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4 LARGE DEFLECTION MODEL: IN-EXTENSIBLE CONDITION 

 
 
 
 

4.1 Introduction 

Under vibration conditions, a rotating system with hinge-roller support is subjected to 
deformation and it results in a movement of the roller support in an axial direction to fit the length 
of the shaft in the bending position. Thus, there is no straining of the shaft axis during the 
vibrations. This consideration of an inextensibility condition of the shaft axis introduces the 
nonlinear terms (i.e. Geometrical and Inertial nonlinear terms) in the equation of motion (Eqs.(4.9)
-(4.10)).  

Here, the investigation of bifurcations, stability and chaotic behavior of an elastically 
induced flexible rotating system has been studied which is subjected to an unbalance force due 
to an eccentricity and unbalance mass, as well as rub-impact phenomenon due to contact between 
the disk and casing. A non-dimensional equation of motion is formulated considering the 
inextensibility condition of the shaft axis. The free vibration analysis is also performed to analyze 
the effect of nonlinearities on the vibration characteristic of the rotating system. 

4.2 Mathematical modeling (Phadatare et al., 2017) 

A schematic diagram of a flexible shaft-disk system supported by hinge - roller guided support 
is shown in Fig.4.1. A cylindrical, uniform cross-sectional shaft having length L and diameter Rs 

rotates about the longitudinal axis at a speed Ω. The shaft holds a rigid disk along its span at 
various length Ld from the rear end of the shaft. The shaft is modeled by assuming the Euler-
Bernoulli theorem and taking into account the effect of gravity, structural nonlinearity and 
inextensible condition while the shear deformation is considered to be neglected. 

 
 

Fig.4.1: Graphical representation of flexible rotor-bearing consisting rotating shaft with rigid disk 

 
The kinetic energy of the shaft and disk consist of two parts: translational and rotational energy.  

a. Kinetic energy of the shaft and disk  

The kinetic energy of the shaft can be expressed as  
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Here 𝐼1 = ∫ 𝜌(𝑦2 + 𝑧2)𝑑𝐴 , 𝐼2 = ∫ 𝜌𝑦2𝑑𝐴 = ∫ 𝜌𝑧2𝑑𝐴. The subscripts x and t represents 
differentiation w.r.to x and t respectively, m and M are mass per unit length of the shaft and mass 
of disk respectively. I1 and I2 are the polar and diametrical mass moment of inertia of the shaft. 
Similarly, I1d and I2d represent the polar and diametrical moment of inertia of the disk. 
Displacements u, v and w respectively are along X, Y and Z coordinates system. Dirac delta 
function δ(x -Ld) has been used to represent the inertia effect of the rigid disk at a specific location, 
say Ld. 

 
Fig.4.2: Euler angles rotation 

 
The frame X–Y–Z is attached to the end of the shaft and considered as a global coordinate 

system. The frame x–y–z is a rotating frame, and the three successive Euler-angle rotations define 
its relationship with the global frame. Here, we considered rotation angles ψ(x,t), θ(x,t) and β(x,t), 
which are shown in Fig.4.2. The angle β(x,t) is a total angle of rotations. It includes both torsional 
deformation  (x,t) and shaft spinning angle Ωt. 

Thus, ω can be expressed as following as similarly described in Section 3.2a 

1 1 2 2 3 3 .e e e   = + +          (4.3)  

Here,  1 2 3sin , sin cos cos , cos cos sin .t t t t t t               = − = + = −  

The effect of shear deformation is neglected, thus angles ψ and θ can be expressed in relation with 
the displacements as (Appendix A.1) 
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b. Potential energy of the shaft  

 
The potential energy of the shaft can be expressed as (Nayfeh, 2008) 

=  +   +   +   11 11 1 1 22 2 2 22 3 30
( ).

L

sU A e e D D D
      (4.4) 

Here, A11 is axial rigidity; D11 and D22 are torsional and bending rigidity of the shaft. One of the 
ends of the shaft is roller-support so the end can be freely moved in the longitudinal direction.  
Thus, the inextensibility condition is considered here. The inextensibility condition considers zero 
strain (e) along the shaft length, and it can be expressed as (Nayfeh, 2008) 
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Using the kinetic love analogy, the curvature ρ can be expressed as  

1 1 2 2 3 3 .e e e = + +           (4.6) 

Here,  1 2 3sin , sin cos cos , cos cos sin .x x x x x x               = − = + = −  
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c. Extended Hamiltonian principle 

The total kinetic energy of the system can be T = Ts + Td. Substituting Eqs.(4.3) and (4.6) into 
total kinetic energy of the system (T), and Eq.(4.5) into the strain energy (Eq. (4.4)) with some 
relevant relations as described in Appendix (A.1), Then applying the extended Hamiltonian 

principal {∫ (𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊𝑒)
𝑡2

𝑡1
𝑑𝑡 = 0}, to the total kinetic energy and the strain energy of shaft-

disk elements, one may obtain the differential equation of motion of the rotating shaft-disk system 
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Boundary conditions at x = 0 and x = L are 
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In comparison to the flexural inertia and stiffness terms, one may neglect the torsional inertia 

terms (𝜙) which is expressed as 𝜙 = − ∫ 𝑤𝑥𝑣𝑥𝑥𝑑𝑥+. . . .
𝑥

0
The effect of nonlinear terms due to the 

rotary inertia can also be neglected as the shaft element is considered to be slender. Following 
non-dimensional quantities are used for further analysis. 
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Substituting expressions of 𝜙 and non-dimensional quantities into the dimensional Eqs.(4.7) and 
(4.8) and considering I1 = 2I2, one may obtain the nonlinear non-dimensional equations by 
dropping the asterisk from the non-dimensional terms and neglecting the effect of torsional 
inertia. 
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(4.10) 
The boundary conditions are rewritten as below  

0, 0, 0, 0 at 0 and 1.xx xxv v w w x x= = = = = =  

4.3 Free vibration analysis of the nonlinear shaft disk system 

4.3.1 Analysis 

Considering the single mode the Galerkin’s approach, the partial differential equations of motion 
is discretized into temporal equations of motion by using following eigen functions. 

