Figures	Title	page
2.1	Weld metal oxygen analysis as a part of the percent metal oxide contained in the flux	9
	[Chai and Eagar, 1982]	
2.2	Acicular microstructure for API X65 fused metal [Beidokhti et al, 2015]	10
2.3	Shows the high magnification micrographs of MA elements (arrowed) in coarse	14
	grained HAZ, (a) rapid cooling (b) conventional cooling [Yan et al, 2104]	
2.4	Mechanism of crack formation associated with dislocation shear bands: A- micro-	15
	crack nucleation B- blunting and arrest; C- crack formation within the shear	
	bands; D- macro-crack formation. [Allen et al, 1992]	
2.5	Example of chevron cracking: A- Cracking in a vertical longitudinal section; B- SEM	15
	image of crack surface after breaking at room temperature [Allen et al, 1992]	
2.6	Example of chevron cracking: Fracture morphologies in the as-weld regions by using	16
	scanning electron microscope (SEM) [Allen et al, 1992]	
2.7	Fracture morphologies in the as-weld regions by using transmission electron	16
	microscope (TEM) (a) inter-columnar cleavage; (b) trans-columnar dimples [Allen et al,	
	1992]	
4.1	Confined design space as per simplex design; (a-b) three component regions; (c)	23
	tetrahedron component region [Cornell, 2002]	
4.2	Bead profile observed for basic flux at 450 Amp, 32 V and 14 inch/min welding	26
	parameters (flux no. 5 F5B)	
4.3	Experimental Ternary phase diagrams for, (a) basic system; (b) rutile basic system; (c)	29
	rutile acidic system (J. Mukerji et. al., 1965, Eriksson G et al., 1993, De Vries et al., 1955).	
4.4	3D-polydehedron designed as per mixture design approach for flux formulation	29
4.5	(a) Schematic representation of the horizontal muffle furnace; (b) macro-appearance	34
	of molten flux drop above the heating plate	
4.6	Contact angle measurement of various flux pallets (For rutile-acidic system)	34
4.7	Steps of multi-pass bead on plate weld deposits experimentation using SAW machine	35-36
4.8	Weld coupon dimensions	38
4.9	(a) Clamping of base plate specimens; (b) Conduction of submerged arc welding using	39
	adequate fluxes; (c) Seven submerged arc weldments	
4.10	For different testing the arrangement of cutting specimens (All dimensions are in mm)	39
4.11	(a) Standard tensile test specimen (ASTM A387, all dimensions in mm); (b) Actual	40
	seven tensile test specimen	
4.12	(a) Standard impact test specimen; (b) Actual impact test specimen	40
4.13	Specimens for microhardness testing of weld and HAZ	41
4.14	(a) HIC set-up; (b) S1 and S2 shows the dimensions in a rectangular block to find the	42
	crack lengths [Courtesy: Jindal SAW Limited, Mundra]	-
5.1	Predicted versus actual plots for various properties; (a) Grain fineness number (GFN);	64
	(b) Density; (c) Weight loss; (d) Change in enthalpy; (e) Thermal conductivity; (f)	
	Thermal diffusivity; (g) Specific heat (for basic flux system)	
5.2	Predicted versus actual plots for various properties; (a) Grain fineness number (GFN);	65
	(b) Density; (c) Weight loss; (d) Change in enthalpy; (e) Thermal conductivity; (f)	
	Thermal diffusivity; (g) Specific heat (for rutile-basic flux system)	
5.3	Predicted versus actual plots for various properties; (a) Grain fineness number (GFN);	66
	(b) Density; (c) Weight loss; (d) Change in enthalpy; (e) Thermal conductivity; (f)	
	Thermal diffusivity; (g) Specific heat (for rutile-acidic flux system)	
5.4	Relation between percentage weight change and temperature for three flux systems;	68-69
	(a-b) graphical plots for basic flux system; (c-d) graphical plots for rutile-basic flux	
	system; (e-f) graphical plots for rutile-acidic flux system	
5.5	Graphical plots between change in enthalpy vs. temperature for three flux systems; (a-	69-70
	b) plots for basic flux system; (c-d) plots for rutile-basic flux system; (e-f) plots for	
	rutile-acidic flux system	
5.6	Contour plot of physicochemical & thermophysical properties for basic flux system	71-72
5.7	Contour plot of physicochemical & thermophysical properties for rutile-basic flux	73-74

	system	
5.8	Contour plot of physicochemical & thermophysical properties for rutile-acidic flux system	74-75
5.9	(a-c): Influence of flux compositional ratios on contact angle (Rutile-acidic system)	78-79
5.10	Contact angle vs. spreading area variation (Rutile-acidic system)	79
5.11	(a-c): Influence of flux compositional ratios on surface tension (Rutile-acidic system)	80
5.12	(a-c): Work of adhesion behaviour at different flux ratios (Rutile-acidic system)	81
5.13	X-ray diffraction pattern for (a-b) basic flux system; (c-d) rutile-basic flux system; (e-f) rutile-acidic flux system	82
5.14	FTIR plots for three flux systems; (a) flux 1 (F1) basic flux system; (b) flux 1 (F1) rutile- basic flux system; (c) flux 1 (F1) rutile-acidic flux system	83
5,15	Weld bead depth of penetration, bead width and bead height analysis: (a-b) for flux 4	84
