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3 
3 LARGE DEFLECTION MODEL: AXIAL STRETCHING EFFECT 

 
 
 
 

3.1 Introduction 

In most of the high-speed applications such as turbo-pumps, jet engine etc, the rotor rotates 
at a significantly high speed, especially at super-critical speed. At such a high speed, a lightweight 
rotating system can be useful to reduce the critical speed. As the lightweight system is prone to 
lower stiffness, it consequently leads to a lower critical speed of the system. At high speed, the 
rotating system often undergoes large deformation under the effect of external disturbance. Major 
source of nonlinearities in the rotor-bearing system is due to the large deformation. There are 
many researchers have done work on vibration behavior of rotating systems with geometric 
nonlinearities due to large deformation of the shaft. A few researches have attempted to analyses 
on modal characteristics of the rotating system with these nonlinearities by performing the 
parametric investigation extensively.  As well as, the work has been extended to understand the 
combined effect of nonlinearities with different loading condition on bifurcation and stability of 
the system. 

In a rotating system, a flexible shaft experiences stretching of its axis during the vibration 
when free movement of the shaft’s supports in an axial direction is not allowed. This axial 
stretching introduces a nonlinear force which in turn affects the overall dynamic behavior of the 
system. Here, the hinge - hinge type boundary condition for the support of a rotating system is 
considered. Thus, the axis of the shaft gets stretched. This effect of the axial stretching has been 
considered in the formulation of the general equation of motion. The evaluation of nonlinear 
phenomena with a focus on investigating bifurcations and chaotic behavior of a flexible rotating 
system subjected to an unbalance force, harmonic ground motion and pulsating axial loading has 
been studied. The bending theory of Euler-Bernoulli has been adopted along with strain 
displacement relationship with large deformation and the mid-plain stretching phenomenon in 
the shaft element, a nonlinear mathematical model for the rotating system has been formulated 
by incorporating the effects of gyroscopic and rotary inertia also. The method of multiple scales 
is used to obtain the steady state solution of the nonlinear mathematical model and to investigate 
the overall performance of the system. 

3.2 Mathematical formulation: Equation of motion (Phadatare et al., 2017) 

In this section, the equation of motion is formulated for a nonlinear rotor-disk system 
supported by rigid bearings with nonlinearities due to axial stretching and large deflection. The 
large deflection and the axial stretching of the shaft induce nonlinearities in the system. The rotor 
system consisting of a flexible shaft with a rigid disk is shown in Fig.3.1. 
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Fig.3.1: a) A rotating system with a rigid bearing b) Elastic deformation in transverse direction 

a. Kinetic energy of the flexible shaft and rigid disk 

Considering [Atepor, 2008 and Hosseini, 2009], kinetic energy of the flexible shaft has 
been determined as an extension of the kinetic energy for an element with length L while the disk 
mounted on the rotor shaft is assumed to be rigid. The kinetic energy of the flexible shaft can be 
expressed as (Fig. 3.1) 
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Kinetic energy of the disk can be expressed as 
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Thus, total kinetic energy of the rotating system can be written as 
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Fig.3.2 :  Euler angle rotation 

 
Angular speed of the system can be expressed as following by observing Fig.3.2 

1 .Z Y ze e e   = + +           (3.4) 
Here, dot over head of the variables denotes diff. w.r.to time (t). By observing Fig.3.2, the terms 
in Eq.(3.4) can be written as  
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( ) ( )( )1 cos sin .yY ze e e   −=
        (3.6) 

Substituting above Eqs.(3.5)-(3.6) into Eq.(3.4), we get 
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As the θ becomes small, thus its higher order is neglected, and ( ) ( )cos 1, sin    . Substituting 

Eq. (3.8) into Eq.(3.4), results as 
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(3.9)

 
This is an expression of total kinetic energy of the rotor-bearing system. Here, ,  and     are the 

time derivatives of the angular displacement about the axes of Z, Y, and X, respectively.  Here 
Md, ρ, A, I are the mass of the disk, mass density, cross-sectional area and moment of inertia of 
the shaft, respectively. Dirac delta function (x-Ld) has been incorporated in order to represent the 
concentrated disk effect in a distributed system. In this equation, the first three terms represent 
the kinetic energy of the shaft and the remaining terms corresponding to the kinetic energy of the 
disk. In this, the third and sixth terms denote consideration of the gyroscopic effect.   
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b. Potential energy stored in flexible shaft element  

 
Fig.3.3 : Kinematics of a beam 

Deflection along the coordinate axis XYZ are 

, , .x y zu z y u v u w = − − = =
         (3.10) 

Point B which is at distance dx from point A gets shifted by  
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Thus, the length of the element dx after deformation become 
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Where, 𝜕𝑢𝑥/𝜕𝑥 ≪ 𝜕𝑢𝑦/𝜕𝑥 ≈ 𝜕𝑢𝑧/𝜕𝑥and √1 + 𝛽 = 1 + 𝛽/2. Thus, above equation can be 

expressed as 
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We know the values of α and θ from Fig.3.1. Thus, the longitudinal strain (deformation) in the x 
direction is given as (Shad, 2011) 
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             In Eq.(3.15), first two terms denotes linear strain-displacement relationship and the other 
terms denote nonlinear strain-displacement relationships due to consideration of the higher order 
deformation. The strain energy of the shaft can be given as,  
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By substituting the relation σ xx = Eεxx, the strain energy can be expressed as 
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By using Eq.(3.15), the above equation can be written as 
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By expanding the above, we get 
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The cross-section of the rotor is symmetric; thus the 3rd and 7th terms can be neglected from this 
equation. Therefore, the equation can be rewritten as 
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Also, 𝐼𝑧 = ∫ 𝑧2𝑑𝐴 , 𝐼𝑦 = ∫ 𝑦2𝑑𝐴 , 𝐼 = 𝐼𝑦 = 𝐼𝑧 (due to symmetry). 

Thus, the above equation becomes, 
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The total strain energy of the rotor system can now be expressed as 
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Here, EA and EI are considered as axial rigidity and flexural rigidity, respectively. Hinge-hinge 
type support at the both shaft ends is considered. As a result, the support condition does not 
allow the shaft ends to move along the axial direction. Thus, an axial force NA will be applied on 
the shaft during its bending. This force contributes in the potential energy of the shaft and it can 
be expressed as, 
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Where, NA can be written as, 
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By considering the effect of the axial stretching (Eq. (3.23)). The equation for the strain energy (i.e 
Eq. (3.22) ) can be expressed as follow, 
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c. Approximate Numerical Model 

A displacement shape function is approximated by employing Rayleigh’s method for the 
continuous system. Displacements in the y and z directions can be expressed as, v = V(t) φ(x) and 
w = W(t) φ(x),where, V and Ware generalized independent coordinates and φ(x)is the shape 
function. First mode shape of the shaft with a constant cross section having the hinge-hinge 
supports at the both ends can be expressed as 

( ) 2 2 sin( / ),x x L =          (3.26) 

The angular displacements can be approximated as, 
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Here, ( ) ( ) ( ) ( ) ( ),  g x x h x g x x  = = = . The prime indicates the derivative with respect to x. 

Now, using the above expressions (Eq.(3.27)), the total kinetic energy of the rotating system 
(Eq.(3.9)) in a precise form can be written as, 
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The total strain energy of the rotor system (Eq. (3.25)) can be expressed as, 
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d. Hamilton’s Principle: Derivation of Equations of Motion 

The Hamilton principle is applied on the kinetic and strain energies of the rotating system which 
is given by equations (3.28) and (3.29) in the form  
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The two terms in the right-hand side of above equation are treated separately, the first term gives, 
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Different terms in the above equations are expanded as below, 
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The second term in the above equation gives, 
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The two terms on the right side of the above equation give, 

( )
2 2

1 1

33 2
1 2 3

1
(   
2

)
t t

t t

U
Vdt F V F F V VW Vdt

V
 

  
= + +   

+  .      (3.37) 

( )
2 2

1 1

3 2
1 2 3

1
)(

2

t t

t t

U
Wdt F W F F W WV Wdt

W
 

  
= + +   

+  .     (3.38) 

By collecting the terms of type 𝛿𝑉𝑑𝑡 and 𝛿𝑊𝑑𝑡 from Eqs.(3.33)-(3.38) separately, then following 
equations can be obtained, 
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By simplifying and re-arranging the above equations (Eqs. (3.39)-(3.40))), it results in 
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These can be further written as, 
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Here𝜗1 = 𝑎2/𝑎1,   𝜗2 = 𝐹1/𝑎1,   𝜇1 = 𝐹2/𝑎1,   𝜇2 = 𝐹3/𝑎1. It has been observed that the equations of 

motion consist of terms (i.e. Ω2𝜗1𝑊 ̇ &  Ω2𝜗1𝑉̇) due to gyroscopic effect, nonlinear coupled terms 
( i.e., 𝑉3 + 𝑉𝑊2 & 𝑊3 + 𝑊𝑉2) due to geometric nonlinearity of the shaft.  

e. Considering a flexible bearing support (Atepor,2008) 

The mathematical expressions are derived for the rotating system by considering the 
flexible bearings as a support at the ends of the shaft. The bearings are modeled as an 
equivalent spring-damper system having linear and nonlinear stiffness elements as 
shown following Fig.3.4. 