( , ) ( ) ( ), ( , ) ( ) ( ).v x t x V t w x t x W t= =        (4.11) 

Here, 𝜑(𝑥) = √2 𝑠𝑖𝑛( 𝜋𝑥), is the admissible function obtained by satisfying the boundary 
conditions stated earlier, whereas V and W  are time modulations representing the approximate 
solution of nonlinear oscillations. Substituting Eq. (4.11) into Eqs. (4.9) and (4.10), and then using 
the orthogonal properties of the mode shape, the discretized equations of motion become:  
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A similar method of the multiple scales as described in the Chapter 3 is applied here and it results 
in following equations for order ε1 
O(ε1) 
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Here, the forward/backward natural frequency can be expressed as  
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After some manipulation, one may receive the following expressions as a solvability condition, 
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Using the solvability condition, one may get a set of equations as 
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Here, 
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 . 
Substituting the solutions of F1 and F2 in the polar form i.e., 𝐹𝑛 = (1/2)𝑎𝑛 𝑒𝑥𝑝(𝑖Φ𝑛) where n = 1, 2 
in the above equations and then solving resultant equations (by separating real and imaginary 
parts). After this manipulation, we can obtain the values for an and Φn. Back substituting theses 
values (i.e. an and Φn) in the solutions of ε0 order equations, one may obtain the following 
expressions for the displacements v and w in Y and Z directions, respectively for the rotor-bearing 
system. 
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Here, C1, C2, C3, and C4 are integration constants determined by the initial conditions for the free 
vibration analysis. Newton-Rapson scheme has been adopted here. Both the forward and 
backward frequencies are excited, and the above equations depict the free vibration of the system 
with geometrical and inertial nonlinearities. A distinct and different closed form solution are 
obtained for finding the backward and forward natural frequencies for the rotor-bearing system 
which are not earlier explored with reference to the solutions obtained for the system with a shaft 
element only. The Fourier spectrum and Poincare section have been illustrated to deepen the 
behavioral pattern of dynamic responses. 

4.3.2 Results and Discussions 

Here, the parameters of the rotating system are taken as : Shaft length (L = 1), Disk mass 
(M=1.5), Disk position (Ld=L/3), Damping (c= 0.05) Moment of inertia (I2 =0.000625). Initially, the 
time history has been portrayed in order to rectify the correctness of the fundamental concept of 
kinematics in deriving the mathematical model and computational procedures adopted in this 
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present work. The exact solution has been obtained by numerically integrating the governing 
equations of motion (Eqs. (4.7)-(4.8))). 

 

 
 

Fig.4.3: Time history for rotating shaft without disk 
effect in Y direction (v) for Ω = 10 Hz. 

Fig.4.4: Time history for rotating shaft without disk 
effect in Z direction (w) for Ω = 10 Hz, 

Figures 4.3 and 4.4 depict the numerical integration and perturbation time history for the 
shaft element at the mid-point displacements for V and W, and it has been found that the obtained 
results are in a very good agreement. The initial conditions are considered here as V(0) = 0.01. It 
has been observed that though, the input excitation has been given only in one plane i.e., X – Y 
plane, an effect of the excitation has also been observed in x - z plane as well due to the strong 
gyroscopic effect and the geometrical coupling in both the shaft and disk elements. The period of 
beating i.e., time taken between the points of maximum amplitude is unlike for two different 
vibration responses of V and W while the beating period for the vibration in W is observed to be 
less than the period of V as the frequency of shaft speed is closer to the forward natural frequency 
as Nf - Ω = 2. The reduction rate of the vibration amplitude is higher for the responses of w than 
the counter-part V as the excitation occurs in X-Y plane.  

The time histories for the rotor-bearing system are illustrated in Fig.4.5 and Fig.4.6, 
considering the same initial conditions as that of obtained for M = 1.5 and I2 = 0.00625. The 
perturbation result obtained from Eqs.(4.20)-(4.21) are verified with the exact solution for the 
system and it is found that the perturbation solution agrees well with the numerical integration 
solutions. A comparison between the amplitudes of V and W for the system with and without the 
disk is shown in Fig.4.7 and Fig.4.8. It can be noted that due to the additional inertia effect of the 
disk, the settling time is observed to be higher for the system without the disk and time taken by 
the system to damp out increases. Furthermore, the beating period is noted to be higher for the 
vibration of V i.e., the response in Y direction than the vibration of W i.e., the response in Z 
direction. The amplitude of vibration reduction is observed to be higher for the response of W as 
the response of W is out-of-plane vibration in nature.  



 
 

 

 
 
Fig.4.5: Time history for rotating shaft without disk 
effect in Y direction (v) for Ω = 10 Hz 

Fig.4.6: Time history for rotating shaft without disk 
effect in Z direction (w) for Ω = 10 Hz 

 
. 

 
 
Fig.4.7: Time history for rotating shaft with and 
without disk system in Y direction (v) for Ω = 10 Hz, 
and M =1.5. 

Fig.4.8: Time history for rotating shaft with and 
without disk system in Z direction (w) for Ω = 10 Hz, 
and M =1.5. 

