Contents

Pag	e
гug	e

Abstract	i
Acknowledgements	iii
Contents	v
List of Figures	ix
List of Tables	xiii
List of Symbols	XV
List of Abbreviations	xvii

Chapter 1: Introduction

1.1	Properties of III-Nitride Materials	2
	1.1.1 Crystal Structure	2
	1.1.2 Polarization in III-N Semiconductors	4-8
	1.1.3 Bandgap	. 8
1.2	AlGaN/GaN Heterostructure and Concept of 2-Dimensional Electron Gas (2deg)	8
1.3	AlGaN/GaN High Electron Mobility Transistor	11
-	1.3.1 Basic Structure of AlGaN/GaN HEMT	11
	1.3.2 Substrates for AlGaN/ GaN HEMTs	12-13
	1.3.3 Working Principle of AlGaN/GaN HEMT	14
	1.3.4 Surface Traps	16
	1.3.5 Self-Heating Effect	17
1.4	Heavy Metal Ion Sensors	17
-	1.4.1 Importance of Heavy Metal Ion Sensors	18
	1.4.2 Heavy Metal Ions and Their Health Effects	19-21
	1.4.3 Classification of Heavy Metal Ions Sensors	21-24
	1.4.4 Desirable Characteristics of Heavy Metal Ion Sensors	24-25
	1.4.5 AlGaN/GaN HEMT as Heavy Metal Ion Sensors	25
	1.4.6 Advantages of AlGaN/ GaN HEMT based sensors over other methodologies	26
1.5	Motivation	27
1.6	Research Objective	28
1.7	Thesis Organization	29
Chap	oter 2: Simulation Methodology	
2.1	The Sentaurus TCAD Simulator	31
	2.1.1 Sentaurus Workbench (SWB)	31
	2.1.2 Sentaurus Device Editor (SDE)	32
	2.1.3 Sentaurus Device (SDevice)	33-35
	2.1.4 Inspect and Tecplot	35
2.2	Physical Models and Equations	35
	2.2.1 Charge Transport Equations	35
	2.2.2 Drift-Diffusion Model	36
	2.2.3 Thermodynamic Model	37
	2.2.4 Mobility Model	37-39
	2.2.5 Bandgap Model	39
	2.2.6 Tunneling Model	39-40
	2.2.7 Generation and Recombination Model	40
	2.2.8 Polarization Model	41
2.3	Validation of Simulated Results with Experimental Results and Effect of Self-Heating on	41
	Electrical Characteristics of AlGaN/GaN HEMT	
	2.3.1 Simulation Results and Experimental Validation	41
	2.3.2 Impact of Self-Heating Effect on The Electrical Characteristics of AlGaN/GaN HEMT	43
	v	