 
Fig.3.4: Conceptual spring-damper equivalent model for the bearings 

 
The strain energy stored in the bearings can be expressed as 
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3 3

0 0

3 3

0

1
( ) ( )

2

1
( ) ( )
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L

b l nl l nl
x

L

l nl l nl

x L

U K v K v v K w K w w dx

K v K v v K w K w w dx

=

=

 = + + + 

 + + + + 



       (3.45)  

The total strain energy of the rotating system (Eq. (3.29)) can be expressed as, 

( ) ( ) ( ) ( )
2 22 2 2 2 42 21 43 62

2 4 28

F FF F
U V W V W V W V W= + + + + +++     (3.46)  

Where, 

( )
22

2 2 4 4
1 0 6 02 0 0

0

( ) , ( ) .
L

L L

l x x L nl x x LF EI x dx K dx F K dx
x
    = = = =

 
= + + = + 

 
      (3.47) 

Where, Kl and Knl are linear and nonlinear bearing coefficients of the bearings respectively. 
Dirac delta function has been incorporated to represent the bearing effect in the distributed 
system.   

The displacements in the y and z directions can be expressed as, v = V(t) φ(x) and w = W(t) 
φ(x), where, V and W  are generalized independent coordinates and φ(x) is the trial function, and 
it has been considered as the normalized 1st mode shape of the shaft with the bearing support and 
it is given as 

( ) ( ) ( )  ( ) ( )( )
( ) ( )  ( ) ( )( )

( ) ( ) ( )

3 3

3

3 3

cos cosh 2 sinh sin sinh

sinh sin cos cosh
( )

cos cosh 2 sin

l

l

EI EI K L x xL L

L L

L L L

EI x x
x

EI EI K

      

   




    

− + + +

− +
=

− +
.  (3.48) 

This satisfies boundary conditions as 
At x = 0,              

0 0 0 0( ), 0, ( )0, l b l bv K V c V w w K W c Wv EI EI  = − + = = − + =  

At x = L,                ( ), 00 , ( )., l l b l l l b lv K V c V w w K W c Wv EI EI   = + = = = +  

Here, the first mode of the vibration has been considered for further analysis since this mode of 
the vibration is found to be dominant one. The equations of motion of the system (i.e. Eqs (3.43)-
(3.44)) can be modified to include the effect of the bearings as expressed below. 

 3 2 31
2 1 2 2 4 0,

2
V W V V VW V cV


   

 
− + + + + + + = 

 
     (3.49) 

 3 2 31
2 1 2 2 4 0.

2
W V W W WV W cW


   

 
+ + + + + + + = 

 
     (3.50) 

Where, 
4 6 12 /F a =  and c is a viscous damping of the system. It is observed from the above 

equations that the terms 3
4V / 3

4W denote nonlinear effect of the bearing. 

 

f. Excitation of an unbalance mass 

Error in a mechanical system is introduced either at the designing level or manufacturing 
level or assembly level or during a long-running of the system. One of the major errors in a 
rotating system is an unbalance which produces a harmonic load on the system during the 
running condition. The unbalance presence in the system may be due to an error in 
manufacturing/wear due to long run or improper assembly of rotating parts or extra added mass 
due to welding or the bolting 

In this section, mathematical expressions are formulated to investigate the shaft-disk 
system under influence of an excitation due to an unbalance mass.  
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Fig. 3.5: Unbalance mass position 

 
 The unbalance mass has been positioned at distance r1 from the geometric center of the 
shaft. 
Thus 

+ 
=

+ 

1 2

1 2

cos

sin

v r t
OG

w r t
          (3.51) 

Differentiation OG w.r.to time to get velocity as 

−  
=

+  

1 2 2

1 2 2

sin( )( )

cos( )

v r tOG

w r tt
         (3.52) 

We know that the expression for the kinetic energy is  

 =

= + −   +   + 

2

2 2 2 2
1 2 2 1 2 2 1 2

1
( ) / )

2
1

( 2 sin( ) 2 cos( ) )
2

u u

u

T m OG t

m v w r w t r v t r
    (3.53)

 

The effect of mass of the unbalance in the kinetic energy of transverse direction is small compared 
to mass of the rotor. So, it can be neglected. Thus, the kinetic energy due to the unbalance has 

been expressed as [Apter, 2008; Rizwan, 2011 and Hosseini, 2009].  

( )1 2 2 2
2

12 cos sin .
2

u
u u

m
T m r v t w t r= − +          (3.54)

 Here, mu, r1 denote the unbalance mass and an eccentricity of the unbalance with respect 
to the geometric center of the shaft during operational conditions. The equation of motion of the 
system i.e. Eqs.(3.43)-(3.44) can be modified to include the effect of the unbalance mass.  After 
some manipulation, it can be represented as   

( ) ( )    
 

− + + + + + =   
 

3 2 2
2 1 2 1 2 2 1 2

1
cos

2
u dV W V V VW cW m r L t .   (3.55) 

( ) ( )    
 

+ + + + + + =   
 

3 2 2
2 1 2 1 2 2 1 2

1
sin .

2
u dW V W W V W cW m r L t    (3.56) 

It has been observed that the equations of motion comprise linear damping terms ( i.e., 

Ω𝜗1𝑊̇ + 𝑐𝑉̇ Ω𝜗1𝑉̇ + 𝑐𝑊̇) due to the gyroscopic effect in addition to the linear viscous effect, 

nonlinear geometric coupled terms ( i.e., 𝑉3 + 𝑉𝑊2/𝑊3 + 𝑊𝑉2) due to the mid-plane stretching 

effect  and the large deformation of the shaft, and forcing terms ( i.e., 𝑚𝑢Ω2
2𝑟1𝜑(𝐿𝑑) 𝑠𝑖𝑛 Ω 𝑡/

𝑐𝑜𝑠 Ω 𝑡) due to the mass unbalance. The effect of higher order terms has been neglected. Since the 
governing equation of motion consists the nonlinear terms, the exact solutions are not available 
as obtaining closed form is somehow difficult. Therefore, the perturbation approach can be used 
to find an approximate solution which is described in the following section. 
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Perturbation Techniques: Solvability Conditions 
Time Scaling: 

Here, the method of multiple scales is used to find the solution of Eqs (3.55) and (3.56). By 
following the standard procedures in [Nayfeh, 1995], the displacements (V, W) can be represented 
in terms of different time scales (T0, T1)  for first order solutions and a book keeping parameter ε 
as follows: 

( ) ( ) ( )0 1 0 0 1 1 0 1, , ,V t V V V T T V T T  = + = + .       (3.57) 

( ) ( ) ( )0 1 0 0 1 1 0 1, , ,W t W W W T T W T T  = + = + .      (3.58) 

Here, Tn=εnt are slow time scales, while T1 is slower than T0 and ε is a small dimensionless 
parameter. T0 represents a fast time scale. It signifies the motions occurring at the spin rates Ω2 

and the natural frequencies ωn of the rotor system. T1 represents a slow-time scaling and it 
signifies the amplitude and phase variation due to damping, nonlinearity, and resonance. The 
first and second time derivatives are given by  

( )2
0 1

d
D D O

dt
 = + + + ,        ( )

2
2 2
0 0 12

2
d

D D D O
dt

 = + + + .    (3.59) 

Here,
0 0/D T=    and

1 1/D T=   .  

Treatment of the coefficients: 
The nonlinear, damping and forcing terms in the equations have been scaled such that it has the 
same level of ε order as μ1=εμ1, μ2=εμ2 and mu=mu. However, θ1=θ1 and θ2=θ2.These assumptions 
in the time scaling consider the damping terms at a same level of the nonlinear forces. It is needed 
to obtain the nontrivial solution of the equations of motion. By substituting Eqs.(3.57) - (3.59) into 
Eqs (3.55) and (3.56), we get 
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Then, collecting the coefficients of the like powers of ε, so the above equations can be 
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   (3.62) 
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   (3.63) 

Then, we can express the above equations as  
System of order 0 equations (ε0): 

2
0 0 2 0 2 1 0 0 0D V V D W + + =          (3.64) 
2
0 0 2 0 2 1 0 0 0D W W D V + − = .         (3.65) 

System of order 1 equations (ε1): 

( )

 
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Secular terms: 
The general solution of Eqs (3.64)and (3.65) can be written as, 

( ) ( ) ( ) ( )0 1 1 1 2 1 2exp expV D T i t D T i t cc = + +        (3.68) 

( ) ( ) ( ) ( )0 1 1 1 2 1 2exp exp .W iD T i t iD T i t cc = − +       (3.69) 

Here, ω1 and ω2 are backward and forward natural frequencies of the system and cc represents 
the complex conjugate. By substituting Eqs.(3.68)-(3.69) into Eqs.(3.66)-(3.67) lead to the following 
two equations 
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 (3.71) 

Here, the cc stands for the complex conjugate. Even, the response of the system is bounded but 
the solutions of the system at some conditions will not be bounded due to the existence of the 
secular terms in Eqs.(3.70) -(3.71).  
 