 

 
Fig.4.9: Time history for rotor-bearing system in Y 
direction for Ω= 10 Hz, M = 1.5 and I2 =0.00625 

Fig.4.10: Time history for rotor-bearing system in Z 
direction for Ω = 10 Hz, M = 1.5 and I2 =0.00625

The effect of damping on the dynamic behaviors has been portrayed in Fig.4.9 and Fig.4.10 and 
clear evidence has been noticed that a reduction in the vibration amplitude has been observed as 
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expected in both responses of V and W with an increase in the damping. Hence, the system 
becomes stable or the vibration can be restricted under a moderately high value of the damping 
constant. It is interesting to note that the beating period does not influenced by increasing the 
damping constant of the system as the damped natural frequencies remain almost unchanged. 
The Campbell diagram (Fig.4.11) used to display the forward Nf and backward Nb natural 
frequencies with respect to rotational speed (Ω) for different values of I2 in the absence of the disk 
which is in accordance with the outcomes represented in [Hosseini et al 2009]. The variation of Nf 

and Nb of the shaft-disk system with Ω is also depicted in Fig.4.12. With increase in rotational 
speed (Ω), both Nf and Nb increase while with decrease in I2, both Nf and Nb are decreased to a 
lower value with Ω.  

 
 
Fig.4.11: Forward and backward natural frequencies 
of shaft element only. 

Fig.4.12: Forward and backward natural frequencies 
of shaft with disk element for M = 1.5and Ld =L/3 

 
In Fig.4.13, Nf and Nb for the rotor-bearing are plotted for different values of the mass ratio 

M. It is observed from the figure that the rate of increasing Nf and Nb decreases with increase in 
mass of the disk and hence, the unstable frequency of the system decreases with increase in M.  

            
 

Fig.4.13: Effect of mass ratio (M) on forward 

and backward natural frequencies of shaft 

with disk system forI2 =0.00625 

 Fig.4.14: Effect of disk location Ld on forward and 

backward natural frequencies of shaft with disk 

system for M = 1.5 and I2 =0.00625 

With an increase in the mass ratio M, the critical speed starts at a lower value and the 
slope i.e, rate dN/dφ of the diagram has a slight change. Hence, it has been observed that rate of 
changing the forward (dNf /dφ) and the backward (dNb/dφ) natural frequencies is quite similar but 
in reverse directions. Furthermore, differences of the forward and backward natural frequencies 
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with a mean speed are almost same in a magnitude. From Fig.4.14, it can be observed that the 
forward and backward linear natural frequencies rely not only upon mass moment of inertia (I2), 
rotational speed (Ω), mass ratio (M) of the disk and the shaft, but also upon the position of the 
disk (Ld) along the shaft length.  An influence of the disk location along the shaft is illustrated in 
Fig.4.14 and it is noted that the slope (dNf/dφ) gets higher as compared to the slope (dNb/dφ). It is 
observed that the rate of change of the frequency increases as the disk is moved away from the 
mid-point of the shaft. The maximum natural frequency has been ascertained at a condition when 
the location of the disk is closer to either of the bearing ends. This configuration may reduce the 
rotor-bearing system to the shaft system and the values of the fundamental natural frequencies 
are similar to that of the values for the shaft element alone as the effective mass of the system 
remains almost the same.  

 
 

Fig.4.15: Forward and backward natural 

frequencies of shaft with and without disk I2 = 

0.000625. 

 Fig.4.16: Influence of mass of moment of inertia (I2) 

on nonlinear forward and backward natural 

frequencies of rotor-bearing system M= 1.5. 

 
 

Fig.4.17: Influence of mass ratio (M) on 

nonlinear forward and backward natural 

frequencies of rotor-bearing system for I2 = 

0.00625 and Ld =L/3 

 Fig.4.18:Effect of disk location (Ld) on nonlinear 

forward and backward natural frequencies of shaft 

with disk system; M= 1.5 and  I2 = 0.000625 

Figures 4.16–4.18 show the first mode of vibration representing Nfn and Nbn with Ω for the 
parameters I2, M and Ld, respectively. Due to the gyroscopic effect, the change of Nfn and Nbn is 
significant at a higher value of I2.Unlike the linear part, the length between Nfn and Nbn is more 
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prominent and large for a variation of the diametrical mass moment of inertia. The rotor-bearing 
system experiences lower nonlinear natural frequencies when the mass ratio gets increased as the 
inertia of the disk increases with an effect of the high rotational displacement. The effect of 
varying the disk location leads to a significant effort of finding the nonlinear frequencies in a 
response to the linear frequencies. It is true that there is an effect of the nonlinearity for calculating 
the natural frequencies at a location of the disk near to the mid-point of the shaft due to large 
geometric deflection of the flexible shaft. Figure 4.19 compares Nfn and Nbn for the rotating shaft 
with and without the disk. It is identified that the rate of dNfn/dφ and dNbn/dφ is more for the 
combined system than that of the shaft alone. Finally, it is observed that the natural frequency for 
the combined system is always less than for the shaft alone.  
 

                
Fig.4.19: Nonlinear forward and backward 

natural frequencies for the system with and 

without disk for I2 = 0.000625 and Ld =L/3. 

 Fig.4.20: Frequency diagram to indicate the 

differences between linear and nonlinear forward 

and backward natural frequencies for  M= 1.5, I2 = 

0.000625  and Ld =L/3 

                  
Fig.4.21: Fourier spectrum at a spin speed (Ω = 0) 

for M= 1.5, I2 = 0.000625  and Ld =L/3 

 Fig. 4.22: Influence of rotary inertia on nonlinear 

forward and backward natural frequencies of rotor-

bearing system for I2 = 0.0225 and Ld =L/3. 

