand,
parameter S (v,n) is also observed to increase (decrease) with |α| (v) as shown in Figure 3.4 (e). The
third parameter Q(v,n) shows slightly complex behavior for PSDFS with both |α| and v (cf. Figure
3.4 (f)) as it behaves analogous to PADFS for each subtracted photon for both small and large values
of the displacement parameter (when it increases with |α|), but for intermediate values the behavior
is found to be completely opposite.

As mentioned previously, U (i,n) ∀i ∈ {u,v} has a physical significance as a witness of an-
tibunching for values of this parameter less than 1

2 , Figure 3.4 (a) and (d) can be used to perform
similar studies for PADFS and PSDFS, respectively. In case of PADFS, we can observe this relevant
parameter to become less than 1

2 , and thus to illustrate the presence of antibunching, only at higher
values of the displacement parameter and photon added to the displaced Fock state. In contrast, PS-
DFS shows the presence of this nonclassical feature in all cases.Thus, occurrence of antibunching in
PADFS and PSDFS is established here through this phase fluctuation parameter. Interestingly, a sim-
ilar dependence of antibunching in PADFS and PSDFS Eq. (1.41) has been recently reported by us
Malpani et al. [2019a] using a different criterion. Further, one can observe from the expression of U
in Eq. (1.60) that it is expected to be independent of the phase of the displacement parameter, which
can also be understood from the use of this parameter as a witness for an intensity moments based
nonclassical feature. In contrast, S and Q in Eqs. (1.61)-(1.62) show dependence on the phase of dis-
placement parameter. Here, we have not discussed the effect of Fock parameter in detail, but in case
of photon addition, u and n have same (opposite) effects on S (U and Q) parameter(s). Fock parame-
ter has always shown opposite effect of photon subtraction on all three phase fluctuation parameters,
and thus nonclassicality revealed by U can be enhanced with Fock parameter. The relevance of Fock
parameter can also be visualized by observing the fact that the single photon subtracted coherent
state has U = 0.5 (which is consistent with the value zero of the antibunching witness reported in
Thapliyal et al. [2017b]). Thus, in this case, the origin of the induced antibunching can be attributed
to the non-zero value of Fock parameter.

3.3.4 Phase Dispersion
Here, it is worth stressing that both Carruthers-Nieto parameters and phase dispersion D

correspond to phase fluctuation, Our primary focus is to study phase fluctuation and further to check
the correlation between these measures of phase fluctuation. Thus, it would be interesting to study
phase fluctuation from the two perspectives. We compute a measure of quantum phase fluctuation
based on quantum phase distribution, the phase dispersion (1.56), for both PADFS and PSDFS to
perform a comparative study between them. Specifically, the maximum value of dispersion is 1
which corresponds to the uniform phase distribution, i.e., Pθ = 1

2π
. Both PADFS and PSDFS show

a uniform distribution for the displacement parameter α = 0 (cf. Figure 3.5). It is a justified result
as both the states reduce to the Fock state in this case. However, with the increase in the value
of displacement parameter quantum phase dispersion is found to decrease. This may be attributed
to the number-phase complimentarity Banerjee and Srikanth [2010]; Srikanth and Banerjee [2009,
2010], which leads to smaller phase fluctuation with increasing variance in the number operator
at higher values of displacement parameter. Thus, with an increase in the average photon number
by increasing the displacement parameter, phase dispersion decreases for both PADFS and PSDFS.
Addition of photons in DFS leads to decrease in the value of phase dispersion, while subtraction of
photons has more complex effect on phase dispersion (cf. Figure 3.5 (a) and (c)). Specifically, for
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Figure 3.4: Variation of three phase fluctuation parameters introduced by Carruthers and Nieto with
the displacement parameter with θ2 = 0. The values of photon addition (u), subtraction
(v), and Fock parameter n = 1 are given in the legends. Parameter U (i,n) ∀i ∈ {u,v}
also illustrates antibunching in the states for values less than 1
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Figure 3.5: Variation of phase dispersion for PADFS (in (a) and (b)) and PSDFS (in (c) and (d)) with
displacement parameter for an arbitrary θ2. Dependence on different values of photon
added/subtracted and the initial Fock state |1〉 (in (a) and (c)), while on different values
of Fock parameter for single photon added/subtracted state (in (b) and (d)).

the smaller values of the displacement parameter (|α|< 1), the phase dispersion parameter behaves
differently for v≤ n and v> n. This can be attributed to the sub-Poissonian photon statistics for v≤ n
with |α| < 1 as well as the small value of average photon number (Figure 3.4 (d)). However, at the
higher values of the displacement parameter D for the PSDFS behaves in a manner analogous to the
PADFS. Interestingly, increase in the Fock parameter shows similar effect on PADFS and PSDFS in
Figure 3.5 (b) and (d), respectively.