Solvability condition: 
To get condition of solvability, we assume a particular solution of V1 and W1 in the form, 

( ) ( ) ( ) ( )1 1 1 1 1 1 2exp expV P T i t Q T i t cc = + +
       (3.72)

( ) ( ) ( ) ( )1 2 1 1 2 1 2exp exp .W P T i t Q T i t cc = + +
      (3.73) 

Substituting these equations to the left side of Eqs.(3.70) -(3.71), Then the coefficient of eiω1t of the 
resulting equations (LHS) are 

2
11 1 2 1 1 1 2 12 ,R i PP P   =  − +

        (3.74) 
2

12 2 1 1 1 2 1 2 2 .R i P P P   = −  − +
        (3.75) 

Then the coefficient of eiω2tof the resulting equations (LHS) are 
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2
11 2 1 2 2 1 2 2 1S i Q Q Q   =  − +

        (3.76) 
2

12 2 1 1 2 2 2 2 .S i Q Q Q   = −  − +
        (3.77) 

It may be noted that Eqs.(3.70) -(3.71) has secular or small divisor terms when the system is 
subjected to following resonance conditions.  
(𝑖). Ω2 = 𝜔1,  (ii). Ω2 = 𝜔2. In the following subsections, the resonance conditions are observed 
when the frequency of the unbalance is nearly equal to the backward and forward natural 
frequency of the system 𝑖. 𝑒. , Ω2 = 𝜔1, and  Ω2 = 𝜔2. 
 
i)  Case of Ω𝟐 ≈ 𝝎𝟏 

Substituting  Ω2 = 𝜔1 + 𝜀𝜎1,(where σ1 is a detuning parameter for controlling the nearness of  Ω2 
to ω1) into Eqs.(3.70) -(3.71), we get 
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            (3.79) 

So the secular terms related to 𝑒𝑖𝜔1𝑡on the right side of the Eqs.(3.78)-(3.79) are 
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So the secular terms are related to 𝑒𝑖𝜔2𝑡 on the right side of the Eqs.(3.78)-(3.79) are 
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Thus, solvability conditions can be written using Eqs. (3.74)-(3.77) and Eqs.(3.80)-(3.83) as 
(Hosseini et al, 2005) 

2 2
1 2 2 1 1
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      (3.84) 
By solving the above equations, the solvability equations can be 
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Modulation of equations 
Substituting the solutions of D1 and D2 of the polar form i.e., 𝐷𝑛 = (1/2)𝑎𝑛 𝑒𝑥𝑝(𝑖𝜑𝑛) where n = 1, 
2 into Eqs.(3.85)-(3.86), then the real and imaginary parts have been separated. It results into an 
autonomous system of four first order partial differential equations which have been expressed 
as 
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Here,𝛼 = −𝜑1 + 𝜎1𝑇1. For the steady state and equilibrium solutions, one may set up 𝑞2
/

= 0, and 

𝛼/ = 0. Nontrivial solutions exist and we can use equations 𝑎1 = 𝑎10 + 𝑎1
/
, 𝑎2 = 𝑎20 + 𝑎2

/
 and 𝛼 =

𝛼0 + 𝛼
/

into above equations to find the stability of the steady state responses for the perturbation 

analysis and then to investigate the eigen-values of the resulting Jacobian matrix (J).  
 
ii) Case of Ω𝟐 ≈ 𝝎𝟐 
Adopting similar approach for the case of taking Ω2 = 𝜔2 + 𝜀𝜎1 , we obtained the following 
autonomous system of four first order partial differential equations as follows. 
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Here, 𝛼 = −𝜃2 + 𝜎1𝑇1. For steady state and equilibrium solutions, one may set up 𝑞2
/

= 0, and 𝛼/ =

0. Nontrivial solutions exist and the stability of the steady state responses can be obtained by 

perturbing Eqs. (3.88) with 𝑎1 = 𝑎10 + 𝑎1
/
, 𝑎2 = 𝑎20 + 𝑎2

/
 and 𝛼 = 𝛼0 + 𝛼

/
and then analyzing the 

eigen-values of the corresponding Jacobian matrix (J). This set of autonomous equations is useful 
to determine the stability and bifurcation of the steady state response of the system near the 
resonance condition and the characteristics are plotted using the frequency response plots. 
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3.3 Excitation of a base motion and an unbalance mass 

There are unpredictable external excitation/uncertain means which affect the dynamic 
behavior and proper functioning of the system. One of the excitations is a base motion. In heavy 
industries, processing machines are installed with a rigid base support, but the vibration of 
surrounding machines gets transferred to the base of the machine and affects the system overall 
performance. Earthquake or loose/improper construction of the base is also another source of a 
base excitation. In automobiles, the rotating parts are always subjected to base motion during 
riding over bad roads or bumpers. 

In this section, an investigation of the stability and bifurcation of a nonlinear rotor-disk 
system supported by rigid bearings under excitations of base motion and unbalance mass. The 
mathematical expressions are formulated to analyze the dynamic behavior of a shaft disk system 
having transverse movement of the support by taking into account the effect of the nonlinearities 
due to higher order deformation in bending and axial stretching. 

3.3.1 Analysis 

The rotor system consisting of a flexible shaft, rigid disk and rigid bearings is shown in Fig. 
3.6, which subjected to ground motion cosZ Z ta = .  

 
 

Fig. 3.6: A rotor bearing system under moving platform 
 

The kinetic energy of the rotating system with the base excitation is derived by extending 
Eq. (3.9). Thus, the expression for the kinetic energy of the rotor-bearing system with the moving 
platform can be written as. 
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Here, Za, and ωe are a magnitude and a frequency of the moving platform. The equations 
of motion of the system (i.e. Eqs (3.43)-(3.44)) can be modified to include effects of the base motion 
and the unbalance. After some manipulation, it can be represented as  
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The expressions for coefficients (
1 2 1, and   ) have been already expressed in the previous 

sections and additional coefficient (γ ) can be expressed as 

Za cos (ωet) 
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It has been observed that the equations of motion comprise the nonlinear terms and forcing 

terms (i.e., 𝑚𝑢Ω2
2𝜇1𝜑(𝐿𝑑) 𝑠𝑖𝑛 Ω2 𝑡 + 𝛾𝑍𝑎𝜔𝑒

2 𝑐𝑜𝑠 𝜔𝑒 𝑡) due to the mass unbalance and the base 
excitation in transverse direction. Since the governing equations of motion (i.e., Eqs.(3.90)-(3.91)) 
contain the nonlinear terms, an approximate solution for the system of equation can be sought by 
using the perturbation approach. A similar treatment of the method of multiple scales as 
described in the previous section is adopted. Then, it results into following equations for order 1 
of ε 
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Eqs.(3.93)-3.13 have secular or small divisor terms when the system is subjected to 
following resonance conditions.  

1 2

2 1 2 2

2 1 2 2
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(v). ,     (vi). .

e e

e e

   
 

   

= =

 =  =

= = = =

 

In order to obtain a bounded solution, the secular or small divisor terms are required to be 
removed. In the next subsections, the resonance conditions are discussed when frequency of 
harmonically varying support motion is nearly equal to the backward and forward natural 
frequency of the system 𝑖. 𝑒. , 𝜔𝑒 = 𝜔1, and  𝜔𝑒 = 𝜔2. 
 
 
 
Resonance condition: 𝝎𝒆 ≈ 𝝎𝟏 

Substituting the solutions of D1 and D2in the polar form i.e., 𝐷𝑛 = (1/2)𝑎𝑛 𝑒𝑥𝑝(𝑖𝜑𝑛) where n 

= 1, 2 in the resulting equations which is obtained by substituting, 𝜔𝑒 = 𝜔1 + 𝜀𝜎1, where σ1 is a 

detuning parameter for controlling the nearness of 𝜔𝑒 to ω1 into (3.93) - 3.13. To determine the 
solvability conditions, equating the coefficients of exp (iω1T0) and exp(iω2T0) on both sides of the 
resultant equations and then separating the real and imaginary parts. It results into an 
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autonomous system of four first order partial differential equations which have been expressed 
as 
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Here,
1 1 1.T  = − + For the steady state and equilibrium solutions, one may set up

/ /
1 0,  and 0a = = .  