Figures 4.20-4.21 show the effect on the natural frequency of the system due to 
consideration of the nonlinear terms causing phenomena like the hardening effect. It is clearly 
observed from Figs.4.20 and 4.21 that the geometric nonlinearity gives rise to distinct and separate 
values of the natural frequencies as compared to the linear case. In addition, it is worthy to note 
that the whirling speeds show an error of 5-8% for the linear systems. Hence, for the high speed 
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applications, an accurate understanding of the natural frequencies is highly significant else the 
system may undergo catastrophic failure under a slight variation of the rotational frequency.  

Figure 4.22 shows the influence of the rotary inertia effect on the nonlinear natural 
frequencies of the rotor system for I2 = 0.0225. Here, it has been found that the inclusion of the 
rotary inertia term imparts a significant effect on the natural frequencies of the system such as 
softening effect. As well as the slope of nonlinear forward natural frequencies (Nfn) with respect 
to the spins speed (Ω) is comparatively less for the Rayleigh’s beam model as compared to that of 
the Euler’s beam model. This softening effect increases with the spin speed (Ω) for the nonlinear 
forward natural frequencies (Nfn) but not for the nonlinear backward natural frequencies (Nbn). 
The error between the results of these two beam models lies in 4–6% range.  

        
Fig.4.23: Fourier spectrum at a spin speed Ω = 20 rad/s (a) Linear case (b) Nonlinear case 

 
 
Hence, the theoretical rotor model with the rotary inertia (Rayleigh’s beam model) can be useful 
in a rotor systems for a large diametrical inertia and conversely, the theoretical rotor model 
without the rotary inertia (Euler’s beam model) is sufficient for rotor models with smaller 
diametrical inertia to analyze the natural frequency of the rotating systems for a specific rotational 
speed (Ω) and found to be in a good agreement with the finding through the Campbell diagrams. 
This hardening effect i.e., an increase in the natural frequencies is also shown in Figs.4.23 - 4.25. 

 
Fig.4.24: Fourier spectrum at a spin speed Ω = 50 rad/s (a) Linear case (b) Nonlinear case. 

(b) (a) 

 (b) (a) 



 
 

 

 
It has been observed that for a lower value of the rotational speed, the forward natural 

frequency gets dominated for the both cases as the maximum amplitude of vibration is observed 
for the condition where the rotational speed matches with the forward natural frequency. 
However, for a higher value of the spin speed, while the backward natural frequency gets 
dominated for the linear analysis, and the forward natural frequency is seen to be dominated in 
the nonlinear condition. In addition, the maximum amplitude of vibration is always observed to 
be higher for the linear case as compared to the nonlinear analysis. The equations expressed as 

2 2
11 22fn b f fN Q A Q A N= + − and 2 2

33 44bn f b bN Q A Q A N= + − are used to obtain the nonlinear natural 

frequencies. Since Ab 2and Af2 are dependent on initial conditions, the values of nonlinear natural 
frequencies are being evolved under changing of the initial conditions clearly shown in 4.26. 
Figure 4.26 illustrates the effect of initial conditions to determine the natural frequencies. Here 

initial conditions as ) 0.001; 0;ta v v= = 0; and 0,tw w= = ) 0.01; 0.01;tb v v= =  0;w = and 0tw =

have been used for demonstrating its effect. 
 

    
Fig.4.25: Fourier spectrum at a spin speed Ω = 100 rad/s (a) Linear case (b) Nonlinear case. 

 

      
Fig.4.26: Influences of initial conditions on the nonlinear Natural frequencies at a spin speedΩ = 50 rad/s 

 
The nonlinear transient behavior of the rotor-bearing system with and without damping 

is being illustrated in Figs. 4.27 - 4.30. A periodic response has been observed for the system with 
the spin speed equal to zero, while the effect of gyroscopic becomes significant for every non-zero 
shaft speed. A single point on the Poincare section of Fig. 4.27 depicts a periodic motion of the 
system.  

However, Fig.4.28 shows a gradual decrease in the amplitude of oscillations, which 
indicates a loss of the energy during the oscillatory motion so the system is reached eventually to 
a rest position. Hence the origin is called a stable node; the motion is simply stable and not 
asymptotically stable. Figures 4.29 and 4.30 show the presence two frequencies with an evidence 

(a)  

 (b) (a) 

(b) 
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of beat phenomenon in the time series plot. The Poincare’s map shows the presence of a quasi-

periodic motion of the present system at certain spinning speed. 

 
Fig.4.27: Time history and Poincare’s section at a spin speed Ω = 0 rad/s for c= 0.

 
 

        
Fig.4.28: Time history and Poincare’s section at a spin speed Ω = 0 Hz for c = 0.05 Ns/m, 

 

   
Fig.4.29: Time history and Poincare’s section at a spin speed Ω = 10 Hz for c = 0.0 Ns/m

 
 

 
(b) 

(b) 

(b) 

(a) 

(a) 

(a) 
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Fig.4.30: Time history and Poincare’s section at a spin speed Ω = 10 Hz for c = 0.05 Ns/m.

 
 

4.4 Excitation of geometric eccentricity and extra added mass (Phadatare et al., 
2019) 

Mechanical system with unbalance, especially in rotating machineries has been found to 
be one of the most common sources of mechanical vibrations which are further most susceptible 
to catastrophic structural failure. This unbalance may introduce at a manufacturing level or due 
to wear after long-run. Negligence of this unbalance in the system beyond an acceptable limit 
may result in poor outcome as well as may endanger surrounding environment and human life 
also. Thus, the present study considers the unbalance as a source of geometric eccentricity of the 
shaft-disk indicating an error at a manufacturing level and mass unbalance as an error due to 
wear along with the effect of nonlinearity in the shaft and bearing sections. 