3.3.5 Phase sensing uncertainity for PADFS and PSDFS
We finally discuss quantum phase estimation using Eq. (1.69), assuming the two mode input

state in the Mach-Zehnder interferometer as |ψi( j,n,α)〉⊗ |0〉. The expressions for the variance of
the difference in the photon numbers in the two output modes of the Mach-Zehnder interferometer
for input PADFS and PSDFS and the rest of the parameters required to study phase sensing are
reported in Appendix.

The obtained expressions allow us to study the optimum choice of state parameters for quan-
tum phase estimation using PADFS and PSDFS. The variation of these parameters is shown in Figure
3.6. Specifically, we have shown that PSDFS is preferable over coherent state for phase estimation
(cf. Figure 3.6 (b)). However, with the increase in the photon subtraction this phase uncertainty
parameter is found to increase although remaining less than corresponding coherent state value. In
contrast, with photon addition, advantage in phase estimation can be attained as the reduction of the
phase uncertainty parameter allows one to perform more precise measurement. This advantage can
be enhanced further by choosing large values of photon addition and Fock parameter (cf. Figure 3.6
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Figure 3.6: Phase sensing uncertainty for (a) PADFS and (b) PSDFS as a function of phase to be esti-
mated φ for different number of photon addition/subtraction with n= 1. The dependence
for (c) PADFS and (d) PSDFS is also shown for different values of Fock parameters with
u = 1 and v = 1, respectively. In all cases, we have chosen α = 0.1.

(a) and (c)). In a similar sense, appropriate choice of Fock parameter would also be advantageous
in phase estimation with PSDFS as it decreases the phase uncertainty parameter, but still PADFS
remains preferable over PSDFS. This can further be controlled by an increase in |α| which decreases
(increases) phase uncertainty parameter for PADFS (PSDFS).

3.4 Conclusions
A set of engineered quantum states can be obtained as the limiting cases from the PADFS

and PSDFS, e.g., DFS, coherent state, photon added/subtracted coherent state, and Fock state. Specif-
ically, PADFS/PSDFS are obtained by application of unitary (displacement) and non-unitary (addi-
tion and subtraction of photons) operations on Fock state. In view of the fact that the Fock states have
uniform phase distribution, the set of unitary and non-unitary quantum state engineering operations
are expected to affect the phase properties of the generated state. Therefore, here we have calculated
quantum phase distribution, which further helped in quantifying phase fluctuation as phase disper-
sion. We have also computed the phase distribution as the angular Q function. We have further
studied phase fluctuation using three Carruthers and Nieto parameters, and have used one of them to
reveal the existence of antibunching in the quantum states of our interest.

Both the phase distribution and angular Q functions are found to be symmetric along the
value of the phase of the displacement parameter. The phase distribution is observed to become nar-
row and peak(s) to increase with the amplitude of the displacement parameter (|α|), which further
becomes broader for higher values of |α|. Further, photon addition/subtraction and Fock parame-
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ters are observed to have opposite effects on phase distribution, i.e., distribution function becomes
narrower (broader) with photon addition/subtraction (Fock parameter). Among photon addition and
subtraction operations, subtracting a photon alters the phase properties more than that of photon ad-
dition. Specifically, at the small values of the displacement parameter (|α|< 1), the phase properties
of PSDFS for v≤ n and v > n behave differently. This can be attributed to the fact that for v≤ n with
|α|< 1, the average photon number becomes very small. Further, the peak of the phase distribution
remains at the phase of displacement parameter only when the number of photons added/subtracted
is more than that of the Fock parameter. However, in case the number of photons subtracted (added)
is same as the Fock parameter, the peak of the phase distribution is observed (not observed) at the
phase of displacement parameter. The angular Q function can be observed to show similar depen-
dence on various parameters, but the peak of the distribution remains located at the value of phase
of the displacement parameter. The three phase fluctuation parameters introduced by Carruthers and
Nieto Carruthers and Nieto [1968] show phase properties of PADFS and PSDFS, while one of them,
U parameter also reveals antibunching in both PADFS and PSDFS. In this case, the role of Fock
parameter as antibunching inducing operation in PSDFS is also discussed. Phase dispersion quan-
tifying phase fluctuation remains unity for Fock state reflecting uniform distribution, which can be
observed to decrease with increasing displacement parameter. This may be attributed to the number-
phase complimentarity as the higher values of variance with increasing displacement parameter lead
to smaller phase fluctuation. Fock parameter and photon addition/subtraction show opposite effects
on the phase dispersion as it increases (decreases) with n (u/v).