 
Resonance condition: 𝝎𝒆 ≈ 𝝎𝟐 

Adopting the similar approach for the case of taking  𝜔𝑒 = 𝜔2 + 𝜀𝜎1 , we obtained the 
following an autonomous system of four first order partial differential equations. 
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Here, 𝛼 = −𝜑2 + 𝜎1𝑇1. The values of / /
1  and a  in above equations have to be neglected to obtain 

the steady state and equilibrium solutions of the system. Nontrivial solutions exist and to find 

the stability of the steady state responses, one may perturb Eqs. 3.16 with 𝑎1 = 𝑎10 + 𝑎1
/
, 𝑎2 =

𝑎20 + 𝑎2
/
 and 𝛼 = 𝛼0 + 𝛼

/
and then investigating the eigen-values of the resulting Jacobian matrix 

(J).  
 
Resonance condition: 𝝎𝒆 ≈  Ω𝟐 ≈ 𝝎𝟏 

The similar procedures as that of adopted in the previous sub-sections have been used for 

the case of 𝜔𝑒  ≈ 𝜔1. A similar autonomous system of four first order partial differential 
equations  has been obtained where   and  can be expressed as −𝜃1 + 𝜎1𝑇1 and term 𝛾𝜔𝑒

2𝐵0can 

be rewritten as (𝛾𝜔𝑒
2𝐵0 + 2𝑚1Ω2

2𝜇1).  The zero steady state response amplitude may observe for 

𝑎2and one may set up 𝑎1
/

= 0, and 𝛼/ = 0 for obtaining the non-trivial solution for 𝑎2 at steady 
state conditions. Nontrivial solutions exist for above equations and the stability of the steady state 
responses can be determined by investigating the eigen-values of the Jacobian matrix (J). 

 

3.3.2 Results and discussion 

In all the simulations, the rotor system has been considered with the shaft length L = 0.5 m, 
shaft radius Rs=0.01 m, disk radius Rd=0.12, disk position Ld = L/3, damping constant c = 0.001 N-
s/m and material with Young’s modulus E and density ρ equal to 2x 1011 N/m2 and 7800 kg/m3, 
respectively. Numerical calculations have been carried out for free and forced vibration analysis 
with a ground excitation. The forced vibration analysis with the ground motion has been 
investigated to obtain the frequency response curves under steady-state conditions along with 
nonlinear attributes accompanied by chaotic behaviors under the changes of design parameters 
such as the amplitude of the ground motion, the mass of disk, location of disk and radius of the 
shaft. Thus, Sect. 3.3.2(a) shows the influence of geometry and material properties of the shaft on 
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the forward and backward whirl speeds, while Sect. 3.3.2(b) displays the chaotic behaviors, i.e., 
reveals the route to chaos from the quasi-periodic response. Section 3.3.2(c) demonstrates the 
steady-state responses under variation of the various system variables for the resonance 
conditions. 

a. Critical Speeds: Campbell diagram 

The forward and backward whirl frequencies of the shaft depend on the rotor geometry 
and material properties of the shaft. In the present investigation, the material properties have 
been considered to be the same, and the analysis has been made for changing the rotor geometry. 
Effects of the various parameters springing up from the geometry of the rotor shaft have been 
illustrated to find the forward and backward whirl frequencies. 

 

        
 

Fig.3.7: Effect of a location of the disk on the both linear and nonlinear forward and backward natural 
frequencies 

 
Figure 3.7 illustrates the variation of the critical speeds for the different disk positions. It 

has been clearly observed that the whirling speeds of the rotor are significantly influenced by the 
location of the disk, while the critical speed decreases with the disk position move away from the 
bearing end. It is also indicated that the rotor shaft system operates with a single frequency when 
the location of the disk is at the mid-point of the shaft element since the effect of the gyroscopic 
couple is neutralized at this location. Hence, the difference between forward and backward 
speeds increases when the disk position is moving away from the midpoint. The natural 
frequencies are influenced by the nonlinear terms due to the mid-plane stretching and appeared 
to be higher value with the presence of the nonlinear coupling terms. However, the behavior 
patterns are observed to be similar as that of the linear part. This is considered to be crucial 
because the effective spring constant gets increased with the mid-plane stretching or geometric 
nonlinearity. Hence, slope, i.e., 

2/N   is found to be constant for the both linear and nonlinear 

frequencies, but an unceasing change in the natural frequencies has been observed for the 
nonlinear effect. 
 

(a) (b) 

Ω2 Ω2 
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Fig. 3.8: Effect of a mass of the disk on the both linear and nonlinear forward and backward natural frequencies 

 
Figure 3.8 shows that with the increase in the disk mass, the effective mass of the system 

increases, and as a result, the natural frequencies are observed to be decreased. Moreover, the 
slope, i.e., 

2/N   remains same irrespective of the disk mass. A constant change in the 

amplitude has been noticed when the geometric nonlinearity has been introduced. However, the 
difference between the frequencies keeps constant with the change in the mass of the disk. Apart 
from this, the critical speed almost maintains at a constant value and it fluctuates between 250 to 
300 rad/s. The effect of changing the shaft radius on the critical speeds is demonstrated in Fig.3.9. 
Here, one may notice that with an increase in the shaft radius, the whirling speed significantly 
increases while both the forward and backward natural frequencies coalesce almost to a single 
value for a higher shaft radius. When the external excitation corresponds with one of the critical 
speeds, the system undergoes a response with high amplitude in both the directions. Further, the 
nonlinear natural frequencies have greatly been influenced by the radius of the shaft and are 
observed to be higher slope, i.e.,

2/N  for a moderately high value of the shaft radius. 

Therefore, the evaluation of a Campbell diagram exhibits the insight picture of the critical speed 
of the rotor-bearing system when the geometry of the rotor shaft is being varied. The geometric 
changes may cause a catastrophic failure if the system is operated at a frequency equal to that of 
one of the critical speeds for the same material property. Hence, the operator must ensure that 
the running speed must not meet one of the resultant critical speeds for every distinct 
configuration of the rotor geometry to avoid a sudden catastrophic failure. 

 

 
 
Fig.3.9:  Effect of the shaft diameter on both linear and nonlinear forward and backward natural frequencies 
with the disk 

(a) (b) 
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Ω2 
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Fig.3.10 : Linear forward and backward natural 

frequencies using the Euler and Timoshenko 

theory; L=0.5m 

 Fig.3.11: Linear forward and backward natural 

frequencies using the Euler and Timoshenko theory; 

L=0.06m 

Figures 3.10-3.11 draw a comparison between the natural frequencies by taking both the 
Euler and Timoshenko beam models into account for the two shaft lengths equal to 0.5m and 
0.15m. It is observed that the differences of the whirling speeds between these two models are 
found to be negligible for the shaft length equal to 0.5m. But, when a length of the shaft becomes 
less than 0.15m, then difference of the results is noticeable. Therefore, the effect of shear 
deformation and rotary inertia is negligible for the shaft length L ≥0.15 m. Hence, the present 
model derived based on the Euler theory is itself sufficient to predict a correct value of the critical 
speeds and the dynamic responses under various similar working conditions for the shaft length 
L ≥0.15 m. 
 

 
Fig. 3.12: Time history of the free vibration of v (→  Y) and w (→   Z) directions. 

 
Figure 3.13 shows the time history for V and W under initial conditions 0.01, 0.0,V V= = 0.0,W =

and 0.0.W = It is observed that even though the rotor-bearing system is being excited in the X –
Y plane, the vibration, however, strongly exists in other directions also due to strongly nonlinear 
coupled terms, i.e., V3+VW2 and W 3+WV2. Further, the amplitude of vibration stabilizes quickly 
in the orthogonal direction (W → Z) than the time taken in the excited direction (V → Y) 

 

 

 Ω2 Ω2 

(a) 
(b) 
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b. Nonlinear Phenomenon: Chaotic Behavior 

Some critical observations to illuminate the presence of nonlinear phenomena accompanied 
with chaotic behavior or route to chaos have been studied upon gradually varying the design 
parameters. 