4.4.1 Analysis 

A mathematical formulation is developed in this section to investigate the bifurcation and 
subsequent stability analysis of a light-weight rotor-disk-bearing framework subjected to amass 
unbalance and geometric eccentricity due to one of the manufacturing malfunctions. Here, the 
nonlinear flexible bearings are considered for the support of the rotating system.  

 
Fig.4.31 Conceptual model for unbalance and eccentricity 

 
Figure 4.31 describes an external unbalance (mu) and eccentricity of the rotor. The 

geometric eccentricity has been incorporated by taking into account the eccentricity 𝑒𝑣and 𝑒𝑤in 
the rotating plane along ζ and η directions, respectively. Moreover, a location of the unbalance 
mass is also been described with 𝑒𝑣1and 𝑒𝑤1 in the same coordinated system.  Relation between 
the location of the unbalance mass and the eccentricity can be described as 𝑒1=𝑒𝑣1-𝑒𝑣 and 𝑒2= 𝑒𝑤1-

(b) (a) 
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𝑒𝑤. The kinetic energy of the unbalance due to both the eccentricity of the rotor and the externally 
added unbalance mass (mu) can be expressed as. 

 
( ) ( ) ( ) 1c s c s c s

d
v t t v t td u v t tx Ld x L

T me w v Me w v m e w v
= =

=  − + − + −  

( ) ( ) ( ) 1c s c s c s .
d

w t t w t t u w t tx Ld x L
me v w Me v w m e v w

= =
− + + + + +     (4.22) 

Here, c and s stand for 𝑐𝑜𝑠(Ω𝑡) and 𝑠𝑖𝑛(Ω𝑡), respectively. 
Fig.3.4 displays a spring-damper model to represent the flexible bearings. The following 
additional non-dimensional terms are being used for the further analysis. 
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Using the single mode Galerkin’s approach, the partial differential equations of motion is 
discretized into temporal equations of motion by using following eigen function 𝜑(𝑥) which has 
been obtained by considering the flexible bearings support. 
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Associated boundary conditions:   

At x = 0,       0 0 0 0( ), 0,0 ( ), .x xxxx xx xxl t x l tv K v cv wv w K w cw= − + = = − +=     

At x = L,       0 0 0 00, , 0, .x xxx l tx xx xx tx lv K v cv wv w K w cw= + = = +=    (4.25) 

The asterisk is dropped for simplicity. This eigen-function satisfies the above boundary conditions (a 
set of algebraic equations). The general equation of motion (i.e., Eqs. (4.9) and (4.10)) of the system 
can be re-written to include the effect of the unbalance mass and the eccentricity (Eq (4.22)). 
Substituting φ(x) into the governing equations of the system, it results into the following 
equations. 
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Where 
1

2

0
1 1

3 4

1
2 2 2 2 2

1 2 1 2 0

0

2 2
0 2 2

1
2 3 4 4

5 6

0
1

0

0

0

0

( ) , ) ,

( )

( ) (

( ) , ( )

( 4 ) , (( ) (

,

d d d

d d

x L x L x L d x x L

x l x L l x L x L d

x nl

I I

K K dx I I

d

dx x

d

x K

d

x

          

       

         

= = = = =



= = = =



=

 = − −

 

    

+ = + +

= + + = − +

+ == + +



 







1

1

1
2 2 2 2

7 1 11 0 1 0 0 0
0

2 2 2
0 1

2

2 1

0

1 2 1

)) ,

(

) ) ,

(

 ( )) ,

(

( ) ( ( )

( ) , |

| . ( ))

d d

d

d

x l nl

x x x x x x

x L x L

x b x L b x L

x

v v v v

w w Lw w

K dx

dxd dx

c e e e e

e

x dxdx dx dx

c c

e e e

dx

          

  

 

 

=

     

= =

= = =

=

 = + − +

 =



= + + + + +

+ += +

  



   

 (4.28) 

The above non-dimensional governing equations have forcing terms (Λ2Ω2 𝑠𝑖𝑛 Ω 𝑡 −

Λ1Ω2 𝑐𝑜𝑠 Ω 𝑡 /Λ2Ω2 𝑐𝑜𝑠 Ω 𝑡 + Λ1Ω2 𝑠𝑖𝑛 Ω 𝑡) in the planes x-z and x-y, respectively, along with 
other nonlinear terms. Since the governing equation of motion contains the nonlinear terms, the 
exact solutions are not available as obtaining closed form is somehow difficult. Therefore, one 
may go for an approximate solution by using the perturbation approach. Similar treatment as 
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described the previous chapter is carried out for the above equations of motion. Then, it results 
into following equations for order 1 of ε 
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It may be noted that these equations have secular or small divisor terms when the system is 
subjected to the primary resonance condition Ω≈ Nf, Thus, by substituting Ω= Nf + ε2σ in Eqs.(4.29) 
and (4.30), The equations can be written as  
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 The above Eqs.(4.31) and (4.32) are composed of secular or small divisor terms. As a result, 
solutions of these equations can be unbounded. Therefore, satisfaction of the solvability 
conditions is necessary to analyze the bounded steady state solutions of the system. Therefore, 
the solvability conditions can be written as.  
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The term F1 and F2 can be expressed in the forms as (1/2)𝑑1𝑒𝑖𝜃1and(1/2)𝑑2𝑒𝑖𝜃2 , 
respectively and substituting it into Eqs.(4.33) and (4.34). Then, the resulting equations can be 
manipulated to obtain following expressions by separating the real and imaginary terms as. 
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We use 𝑑1
/

= 𝛾/ = 0 in Eqs.(4.35)- Error! Reference source not found. to obtain the steady-
state solution near primary resonance condition. The resultant nonlinear algebraic equations can 
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be numerically solved to understand the nonlinear response of the system under effect of the 
change in values of the system parameters. 