2.4	Surface Modeling of AlGaN/GaN HEMT for Ion Sensing Applications	46-49
	2.4.1 Simulation Methodology for Surface Analysis	49
2.5	Chapter Summary	50
Chan	tor a Entrication and Characterization Processor	
-	ter 3: Fabrication and Characterization Processes Fabrication Processes	F1
3.1	3.1.1 Metal-Organic Chemical Vapor Deposition (MOCVD)	51
		51
	3.1.2 Thermal Evaporation 3.1.3 RF Sputtering	52
	3.1.4 Lithography	53
- -	Characterization Processes	55 58
3.2	3.2.1 X-Ray Diffraction	50 58
	3.2.2 Atomic Force Microscopy	50 60
	3.2.3 Field Emission Scanning Electron Microscopy	62
	3.2.4 Transmission Electron Microscopy	
	3.2.5 Raman Spectroscopy	63 64
	3.2.6 Atomic Absorption Spectroscopy	•
	3.2.7 Inductively Coupled Plasma- Mass Spectroscopy	64 65
	3.2.8 Electrical Characterization Process	66
	Conclusion	66
3.3	Conclusion	00
Chap	ter 4: Process Flow for Fabrication and Characterization of AlGaN/GaN HEMT	
4.1	Epitaxial Growth of AlGaN/GaN HEMT on Si (111) Substrate	67
4.2	Structural Analysis of AlGaN/GaN HEMT Wafer	68
	4.2.1 TEM Analysis	68
	4.2.2 HRXRD Analysis	69
	4.2.3 Surface Analysis of AlGaN/GaN HEMT Wafer	70
4.3	Fabrication of AlGaN/GaN HEMT for Ion Sensing Application	70
J.	4.3.1 Formation of Source and Drain Contacts	70 71
	4.3.2 Si ₃ N ₄ Passivation	72
	4.3.3 Gate Metallization and Patterning	72
	4.3.4 Contact Extension process	74
4.4	Electrical Characterization of AlGaN/GaN HEMT	74
4.4	4.4.1 Transmission Line Model (TLM) Process	74
4.5	Chapter Conclusion	78
		, -
Chap	ter 5: Detection of Cd ²⁺ ions using MPA-GSH functionalized AlGaN/GaN HEMT	
5.1	Introduction	79
5.2	Materials Used in The Experiment	80
5.3	Functionalization Process of MPA and GSH on AlGaN/GaN HEMT	80
5.4	Measurement and Characterization	81
5.5	Real-Time Detection of Cd ²⁺ Ions	81
5.6	Determination of Sensitivity and Limit of Detection	83
5.7	Response Time and Selectivity Analysis	83
5.8	Effect of pH on The Sensing Response of The Sensor	85
5.9	Recovery, Repeatability, and Reproducibility of The Sensor	86
	5.9.1 Recovery of the Sensor	86
	5.9.2 Repeatability of the Sensor	87
	5.9.3 Reproducibility of the Sensor	88
5.10	Sensing Mechanism of The Developed Sensor for Cd ²⁺ Ions Detection	88
5.11	Comparison of The Developed Sensor Over Other Ion Sensors	89
5.12	Conclusion	90
-	ter 6: Sensitive and Selective Determination of Pb ²⁺ lons Based on 2,5-Dimercapto-1,3,4-	
	liazol Functionalized AlGaN/GaN High Electron Mobility Transistor	-
6.1	Introduction	91
6.2	Chemical used in The Experiment	92
6.3	DMTD Functionalization on The Gate Region of AlGaN/GaN HEMT	92

Page

6.4	Measurement and Characterization	93
6.5	Electrical response of DMTD functionalized AlGaN/ GaN HEMT sensor for Pb ²⁺ ions	93
6.6	Limit of Detection, Response time, and Sensitivity Analysis	94
6.7	Selectivity Analysis	94
6.8	Impact of pH on the Sensing Response of The Sensor	95
6.9	Detection of Pb ²⁺ Ions in Real Water Samples	95
6.10	Recovery and Repeatability of The AlGaN/GAN HEMT Sensor	96
6.11	Comparative Analysis of The Developed Pb ²⁺ Ion Sensor with Other Methodologies	97
6.12	Sensing Mechanism of The Detection of Pb ²⁺ Ions using DMTD Functionalized AlGaN/GaN	97
	HEMT Sensor	
6.13	Conclusion	98
Chap	ter 7: Real-Time, Ultra-Low-Level Detection of Hg ²⁺ lons by MoS ₂ Functionalized AlGaN/GaN	
HEM	T for Water Analysis	
7.1	Introduction	99
7.2	Materials utilized in The Experiments	101
7.3	Hydrothermal Synthesis of MoS ₂	101
7.4	Preparation of MoS ₂ Functionalized AlGaN/GaN HEMT Ion Sensor	101
7.5	Measurement and Characterization	102
7.6	Preparation of Solutions of Different Concentrations of Hg ²⁺ lons	102
7.7	Structural Analysis of MoS ₂	102
	7.7.1 SEM Analysis	102
	7.7.2 XRD and Raman Analysis of MoS $_2$	103
7.8	Structural characterization of MoS $_2$ functionalized layer on AlGaN/GaN HEMT	104
7.9	Electrical characterization of MoS_2 functionalized AlGaN/GaN HEMT for Hg^{2+} ion sensing	105
7.10	Calculation of Limit of Detection, Sensitivity, and Response Time	107
7.11	Selectivity Analysis of The Developed Sensor	107
7.12	Analysis of Recovery, Repeatability, and Reproducibility of the Sensor	108
7.13	Sensing mechanism of detection of Hg^{2+} ions by MoS_2 functionalized AlGaN/GaN HEMT	110
7.14	Comparison of Developed Hg ²⁺ Ion Sensor with Other Methodologies	112
7.15	Conclusion	112
Chap	ter 8: Conclusion and Future Work	
8.1	Conclusion	113
8.2	Future Work	114
List c	of Publications	117
Refer	rences	119

Page

vii

•••