Finally, we have also discussed the advantage of the PADFS and PSDFS in quantum phase
estimation and obtained the set of optimized parameters in the PADFS/PSDFS. Both photon addition
and Fock parameter decrease the uncertainty in phase estimation, while photon subtraction, though
performs better than coherent state is not as advantageous as u or n. In Ou [1997], it was established
that signal-to-noise ratio is significant only when the phase shift to measure is of the same order as
multiplicative inverse of the average photon number. Therefore, in case of PADFS this limitation of
quantum measurement is expected to play an important role. Thus, we have shown here that state
engineering tools can be used efficiently to control the phase properties of the designed quantum
states for suitable applications. The study performed in this chapter can be extended for other such
operations, like squeezing, photon addition followed by subtraction or vice versa.

48


	Acknowledgment
	Abstract
	Introduction
	Introduction
	Quantum theory of radiation field
	Creation and annihilation operator
	Some more quantum operators of relevance 
	Displacement operator
	Squeezing operator

	Eigen states of the field operators
	Fock state: Eigen state of the number operator
	Coherent state: Eigen state of the annihilation operator 


	Quantum states of our interest
	Displaced Fock state
	Photon added and photon subtracted displaced Fock state
	Photon added then subtracted displaced Fock state 
	Even coherent state and states generated by holeburning on it
	Vacuum filtered even coherent state
	Photon added even coherent state

	Binomial state and the states generated by holeburning on it
	Vacuum filtered binomial state
	Photon added binomial state

	Kerr state and the states generated by holeburning on it
	Vacuum filtered Kerr state
	Photon added Kerr state


	The notion of nonclassical states 
	Nonclassical states: witnesses and measures 
	Witnesses of nonclassicality
	Lower- and higher-order antibunching
	Lower- and higher-order sub-Poissionian photon statistics
	Higher-order squeezing
	Klyshko's criterion
	Vogel's criterion
	Agarwal-Tara's criterion
	Mandel QM parameter

	Other quasiprobability distributions
	Q function 
	Wigner function 

	Measures of nonclassicality 
	Linear entropy 


	Analytic tools for the study of phase properties of nonclassical states 
	Phase distribution function
	Phase dispersion
	Angular Q function
	Phase fluctuation
	Quantum phase estimation parameter

	Structure of the rest of the thesis

	Lower-and higher-order nonclassical properties of photon added and subtracted displaced Fock state
	Introduction 
	Higher-order moment for PADFS and PSDFS 
	Nonclassical features of PADFS and PSDFS 
	Mandel QM Parameter
	Lower- and higher-order antibunching
	Higher-order sub-Poissonian photon statistics
	Higher-order squeezing
	Q function
	Agarwal-Tara's criterion
	Klyshko's Criterion

	Conclusions 

	Quantum phase properties of photon added and subtracted displaced Fock states
	Introduction
	Quantum phase distribution and other phase properties 
	Phase properties of PADFS and PSDFS 
	Phase distribution function
	Angular Q function of PADFS and PSDFS
	Quantum phase fluctuation of PADFS and PSDFS
	Phase Dispersion
	Phase sensing uncertainity for PADFS and PSDFS

	Conclusions 

	Impact of photon addition and subtraction on nonclassical and phase properties of a displaced Fock state 
	Introduction 
	Moments of the field operators for the quantum states of our interest 
	Nonclassicality witnesses and the nonclassical features of PASDFS witnessed through those criteria 
	Lower- and higher-order antibunching
	Higher-order sub-Poissonian photon statistics
	Lower- and higher-order squeezing
	Klyshko's Criterion
	Agarwal-Tara's criterion
	Vogel's criterion

	Phase properties of PASDFS
	Phase distribution function
	Phase Fluctuation

	Quasidistribution function: Q function 
	Conclusions 

	Manipulating nonclassicality via quantum state engineering processes: Vacuum filtration and single photon addition
	Introduction 
	Quantum states of interest
	Expressions for moments of annihilation and creation operators
	Expectation values for even coherent states and the corresponding engineered states
	Expectation values for binomial state and the corresponding engineered states
	Expectation values for Kerr state and the corresponding engineered states


	Nonclassicality witnesses
	Lower- and higher-order antibunching
	Lower- and higher-order squeezing
	Higher-order sub-Poissonian photon statistics

	Nonclassicality measure
	Conclusion 

	Conclusions And Scope For Future Work
	Conclusion
	Scope for future work

	References