4.4.2 Result and Discussion 

Physical and geometric properties of the rotor-bearing system are hereby taken as: shaft 
length (L = 1m), disk position (Ld = L/3),geometric eccentricity (ew = ew = 1.25×10-4m), the unbalance 
mass location (ev1=ew1= 49.64×10-3 m), disk radius (Rd=0.07m), non-dimensional disk mass (β1=1.5), 
diametrical moment of inertia (I3= 6.25×10-4), and an unbalance mass (β2=3.7×10-3). 

    
 

Fig.4.32: a) Campbell diagram  b) FFT plot of intial 3sec data at  Ω = 0 Hz : v(0) = 0.15, w(0) = 0.00 

 
Theoretical studies have been carried out to explore the stability, bifurcation and critical 

operating conditions for the primary resonance case when the destabilized parameters such as 
geometric eccentricity, disk position, disk mass, an unbalance mass and its moment of inertia 
have been. These observations have been demonstrated using simulation tools such as the 
frequency response curves, time responses, Fourier spectrums, Phase-space plot and Poincare’s 
map to understand the vibration characteristics and stability of the system. Simultaneously, the 
Campbell diagram and FFT have been developed for obtaining the natural frequencies for both 
the linear and nonlinear models of the rotating system shown in Fig.4.32, while the comparison 
between linear and nonlinear frequencies has been well verified in Fig.4.32b for a certain speed. 
It has been found that the nonlinear frequencies come up about 5-6% higher as compared with 
the linear ones. 

 
 

Fig.4.33: Frequency response  plot 

 
Typical frequency response curves indicating how the vibration amplitude gets changed 

with the external frequency of mass unbalance have been depicted for primary resonance 
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condition. Here, the solid and dotted lines indicated the stable and unstable solutions, 
respectively. Since the system does not impart any trivial solution (d1=0), the rotating shaft 
vibrates with an amplitude equal to that of non-trivial (d1≠0) as shown in Fig. 4.33. For an upward 
sweep, the flexible shaft disk system expriences a jump down phenomenon ( as depicted by 
dotted red line) for  a slight increase in frequency of the mass unbalance at a critical pont which 
is known as S-N bifurcation. As a result, a sudden decrease in the amplitude is being observed 
that lead to a catastrophic failure due to the repeated occurrences. For a downward sweep, the 
jump up phenomena occurs when a slight decrease in frequency at a point, also known as S-N 
bifurcation takes place. Thus, here also the system leads to a catastrophic failure because of 
sudden jump in the response. The initial conditions may act an important role to perceive the 
actual geometry of the motion for its bi-stability. Figure 4.33 shows results obtained using the 
approximation technique that have been verified by numerically solving Eqs.(4.35)-
Error! Reference source not found.keeping the parameters value same for the three points, 
marked as P1, P2, and P3 in the frequency response curve. For these initial excitations, the 
corresponding time responses, phase portraits, FFTs and Poincare’s sections have been 
diagrammed in Fig.4.34. 
 

   
 
Fig.4.34: Steady state response only (Ref. Fig4.33)  a) Time response b) Phase portrait c) Poincare map 

 

                       
 

Fig.4.35: Frequency response curve  for Different 

eccentricity (ev = ew). 

 Fig.4.36: Frequency response curve for different 

disk position (Ld) 

. It has been depicted that the both results are in accordance and show mostly the periodic 
behaviour for any steady state response. The response amplitude is found to be the 3-5% error 
with the magnitude reported in the frequency response curves. Moreover, the steady state 
response is fully dominated by the forcing term at these points. Figure 4.35 describes the effect of 
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eccentricity on the dynamic responses. It has been observed that the response amplitude increases 
with increase in the eccentricity. As a result, the region where the system losses its stability gets 
increased. Thus, by selecting an appropriate value of the eccentricity, the behaviour of the system 
can be effectively controlled as well as catastrophic failure may be avoided subsequently. Figure 
4.36 shows effect of positioning of the disk on the nonlinear behaviour of the rotor. It has been 
observed that vibration amplitude gets significantly reduced tending hardening effect when the 
disk is located away from a mid-point of the shaft.  Hence, it can be said that with increase in the 
shaft speed causes the sharp increase in the vibration amplitude when the disk is located away 
from mid-span of the shaft.  

           
 

Fig.4.37: Frequency response curve for different 

disk mass (β1 ) 

 Fig.4.38: Frequency response curve for different 

unbalance (β2) :  β1=0.5. 