<u> </u>	and 14 of basic flux system; (c-d) for flux 1 and 3 of rutile-basic flux system; (e-f) for flux 4 and 6 of rutile-acidic flux system	- 1
5.16	Predicted versus actual plots for various properties of multi-pass bead on plate; (a-f)	106
-	bead chemical composition constituents; (g) grain size; (h) microhardness (for basic flux system)	
5.17	Predicted versus actual plots for various properties of multi-pass bead on plate; (a-h) bead chemical composition constituents; (i) grain size; (j) microhardness (for rutile-basic flux system)	107
5.18	Predicted versus actual plots for various properties of multi-pass bead on plate; (a-h) bead chemical composition constituents; (i) grain size; (j) microhardness (for rutile-	108
	acidic flux system)	
5.19	Contour plot of multi-pass bead on plate weld deposit properties for basic flux system; (a-f) weld bead chemical constituents; (g) weld bead grain size; (h) weld bead microbardness	111-112
E 20	Contour plot of multi-pass head on plate weld deposit properties for rutile-basic flux	112-11/
5.20	system; (a-h) weld bead chemical constituents; (i) weld bead grain size; (j) weld bead microhardness	115-114
5.21	Contour plot of multi-pass bead on plate weld deposit properties for rutile-acidic flux	114-116
_	system; (a-h) weld bead chemical constituents; (i) weld bead grain size; (j) weld bead	
	microhardness	
5.22	Visual examination of specimens immersed in fresh water solution after exposure of thirty days (Note AR: as received)	120
5.23	Visual examination of specimens immersed in sea water solution (pH=8.2) after exposure of thirty days	120
5.24	Visual examination of specimens immersed in 5%NaCl+10 ⁻³ mol/l sodium thiosulphate solution at pH-5 solution (pH=5) after exposure of thirty days	121
5.25	Visual examination of specimens immersed in 5%NaCl+10 ⁻² mol/l sodium thiosulphate solution at pH-5 solution (pH=3) after exposure of thirty days	121
5.26	(a) Average percentage weight change and (b) corrosion rate of as received metal in fresh and sea water after thirty days exposure	122
5.27	(a) Average percentage weight change and (b) corrosion rate of HT-1 specimens (at tempering temp. 300°, 450° and 600° C) in fresh water after thirty day exposure	122
5.28	(a) Average percentage weight change and (b) corrosion rate of HT-1 specimens (at tempering temp. 300°, 450° and 600° C) in sea water after thirty day exposure	123
5.29	(a) Average percentage weight change and (b) corrosion rate of HT-2 specimens (at tempering temp. 300°, 450° and 600° C) in fresh water after thirty day exposure	124
5.30	(a) Average percentage weight change and (b) corrosion rate of HT-2 specimens (at tempering temp. 300°, 450° and 600° C) in sea water after thirty day exposure	124
5.31	(a) Average percentage weight change and (b) corrosion rate of HT-1 specimens (at tempering temp. 300°, 450° and 600° C) in 5% NaCl + 10^{-2} mol/l sodium thiosulphate solution (pH=3)	125
5.32	Relation between mirohardness vs. tempering temperature in fresh & sea water medium	126
5.33	Relation between mirohardness vs. tempering temperature in sodium thiosulphate medium	127
5.34	Relation between impact toughness vs. tempering temperature for HT-1 & HT-2 specimens	127

5.35	(a) Base metal tafel plots in various test environments; (b) Corrosion rate of base	133
	metal in various test environments	
5.36	(a-b) Tafel plot and corrosion rate of HT-1 specimens in sea water medium; (c-d) Tafel	133-134
	plot and corrosion rate of HT-2 specimens in sea water medium	
5.37	(a) Relation between carbon equivalent and weld specimens; (b) Relation between	137
	chemical composition (carbon, silicon, manganese & sulphur) and weld specimens	
5.38	Microhardness plots for base metal, weld metal and heat-affected zone for different	138-140
	weld specimens	
5.39	Relation between average microhardness vs. carbon equivalent for weld specimens	140
5.40	Microstructure of various weld as well as heat-affected zone (HAZ) specimens at 100X	141-143
	magnification	
5.41	Impact toughness behaviour of base metal and weld specimens at in (a) weld region	144
	and (b) HAZ region	
5.42	Relation between impact toughness behaviour with carbon equivalent of base metal	145
	and weld specimens in (a) weld as well as HAZ region at room temperature (b) weld as	
	well as HAZ region at -65° C	
5.43	(a) Relation between yield strength as well as ultimate tensile strength for weld	146-147
	specimens; (b) percentage elongation for weld specimens	
5.44	Force vs. displacement graphs for (a) base metal; (b) F3RA weld joint; (c) F15B weld	147
	joint	
5.45	Visual examination of specimens before immersion into the solution	148
5.46	Visual examination of specimens after immersion into the test solution	148
5.47	Microstructure analysis of hydrogen induced base as well as weld metal specimens	149-150
5.48	(a-c) Tafel plots of different weld specimens in sodium thiosulphate and sea water	151-152
	medium	