 

     
 

     
 

      

      
 
 
Fig.3.13:  Effect of external frequency (Ω2) on the dynamic performances of the rotor-bearing system; Me=0.12 kg, 
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These graphical observations have been obtained by numerically integrating Eqs.(3.90)-(3.91) 

with the initial conditions (0) 0.01, (0) 0,V V= = (0) 0,W = and (0) 0W = , moreover these are 

portrayed in  Fig.3.13 -3.15. An effect of the shaft spins speed (Ω2) on the dynamic behavior is 
illustrated in Fig.3.13 through a time history, Fourier spectrum and Poincare’s map. The time 
history has been transformed into the frequency domain, i.e., Fourier spectrum to closely observe 
the nature of responses which may enable to interpret the critical value of control parameters 
dealing with the chaotic behaviors, as shown in Fig.3.13(i). However, here, the route to chaos has 
clearly been visible and clearly depicted in the Poincare’s map combined with the FFT for a wide 
range of the shaft spin speed. Incommensurate relation between the natural frequencies and the 
rotational speed has been found and leads a quasi-periodic motion clearly evident by a closed 
curve in the Poincare’s map as shown in Fig.3.13(c) rather aperiodic motion when the spin speed 
is 50 rad/s. As the rotational speed increases from 50 to 250 rad/s, the closed curve in the 
Poincare’s map that characterizes a quasi-periodic motion and period doubling as depicted in 
Fig.3.13(f) become distorted and finally breaks into torus doubling resulting in a chaos. When the 
spin speed becomes closer to either one of the natural frequencies, the points in the Poincare’s 
map appear as a cloud unorganized points in the state space rather than a closed orbit which 
represents indeed a chaotic shown in Fig.3.13(l). Furthermore, a strong connection between the 
spin speed and the natural frequencies has been qualitatively observed, and as the control 
parameter increases, the torus shape becomes distorted and looks like a hexagonal in Fig.3.13(i). 
This change may be happened as the torus grows and gets closed to the six fixed points 
corresponding to a period-6 saddle orbit. Hence, the spin speed of the shaft strongly exhibits the 
chaotic nature of behaviors when its value reaches to one of the critical natural frequencies and 
externally induced frequency from the ground motion. 
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Fig.3.14: Effect of external amplitude (

aZ ) on the dynamic performances of the rotor-bearing system. 

 
Influences of external amplitude (Za) on nonlinear characteristics have been investigated 

by demonstrating time history, FFT and Poincare’s map for Za equal to (0.001, 0.005, 0.01) mm in 
Fig.3.14. A quasi-periodic scenario followed by a chaotic behavior is strongly exhibited when the 
amplitude of excitation (Za) is being varied. For a low value, a quasi-periodicity occurs due to the 
presence of Hopf bifurcation supported by the presence of incommensurate frequencies which 
are clearly depicted in Fourier spectrum. As the Za increases, transition to chaos from the quasi-
periodic motion through the distortion of torus shape has been observed. Hence, the external 
amplitude may play a decisive factor whether to make the system stable by controlling its 
magnitude (Fig.3.14). 
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Fig. 3.15: Effect of initial conditions on the dynamic performances of the rotor-bearing system. 

 
Thus, it has been observed that the chaotic behavior exists when the control parameter 

passes through its critical value. Therefore, small changes in the initial conditions may result 
widely diverging outcome, and hence, sensitivity of choosing the initial conditions may play a 
crucial role to investigate the diverging behavior of highly coupled a nonlinear rotor-bearing 
system. Thus, here the effect of initial conditions on the dynamic behaviors has been 
demonstrated through a time history, FFT and Poincare’s map as shown in Fig. 3.15 It has been 
noticed that while one set of the initial condition provides a deterministic behavior with no 
random components involved, the same configuration may results the futuristic behavior as 
deterministic chaos under other initial condition. 
 

c. Frequency Responses: Steady State Solutions 

For ensuring a safe, smooth and effectual operation, it is considerably important to have 
a very good understanding of the steady-state solutions and auxiliary bifurcations of the system 
embraced with essential features. Here, a relation between vibration amplitude and external 
frequency of the steady-state rotor-bearing system has been obtained to render some interesting 
design guidelines and suggestions about the operational flexibilities. The steady-state behavior 
has been explored over a wide range of the parametric configurations for three distinct resonant 
conditions. The effect of various control parameters on the vibration amplitude has been 
discussed when the external excitation is matching with one of the system natural frequencies. 
While solid lines in the frequency response curves represent stable/bounded solutions, dotted 
lines represent the unstable/unbounded solutions. It can be observed that the effect of 
nonlinearity causes the frequency curves to bend rightwards from the position of the linear 
response. This phenomenon is generally known as hardening spring behavior as the response 
curve becomes asymmetric and inclined towards higher frequencies. In order to empathize the 
control behaviors as a result of varying of design parameters, two resonance conditions, 

i.e., 𝜔𝑒𝜔1, and 𝜔𝑒𝜔2, have been considered, while resonance condition ωe≈ ω1 has been selected 
to comprehend the behavioral effect of mass imbalance. 
 

 
I. Effect of amplitude of ground disturbance 

Figure 3.16 illustrates the effect of amplitude of ground motion Z0 equal to 0.01 m, 0.001 m and 
0.0001m on the frequency response curves when the external frequency is nearly equal to the 

forward whirl speed {𝜔𝑒𝜔1} and the backward whirl speed {𝜔𝑒𝜔2}. It is noted that the saddle–
node bifurcation gets shifted towards a right to cover a greater range of the external frequency 
(σ) when amplitude of the external excitation increases.  Amplitude of the vibration gets higher 
with an increase in the magnitude of the external excitation. With an increase in the magnitude 
of the ground excitation, S–N bifurcation which is accountable for jump-up phenomena starts at 
a higher frequency while the jump length, i.e., a length indicating the jump of amplitude, gets 

(g) (h) 

  
 

  
 

(i) 
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escalated. With increase in the magnitude of the excitation, the S–N bifurcation is gradually 
disappeared from the frequency response curves, and the system becomes SISO, i.e., single input–
single output, while for a low value of the amplitude, the system can be, however, brought down 
to the equivalent linear system 

        
 

Fig. 3.16: Influence of external amplitude on the frequency response curves. 

 
II. Effect of disk location   

Figure 3.17 shows an effect of the disk position Ld equal to 0.2 m, 0.166 m and 0.1 m from the 
one of the bearing ends on the frequency response characteristic. The resonant curves show more 
strongly bending towards the right when the disk moves away from the mid-position of the shaft. 
The vibration amplitude gets its maximum when the disk is at a mid-point. It is noteworthy to 
observe that while maximum amplitude remains nearly the same for ωe≈ ω1, the amplitude of 
vibration gets decreased for ωe≈ ω2 with the variation of disk location considering the same system 
configuration. While the bifurcation point remains unaltered, the jump length reduces as the disk 
moves away from the mid-position. Hence, the chances of catastrophic failure due to a sudden 
jump can be attenuated by repositioning of the disk. 

 
 

Fig.3.17: Variation of a location of the disk on the frequency response curves. 

 
III. Effect of mass of the disk 

Figure 3.18 demonstrate  es an effect of the disk mass Md equal to (9, 10.5, 12) kg to interpret 
the advance indication of instability due to bifurcation. A similar nature of the resonant curves 
has been, however, observed and bends more strongly towards the right as the mass of the disk 
increases. With an increase in the disk masses, the response amplitude gets increased while a 
minimal impact on jump length as it remains constant for nearly all values of the disk mass. It 

a1 

 
 

a2 

a1 a2 

σ σ 

σ σ 



 
 

51 
 

has also been observed that the jump phenomena start at the frequencies within a narrow range 
105 ≤σ ≤125. 
 

 
Fig.3.18: Variation of a mass of the disk on the frequency response curves. 

 
.  

IV. Effect of shaft radius    
The effect of shaft radius to investigate the steady state behavior for the shaft radius equal to 

(0.02, 0.01, and 0.005) m has been illustrated in Fig.3.19. It is observed that the resonant curves are 
flexed towards the higher frequency when the shaft radius is altered. As the shaft radius 
increases, the amplitude of responses gets increased. Further, the jump-up phenomena is almost 
disappeared for a narrow shaft. As a result, the flexible rotor-bearing system can be simplified 
with a linear model comprising discrete spring-mass-damper elements when the shaft radius 
becomes small. In addition, it is noteworthy that since the bifurcation starts at higher external 
frequency, the system can safely operate under frequency range σ ≤ 250, and hence, chances of 
catastrophic failure due to the S–N bifurcation may reduce with increase in a radius of the shaft 

 

  
 

Fig.3.19: Variation of radius of the shaft on the frequency response curves. 
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Fig.3.20:  (a) Time history and phase portrait at the pointsP1, P2, P3  (Fig. 3.16)  (b) Time history (3.17) 

 

 

       
 

Fig.3.21: Time history and phase portrait at the point (Fig. 3.16) with initial point 0.001, 0.001. 

 
However, the results obtained using first-order MMS are validated with the results obtained by 
numerically solving the temporal equations of motion at the various points indicated in Fig. 3.16. 
Time responses are illustrated in Fig.3.20 and Fig.3.21 at points (P1, P2, P3) considering same 
parameters’ values as that of chosen while obtaining Fig. 3.16. An error within the range of 5–9% 
has been found while determining the steady-state response from the equation of motion 
numerically as compared to the amplitude of vibration depicted in Fig. 3.16 and Fig. 3.17. It may 
thus clearly be observed that the amplitude of the steady-state time responses obtained by 
numerically solving the temporal equation of motion is found to be in the same range with that 
obtained by using the perturbation method (Fig. 3.16 and Fig. 3.17). 
 