                           
 

Fig.4.39: Frequency response curve for different 

diametrical moment of inertia (I3) 

 Fig.4.40: Frequency response curve for the 

rotating system with and without disk (same 

unbalance magnitude (β2ev1) for both cases) 

A change in mass of the disk also causes variation in the nonlinear behaviour of the system. 
This has been depicted in Fig.4.37. For a moderately large value of the disk-mass, the region of 
instability improves into the smaller range. However, the maximum amplitude of vibration is not 
observed to be affected with the change in the disk-mass. Figure 4.38 portrays the effect of the 
extra added unbalance mass (β2) on the bifurcation and system’s stability. Here, three values of 
the unbalance mass (β2) such as 0.01, 0.005 and 0.0005 are considered for this analysis. These 
different values of β2 exhibit prominent effect on the amplitude and the instability range of the 
system. It is observed that the amplitude and the instability range become smaller when the value 
of the unbalance mass (β2) becomes reasonably small.  
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It is observed that the vibration amplitude gets increased with increase in the mass moment 
of inertia (I3) of the disk since the overall rotational inertia gets higher with increase in the I3 as 
depicted in Fig.4.39. In addition, the system shows decrease in the hardening effect with increase 
in the I3. Consequently, the system has a smaller region of the instability for a higher value of the 
I3. Figure 4.40 demonstrates the frequency response curves of the rotating system with and 
without a disk. Here, same magnitude of the unbalance mass (β2) is considered for both these 
cases. As expected, the vibration amplitude is found to be higher for a system with the disk as 
compared to the system without the disk. This is because of higher effective rotational inertia for 
the system with the disk. For a specific value of the β2, the response of the shaft may observe to 
be approximately linear in nature as the region of instability disappears from the response curves. 
Hence, the stability of the shaft element is merely affected with the nonlinearity.  

 

     
 
Fig.4.41: Steady state response only. a) Time response b) Phase portrait c) Poincare map. : v(0) = 0.01,   ev = ew,ev1 
= ew1 = 0.2374. 

          

        
Fig.4.42: Steady state response only. a) Time response b) FFT plot c) Phase portrait d) Poincare map. : v(0) = 0.01,   
ev = ew= 0.1880, ev1 = ew1 = 0.2374 
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Fig.4.43: Steady state response only. a) Time response b) FFT plot c) Phase portrait d) Poincare map. : v(0) = 0.01, 
ev = ew= 0.2505, ev1 = ew1 = 0.30 

 
The diagnosis and forecast of the chaotic behaviour, i.e., a route to chaos upon changing 

the control parameters has been studied with the demonstration of time history, phase portraits, 
Fourier spectrum, Poincare’s map and bifurcation diagrams. Here, the presence of chaotic 
responses has been investigated with the change in eccentricity in the rotating shaft-disk system 
as shown in Figs.4.41-4.43. The system exhibits a periodic behaviour with a perfect circular 
trajectory projected in the phase planes and a point in the Poincare’s section when the eccentricity 
becomes small i.e., ev = ew= 1.25×10-4. With increase in the eccentricity value to ev = ew= 1.504×10-1, 
an irregular closed shape with a small peak of frequencies other than the dominant frequency can 
be observed. With further increase in the eccentricity value to 0.1880, the system has dominant of 
more than one frequency and exhibits beating phenomenon leading to a quasi-periodic behaviour 
shown in Fig.4.42. Finally, the systems undergoes chaotic behaviour when the eccentricity 
becomes ev = ew = 0.2505 that has been clearly observed in FFT, Poincare’s section and phase planes 
with multidimensional torus type shape shown in Fig.4.43. Hence, the rotor-disk system exhibits 
the chaotic behaviours when the geometric eccentricity crosses its critical value.  

Figures 4.44–4.47 show the behaviour of the system due to rise in a spin speed of the rotor. 
It shows a periodic behaviour at Ω=2.485, 3.485, respectively and a quasi-periodic behaviour 
when the spin speed rises to Ω=4.485. The system undergoes chaotic behaviour with the 
sequences of period-doubling at Ω=5.485, 5.685. Therefore, it can say that the change in the spin 
speed may cause changes in the vibration behavior of the system while at a high spin speed, the 
system reveals chaotic response. Hence, the system encounters the chaotic behaviour when the 
shaft speed passes through its critical value.  
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Fig.4.44: Steady state response only. a) Time response b) Phase portrait c) Poincare map. : ev = ew= 0.125 

 
 

                  
 

         
 

Fig.4.45: Steady state response only. a) Time response b) FFT plot c) Phase portrait c) Poincare map. : ev = ew= 
0.125, Ω = 4.485 

 
The bifurcation diagrams to study the essential dynamics of the systems in order to 

identify the instabilities way forward to chaotic behaviours has been presented for the geometric 
eccentricity and the speed of the shaft as shown in Fig. 4.48. The overall system is found to be 
under control when the shaft speed is being kept either 4.285 or 10.29. In this range, the behaviour 
is observed to be either stable periodic or quasi-periodic. Similarly, the system leads to an 
unstable state when the value of the geometric eccentricity rests between range 0.0215 and 0.026 
and shows the chaotic nature of vibration. For all the value of 0.026, the dynamic characteristics 
remain to be quasi-periodicity.     
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Fig.4.46: Steady state response only. a) Time response b) FFT plot c) Phase portrait d) Poincare map. : ev = ew= 
0.125, Ω=5.485 

 

           
 

Fig.4.47: a) Time response b) FFT plot c) Poincare map. : ev = ew= 0.125, Ω=5.685 

 
Figure 4.49 exhibits a bifurcation diagram with the mass unbalance as a control parameter 

using Poincare’s maps. It shows that with increase in the mass unbalance initially appears static 
bifurcation. With further gradual increase in the mass unbalance, the system responses finally 
evolve to a chaotic behaviour with the possible consequences of quasi-periodic, period-doubling, 
sudden transitions, and intermittency routes. In Fig.4.49, the system behaviour against the change 
in β2(range 0 to 0.3)  with Ω=10 is portrayed.  At   β2=0.004, the system shows a periodic motion 
while the periodic motion diverts to a double-periodic motion when the β2 increases to 0.0069 in 
Fig.4.50. The system shows the chaotic response for any value of β2 between 0.1837 and 0.2572. 
With further increase in the β2 causes period-double phenomena and finally the system 
undergoes a chaotic behaviour for the β2 equal to 0.28 as shown in Fig.4.51. Thus, the unbalance 
effect at a high speed condition influences the system behaviour substantially where the 
behaviour of the system changes from one form to another. Hence, with a proper selection of the 
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mass unbalance i.e., magnitude and location, a well-controlled behaviour of the system may 
achieve.  