 

V. Effect of mass imbalance   
As a result of varying the mass of imbalance (mu), the steady-state responses have been studied 
for the mass imbalance equal to (0.001, 0.01, 0.1) kg, while other parameters such as Za= 0.001, Ld= 
L/3 and Md=10.5 kg keep constant. With increase in mu, an amplitude of the vibration increases 

since the forcing amplitude (  2
2 1u dm L   ) gets increased with increase in the mass imbalance, 

and the system becomes considerably high forced induced vibration. As a result, the jump 
phenomena are found to be invisible for a wide range of frequency. One can undermine the effect 
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of nonlinearity and bring down the system with stable nontrivial response where the amplitude 
linearly varies with an increase in the frequency of the ground motion. However, there is no 
significant change in the jump length, so that the catastrophic failure due to a sudden jump can 
be ignored as indicated in Fig.3.22 

        
Fig.3.22: Effect of Mass unbalance (

um ) on the frequency response curves. 

 

3.4 Excitation of an axial loading and an unbalance mass 

Unavoidable axial loading on a rotating system also appears in many rotating machines. 
The axial loading in the rotating machines are due to many reasons such as the use of helical gear 
train in the gearbox, a load from the blower fan/compressor fan, hydraulic axial load in turbines, 
loading in drilling, milling, and boring operations, thrust force in jet engines and many special 
purpose industrial applications. The axial loading causes the parametric excitation of the system. 
It shows different resonance conditions than that of the conventional resonance such that the 
system vibrates at a half of the excitation frequency. 

In this section, an investigation of the stability and bifurcation of a nonlinear rotor-disk 
system supported by flexible bearings under combined effect of a mass unbalance and a pulsating 
axial force is performed. One of the shaft ends is roller supported so, there is no effect of axial 
stretching. Thus, the nonlinearity due to the large deformation only is considered here.  

3.4.1 Analysis 

 A schematic diagram of a rotating system for this study is represented in Fig.3.23 with a 
hinge-roller support. The rotor is modeled as a uniform flexible shaft with length (l) and radius 
(Rs), a rigid disk with thickness (h) and radius (Rd), which is located at a distance (ld) along the 
shaft span from one of the ends. The rotor is supported at the ends by the flexible bearings. A 
pulsating compressive force i.e., P0+P1cos (Ω1t) is applied axially at the rear end of the shaft.  

 
a) 

a1 a2 
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b) 
Fig.3.23: a) A shaft disk system subjected to axial load b) Equivalent linear and nonlinear spring-damper system; 
State of elastic deformation in transverse direction (y, z) 

 

The total potential energy of the rotor system can now be expressed as 
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Work done due to non-conservative forces respectively can be written as  

( )( )2 2
0 1 10

1
cos( ) .

2

l

pW P P t v w dx = +  +        (3.98)
 

Here Ω1 is frequency of the dynamic pulsating axial force P1 while a direction and position of the 
axial force as shown in Fig.3.23. Work done due to the non-conservative forces respectively can 
be written as  
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Thus, the Eqs. (3.55) and (3.56) can be further written as, 
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Here
3 5 1/F a = , it has been observed that the equations of motion consist the parametrical 

excitation term (i.e P0+P1 cos(Ω1t)) due to the axial loading  and forcing terms (i.e., 𝑚𝑢Ω2
2𝑟𝜑(𝑙𝑑)) 

due to the mass unbalance. Since the governing equations of motion consist the nonlinear terms, 
the exact solutions are somehow difficult to determine. Therefore, an approximate solution for 
the system of equation can be determined by using the perturbation approach. Similar treatment 
of the method of multiple scales as described in the previous section is adopted for Eqs.(3.100)-
(3.101). Then, it results into following equations for order 1 of ε. 
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It may be noted from Eqs.(3.102) - (3.103) that it may contain the secular or small divisor 
terms when the system is subjected to resonance conditions: (𝑖) Ω1 = 2𝜔1, (ii)  Ω1 = 2𝜔2, (iii)Ω2 =
𝜔1and Ω1 = 2𝜔1, and (iv)  Ω2 = 𝜔2and Ω1 = 2𝜔2. The system shows almost similar behavior for 
the resonance conditions corresponding to ω1 and ω2. Thus, the resonance conditions are explored 
only corresponding to ω1 and discussed in the following subsection.  

 

 
Resonance condition

1 12  : 

The procedures explained in the previous section and substituting the expression Ω1 = 2𝜔1 +
𝜎1𝜀, where σ1 is a small detuning parameter and 𝐴𝑛 = (1/2)𝑎𝑛 𝑒𝑥𝑝(𝑖𝜑𝑛), n = 1, 2 in the resulting 
equations  and separating the real and imaginary part, one may obtain an autonomous system of 
four first order partial differential equations, which have been expressed as 
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Here, 𝛼1 = −2𝜙1 + 𝜎1𝑇1.One may set up 𝑎1
/

= 0, and 𝛼/ = 0 to obtain the steady state response.  

Both trivial ( 0a = ) and nontrivial ( 0a  ) solutions are then used to study the stability of the steady 

state responses by replacing 𝑎1, and 𝛼1 with 𝑎10 + 𝑎1
/
and 𝛼10 + 𝛼1

/
, respectively into Eqs. (3.104)- 
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(3.107) and then investigating the eigenvalues of the resulting Jacobian matrix (J) for further 
stability analysis.  
 
Resonance condition

1 12  and
2 1   : 

Considering this resonance condition, the autonomous system of four first order partial 
differential equations can be expressed as following using the similar procedure as explained 
earlier. 
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Here,𝛼1 = −2𝜙1 + 𝜎1𝑇1 and 𝛼2 = −𝜙1 + 𝜎2𝑇1. For sake of simplicity, the detuning parameters are 

assumed as 𝜎 = 𝜎1 ≈ 𝜎2. A steady state solution has been obtained by setting up 𝑎2
/

= 0,. 
/and 0 = . Only non-trivial solutions are found to be exist and stability of these responses have 

been obtained by perturbing with 𝑎1 = 𝑎10 + 𝑎1
/

, 𝛼2 = 𝛼20 + 𝛼2
/
and 𝛼1 = 𝛼10 + 𝛼1

/
. Investigating 

the eigenvalues from the resultant Jacobian matrix (J) renders the stability information while   real 
part of eigenvalues of the J decides the destiny whether the system is under control with this 
working condition. Simultaneously, negative real part of all eigenvalues denotes asymptotically 
stable system while the presence of positive real part of an eigenvalue denotes unstable 
corresponding solution.  

3.4.2 Result and Discussion 

In the numerical simulations, we consider the rotor-disk-bearing system made up of steel 
material with the following material and geometric properties.  
 
Parameters   Value Parameters   Value 

Shaft length   0.8 m Modulus of elasticity  200 GPa 

Shaft radius  0.01 m Viscous damping 15 Ns/m 

Disk radius  0.06 m Linear bearing stiffness 2×105 N/m 

Disk thickness 0.003 m Nonlinear bearing stiffness 1×109 N/m3 

Unbalance mass 0.012 kg Mass density   7800 kg/m3 

Eccentricity of the unbalance 

mass 

0.06 m   

 
Table 3.1 : Parameters of a rotating model 
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We depicted the nature of deflection incurred generally under any dynamic loading 
condition or when the system is subjected to any resonance condition called as mode-
shapes/Eigen spectrums. This mode shape has further used to demonstrate the overall dynamic 
performance and predict the accurate bifurcation in the frequency response curves that renders 
the critical operating condition. The predicted shapes of the deflected structure under free 
vibration or deflection pattern of the vibrating body subjected to the non-periodic excitations for 
the first and 2nd mode of vibration with and without the flexible bearings have been 
demonstrated in Fig.3.24. It compares the structural modes with the rigid and flexible supports. 
With the rigid bearings, it is often noticed that the deflection is found to be zero magnitude at 
the bearing end as compared with the flexible bearing where the flexible bearing is pertaining 
non-zero magnitude of the deflection at the bearing end. Thus, here, the deflection can be 
observed at the different points i.e., non-zero magnitude other than the ends point of the shaft. 
We consider similar mode shapes to evaluate the steady-state responses and further verified 
between approximate and numerical solutions. A clear non-trivial but steady vibration 
amplitude is observed at the flexible bearing ends when the combined system vibrates at its 
second resonance condition. 

 

               
 
Fig.3.24: Mode shapes:  a) Flexible bearing: λ1 = 
3.45, λ2 = 5.34, λ3 = 7.14 b) Rigid bearing 

Fig.3.25: Campbell diagram : ld = l/4, Rd= 0.08 m 

 
Figure 3.25 portrays the characteristic behavior (i.e. the natural frequency) of the system 

against the change in the spin speed with an influence of the static axial force P0. It has been 
observed that the P0 directly contributes to a stiffness term of the equation of motion. The overall 
stiffness increases with an increase in the axial forces, and as a result the natural frequency is 
found to be increased. Hence, it has been observed that the axially compressive loaded shaft is 
found to be more stiffened and as a result, both the forward and backward critical frequencies 
have been moved to a higher value and as a result, increasing the axial loads ensure the stability 
of the system.    
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Fig.3.26: Frequency response plots if Ω1 ≈ 2ω1 and Ω2 ≈ ω1: P0=1×103N, P1=5×103N, Kl=1×105N/m. 

 
The influence of the flexible bearings has been shown to Fig.3.26 and it has been noted 

that the vibration amplitude is found to be minimum when the rotor-disk is supported on the 
flexible bearings. The nonlinearity of the support bearings leads to a hardening effect and an 
appreciable effect in the amplitude reduction (corresponding to particular σ) can be observed 
along with a hardening effect in the curve for the system with the nonlinear stiffness Knl =1×109 

N/m3. Hence, the flexible bearings offer more stable with minimum vibration amplitude than the 
rigid support for considered configuration.  

a. Resonance Condition: 
1 12    

Figures 3.27-3.32 depict the frequency response characteristics for the resonance condition 
when 

1  is nearly equal to the 
12 against change in the design parameters such as disk radius, 

disk location, spin speed, linear and nonlinear stiffness of the bearing support, a static and a 
pulsating axial load. 

Apart, the frequency response curves exhibit hardening effect and as a result, the 
vibration amplitude is mostly observed to be decreased with an increase in the any control 
parameter. In fact, whether the vibration amplitude gets increased or decreased or remained the 
same is depending upon the interacting influences of the design parameters. Figure 3.27 
illustrates the influences of changing a radius of the shaft on the system stability and bifurcation. 
It has been observed that an increase in the vibration amplitude is experienced with an increase 
in radius of the disk as the curve shifts toward the left side and losses the hardening effect. Hence, 
the system experiences softening behavior from the hardening state. The reason might be that 
with increase the radius, the inertia forces increase over the restoring forces. The trivial state 
instability region i.e., unstable trivial solution (between supercritical and subcritical pitchfork 
bifurcation) gets increased with an increase in radius of the disk. Consequently, we can say that 
the dynamic behavior of the system can prominently be affected due to the change in the radius 
with an increase in the instability region. Moreover, the possibility of catastrophic failure as a 
sudden change in the amplitude due to jump up i.e., from the unstable trivial solution to the non-
trivial solution gets high with an increase in the radius.  
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Fig.3.27: Frequency response plot if Ω1≈2ω1: 
P0=1×103N, P1=5×103N 

Fig.3.28: Frequency response plot if Ω1≈2ω1: 
P1=5×103N 

 
Figure 3.28 depicts the overall vibration characteristics with increase in a magnitude of 

the static force P0 but this change is slightly smaller near σ = 0 i.e., exactly at the resonance 
condition. A region of the instability due to the trivial solution remains unchanged with increase 
in the axial force while a slight change in the vibration amplitude appears with increase in the 
axial force. Hence, the static component of the pulsating force does not influence the overall 
dynamics of the system. The change in spin speed (Ω2) has no influence on the hardening effect 
depicted in Fig.3.29. While distinguishable change can be detected in the instability region. An 
increase in the spin speed causes the system more dynamically stable as the breadth between the 
curve lines and shifting of the critical point to lower frequency.  

                   
 
Fig.3.29: Frequency response plot if Ω1≈2ω1: 
P0=1×103N, P1=5.0×103N 

Fig.3.30: Frequency response plot if Ω1≈2ω1: P0=1×103

 

We observe in Fig.3.30 that the rise in a magnitude of the pulsating force P1 results in an 
increase in the vibration amplitude along with the trivial state instability to that of higher value. 
Further, the jump length increases with increase in the dynamic force component. A noticeable 
effect in the hardening characteristic of the system due to a change in the disk location can be 
observed in Fig.3.29. The curve bents more toward the right side when the disk is mounted at a 
point away from the mid span of the shaft. Thus, the system experiences more hardening effect 
that leads to decrease in the vibration amplitude with the relocation the disk from the mid-point. 
However, the expansion of the curve with the disk location l/3 is more than the other cases. 
Consequently, it significantly affects the dynamic behavior of the rotating system. Interestingly, 
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the region where the trivial solution losses the stability gets rises, when the amplitude of the 
pulsating force gets increased. 

Figures 3.32-3.33 present the effect of linear and nonlinear stiffness coefficients of the 
flexible bearings on the frequency characteristics. With an increase in both the linear and 
nonlinear stiffness, the vibration amplitude decreases remarkably as the restoring force becomes 
more dominant over the externally influenced forces. Hence, uses of the flexible bearings are 
considered to be substantially safe in the working condition since it reduces the chances of failure 
due to a negligible jump length. As well as, it has been observed that an increase in the nonlinear 
component over the linear system causes the system to be more secure and stable. Hence, the 
nonlinear stiffness component offers more stable than its linear counterpart. However, the range 
of instability i.e., remains unchanged with increase in these values.  
 

 
 
Fig.3.31: Frequency response plot if Ω1≈2ω1: 
P1=1×103N, P0=5×103N 

Fig.3.32: Frequency response plot if Ω1≈2ω1: 
P1=1×103N, P0=5×103N 

 
 

Fig.3.33: Frequency response plot if Ω1≈2ω1: P1=1×103N, P0=5×103N 

 

b. Combination Resonance Condition: 
1 12   and 

2 1   

Figures 3.34-3.39 describe frequency response characteristics of the system considering 
the combined resonance condition when the frequencies of the pulsating force and the mass 

unbalance are closely matched with 12  and 1 , respectively to demonstrate the safe zone of an 

operating condition. Subsequent catastrophic situations when the change in the different 
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parameters such as disk radius, disk location, spin speed, static and pulsating axial load  lead to 
unwanted circumstances.   

The influence of radius of the shaft onto the system dynamics and inherit vulnerability 
situation have been depicted in Fig. 3.34. With increase in the shaft radius while the response 
amplitude becomes unaltered, the bifurcation starts at a lower frequency and thus the nonlinear 
behavior of the system can be affected prominently by the radius.  

                   
 

Fig. 3.34: Frequency response plot if Ω1≈2ω1 and 

Ω2≈ω1: P0=1×103 N, P1=1×103N 

 Fig. 3.35: Frequency response plot if Ω1≈2ω1 and 

Ω2≈ω1: P0=1×103N 

With increase in the shaft radius, there is a shift in the bifurcation point toward the right 
and as a result, a safe operating range gets higher. It has been observed that with an increase in 
the amplitude of the pulsating axial force, both the response amplitude and the position of the 
bifurcation get influenced while the vibration amplitude increases with an increase in the axial 
force as shown in Fig. 3.35. In addition, the forward change in amplitude of the axial force offers 
a benefit to the operating condition since it introduces the bifurcation at a higher frequency. Thus, 
the system loses its stability at the higher working frequency. 

               
Fig. 3.36: Frequency response plot if Ω1≈2ω1 and 

Ω2≈ω1:  P1=5×103 N 

 Fig.3.37:Frequency response plot if Ω1≈2ω1 and 

Ω2≈ω1: P0=1×103 N, P1=5×103 N 
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However, with increase in a static component of the axial force, there is an insignificant influence 
onto the bifurcation as shown in Fig. 3.36. The influences of disk location away from the mid-
span have been indicated in Fig.3.37. The system is found to be stable for a wide range of the 
unbalance frequency without experiencing any jump phenomena when the disk location is 
exactly at the mid-point. This might be due to canceling out the gyroscopic and Coriolis effect.  
However, a region with single stable solution found to be exist when the disk location is at l/2 as 
shown in Fig.3.37. 

        
 

Fig.3.38: Frequency response plot if Ω1≈2ω1 and 

Ω2≈ω1: P0=1×103 N, Knl =1×109 N/m 

 Fig. 3.39: Frequency response plot if Ω1≈2ω1 and 

Ω2≈ω1: P0=1×103N, Kl=1×105N/m 

Figures 3.38-3.39 present the influences of the linear and nonlinear stiffness of the 
supporting bearings for obtaining the bifurcation point with an increase in both the linear and 
nonlinear stiffness coefficient. The vibration amplitude and the jump length decrease with an 
increase in the value of any these two spring components as the restoring force becomes more 
dominant over the externally influenced forces. Similar to the case of the primary principle 
resonance condition, here also the nonlinear stiffness component offers more stable than the 
linear counterpart. The system is found to be more stable when we increase Knl 

instead Kl.  

 
 

Fig. 3.40: Frequency response plot : Ω1≈2ω1 

 
Figures 3.40 - 3.41 are demonstrated to depict an accuracy of the obtained results using 

the perturbtion technique with respect to the results obtained by numerically solving the 
equations of motion. Here,  a detuning parameter σ has been taken as 30, 15,  1, and -12 
respectively for resonance condition Ω1 ≈ 2ω1. Figure 3.40 portrays the frequency response which 
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has been verified at point Q1, Q2, Q3 and Q4 by comparing with the time histories, FFT and 
Poincare’s map of Fig.3.41, respectively. The results using the both schemes are found in a 
compliance.   
 

     
 
Fig. 3.41: Steady state response only (Ref.3.40) a) Time response b) FFT plot c) Phase portrait and Poincare 
map 

 
In Fig. 3.41, a periodic motion is observed in the time history and corresponding FFT shows a 
peak at a half frequency than that of the excitation. Closed circular/elliptic type trajectories can 
be observed on the phase space trajectories that denote periodic behavior of the system along 
with the dominance of the single frequency (i.e Ω2 ). The two points on the Poincare’s maps depict 
double periodic behavior of the system. Figure 3.41 shows a decrease in the amplitude of the 
system near the point Q4 (Fig.3.40) and eventually it reaches zero due to the existence of atrivial 
solution. This is due to vibrations of the system at the two frequencies which can be detected in 
the corresponding Fast Fourier transform. The presence of two frequencies causes torus type 
trajectories in the phase plane plots. The Poincare’s maps corresponding to the phase space have 
shown closed curve, it indicate the system has quasiperiodic behavior at these points. At point 
Q4, the system came to a trivial solution because it showed attraction toward equallibra after a 
few oscillations. 

 
 

Fig.3.42: Frequency response  plot :     1 1 2 12 and  

Figure 3.42 portrays a frequency response curve which has been verified at points Q1, Q2, 
Q3 and Q4 by comparing with the time responses of 3.43, respectively. Here, a combined 
resonance condition Ω1 ≈ 2ω1 with Ω2 ≈ ω1 is considered. Figure 3.43 is portrayed by numerically 
solving the equations of motion for detuning parameters σ = 100, 20 and -30. Points Q1 and Q2 
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denote a lower and higher limit cycle at σ = 100, respectively. Time integration of the equations 
of motion with initial condition V(0) = 0.005 is performed and the system shows behavior 
corresponding to  point Q1 at σ = 100 for a steady state. With similar configuration of the system, 
Initial condition V(0) = 0.012 results in a steady state behavior of the system which is 
corresponding to Point Q2.  The FFT plot shows a peak, so the excitations (i.e an unbalance and a 
periodical axial load) have influence on the system behavior at point Q1 but with a dominance of 
the unbalance excitation. As both excitation frequencies are incommensurate, the corresponding 
Poincare’s map shows quasiperiodic behavior.  

 

                      

                         
Fig.3.43: Steady state response only (Ref.Fig. 3.42) a) Time response b) FFT plot c) Phase portrait d) Poincare 
map 

                                       
 

Fig.3.44: a) Bifurcation diagram  of P1  b) Time response plot: Ω1 = 0.8ω1, P0= 5000 N,Kl=2×105 N, Knl =3×109N/m3 

In FFT of Q2, a single peak and a single point on the Poincare’s map also can be observed, 
So it can be depicted that the rotating system has a periodic behavior near point Q2 with a sole 
dominance of the unbalance excitation. The Poincare’s map corresponding to points Q3 and Q4 
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show quasiperiodic behavior of the system near points Q3 and Q4. As well as, the FFT of Q4 
shows clear two peaks. Thus the system has more influence of the pulsating axial force at point 
Q4 than at point Q3. Hence, it can be depicted that the system undergoes a 
periodic/quasiperiodic behavior. Therefore, the initial condition plays important role in 
determining type of the system behavior (i.e point Q1 or point Q2) in the instability region. 

Figure 3.44a portrays system behavior with P1 as a control parameter when Ω1 = 0.8ω1 with 
initial condition v(0) = 0.002, it shows trivial solutions for above range of P1.The same can be 
depicted from Fig. 3.44b which is obtained at P1 = 1.5×104N,so the system does not shows the 
effect of a change in  P1. 3.45 shows a sudden double periodic nature of the system near P1=1.4×104 
N, but it does not last long with an increase in P1 value when Ω1=2.3ω1. It shows again a trivial 
solution after 1.9×104N.  Figure 3.46a shows a steady state in the time series with  dominance of 
only one frequency which is a half of the excitation frequency value for Ω1=2.3ω1. The 
correspoding Poincare’ clearly shows a double periodic motion of the system at P1 = 1.6×104N. 

 
Fig.3.45: Bifurcation diagram of P1, P0=5000 N, Kl=2×105 N, Knl =3×109N/m3 

 

   
 
Fig.3.46: Steady state response only a) Time response b) FFT plot c) Poincare map:  P1 = 15000 N, P0=5000 N, 
Kl=2×105 N, Knl =3×109 N/m3 

 
Figure 3.45 shows the system behavior with four periods near P1 =1.5×104N when 

Ω1=2.3ω1, but it does not last long with an increase in P1 value. The amplitude of P1 is found  
critical between 1.5×104 N - 1.9×104N thus it is advisable to avoid the range of P1 between 1.5×104 
N - 1.9×104N  in order to ensure a safe and smooth operation. It shows again trivial solution after 
1.9×104N.  Figure 3.46a shows a steady state in the time series with a dominance of only one 
frequency which is 1/4th of the excitation frequency. The corresponding the Poincare’s map 
clearly shows the motion of the system with four period at P1 = 1.6×104 N.  
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c. Validation of the present model with the published research 

 

 
Fig.3.47 : Validation-Frequency response plot 

 
For purpose of validation of the proposed model, the frequency response plot (Fig.3.47) is 

portrayed by neglecting the flexible bearing effect and the base excitation with considering the 
same configuration as Shad et al. (2011). The solid red colour lines represent results from the 
proposed model and the black dotted lines represent results from a published article by Shad et 
al. (2011). It has been found that the results of proposed models are in concurrence with the those 
presented by Shad et al. (2011). 

 
 

3.5 Summary 

Numerical investigation of the rotor-bearing system having considering the structural 
nonlinearity due to higher order deformation in bending has been carried out. The nonlinear 
mathematical model has been developed incorporating the mid-plain stretching phenomenon in 
the shaft element in addition secondary effects like rotary inertia effects, gyroscopic effects, rotor 
mass unbalance, base motion and axial loading. The method of multiple scales is used to solve 
this model including the nonlinear terms. This method is applied directly to the partial 
differential equation of motion and to the discretized equations. While Campbell diagrams as a 
part of free vibration have been illustrated under the variation of physical parameters of the 
system, an evidences of chaotic response i.e., route to chaos upon changing the control parameters 
have been investigated by depicting of time history, Fourier spectrum and Poincare’s section. The 
frequency response curves have been plotted for the resonance conditions under the influences 
of various control parameters. Stability and critical points have been analysed for a wide range 
of the various system parameters.   

The effect of nonlinearities and other variations for the different parameters like 
amplitude of excitation, mass unbalance, position of disk, and mass of the disk on the system 
performance has been performed. Bifurcations and stability of the obtained solution have been 
studied.  

Here, we considered the disk parameters and disturbance parameters (i.e., base excitation, 
axial force and mass unbalance) as design parameters and their influences on dynamic behavior 
of the proposed rotating system.  

With increase in the disk parameters can reduce the hardening effect and helps to shift 
instability region to a high frequency. As a result, bifurcation starts at a higher frequency and 
leads to a stable operating range until the operating frequency reaches to one of the critical natural 
frequencies of the system. Here, the system loses its stability due to the saddle-node and pitchfork 
bifurcation, respectively with the sudden jump phenomena. 
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The base excitation plays an important role in deciding the vibration behavior of the 
system. It has been observed that the variation in the values of the excitation parameters causes 
the system to experience a transformation of its behavior from the quasi-periodic to the chaotic 
nature. 

The proposed model, the pulsating axial load along with the mass unbalance shows 
appreciable effect on the dynamic behavior of the system such as an increase in these positive 
effect causes rise in an amplitude of the system vibration.  Increasing the static axial load has been 
ensured the stability of the system since it increases the natural frequency of the whole system. 
The possibility of a catastrophic failure as a sudden change in the amplitude due to the jump up 
i.e., from the unstable trivial solution to the non-trivial solution gets high with increase in the 
disk-size with radius. 

The flexible bearings are considered to substantially safe in the working condition since it 
reduces chances of failure due to the jump length. The vibration amplitude and jump length 
decreases with increase in the value of any these linear and nonlinear spring components. From 
these critical observations, we can conclude with the evidences that monitor and control the 
vibration characteristic and its behavior to avoid catastrophic failure can be successfully 
controlled with the adjustment of the design parameters. It helps further to design the system 
which can run in its operational speed range satisfactorily. 
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