         
 

Fig.4.48: Bifurcation diagram  a) Spin speed (Ω) Vs Poincare points (v) with (v(0)= 0.01) b) eccentricity (ev) Vs 

Poincare points (v) with (v(0)= 0.01, tv (0)= 0.02, w(0)=0.0001, tw (0)=0.01) 

 

          
 
 
Fig.4.49: Bifurcation diagram a) β2 Vs Poincare points (v) b) β2 Vs Poincare points (v)  with (v(0) = 0.001), 𝒗𝒕(0)= 
0, w(0)=0, 𝒘𝒕(0)=0), ev = ew = 0.02 

. 

 
 
Fig.4.50: Steady state response only (Ref.Fig.4.49). a) Time response b) Phase portrait c) Poincare map 
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Fig.4.51: Steady state response only (Ref. Fig.4.49). a) Time response b) Phase portrait c) Poincare map. β2= 0.28 

 
We further depicted the frequency response curves for the system with and without the flexible 
bearing-supports in Fig.4.52, it has been observed that the flexible bearing gives rise to system 
stability by reducing the instability regions. Thus, the system has brought down to a stable state 
when the rotating shaft is mounted on the flexible bearings instead of the rigid one.  The 
frequency response curves have been diagrammed to know the effect of nonlinear stiffness 
characteristics onto the system dynamics as shown in Fig.4.53. It has been observed that the 
system shows the hardening effect with nonlinear stiffness Knl. Further, no substantial changes in 
the nonlinear responses are observed with the changes of the linear stiffness (Kl).  It has been 
observed that the response amplitude decreases with increase in the Knl. Thus, the vibration 
amplitude can be under control with the increase in the spring stiffness or can be brought down 
to a stable single solution with the increase in the spring stiffness. Hence, for a moderately large 
value of the spring stiffness, the system may behave same as that of linear one since the jump 
length is here found to be negligible. Hence, catastrophic failure due to the bifurcation can 
effectively be controlled with an appropriate selection of the spring value.  
 
 

 
 

Fig.4.52: Frequency response curve:  Kl =0.016, Cb=8.57×10-4 

 
 
 
 
 

 v 

v v τ 

a

) 

b

) 

c

) 

σ 

d

1 

v

t 

 

v

t 

 

v

t 

 



 
 

94 
 

 

             
 

Fig.4.53: Frequency response curve: Kl =0.016, 

Cb =8.57×10-4 

 Fig.4.54: Bifurcation diagram  a) KnlVs Poincare 

points (v) with (v(0) = 0.001), �̇�(0)= 0, 

w(0)=0, �̇�(0)=0), β2 = 0.018, ev = ew = 0.02 

 

Figure 4.54 shows bifurcation diagram for the nonlinear stiffness in the vertical direction within 
a range from 0.005 to 1600 with Ω=10. This diagram indicates significant behavioural changes 
within the system from a periodic to a chaotic. At Knl =0.005, the system shows a periodic motion 
while a slight change in the value causes the period-doubling phenomenon. Finally, the system 
experiences N-periodic behaviour with further increases in the stiffness. The instantaneous 
transition from period-k motion to period-2k motion has been found with the gradual change in 
the stiffness value and eventually resulting into a chaos. This route to chaos behaviour has been 
also verified by portraying the time series, phase portrait and Poincare’s map for the selected 
values Knl as shown in Fig.4.55-4.56. With this observation, it can be concluded that the variation 
of Knl can change the behaviour of the system from one form to another. Therefore, this parameter 
can be used as a control parameter in order to decide the future dynamic behaviour of the system.  

           
 

Fig.4.55: Steady state response only ( Ref.4.54)  a) Time response b) Phase portrait c) Poincare map 
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Fig.4.56: Steady state response only (Ref.4.54) a) Time response b) Phase portrait c) Poincare map  Knl = 78 

 

d. Validation of the present model with a published research 

 

 
Fig. 4.57:  Validation: Frequency response plot 

 
The frequency response plot (Fig. 4.57) is portrayed by neglecting the extra unbalance term 

and effect of the bearings with considering the same configuration as Eftekhari et al. (2018) and 
Khadem et al. (2010). The solid red colour lines represent results from the proposed model and 
the black dotted lines represent results from the published articles. It has been found that the 
results of proposed models are in concurrence with the those presented by Eftekhari et al. (2018) 
and Khadem et al. (2010). 

 
 

4.5 Excitation of an unbalance with rub impact phenomenon 

This section is devoted to investigate the stator and disk interaction of a geometrically 
nonlinear rotor system with large deformation in the bending having rigid bearings support. This 
work is an extension of the rotating model of the previous section. The system is subjected to 
combined forces such as a force due to the presence of unbalance and forces developed due to 
rubbing between the stator and the rotating disk. The system is analyzed to understand the effects 
of variation in the stator stiffness, rotating speed, coefficient of friction and an unbalance mass 
for the proposed model of the rotating system. 
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4.5.1 Analysis 

A rub impact shaft disk system with nonlinearity due to large deformation is considered as 
shown in Fig.4.58. The shaft is flexible with length L, radius Rs mass per unit length m, the disk is 
rigid (has outer radius Rd, mass M, thickness h) and mounted at a distance Ld from one end of the 
shaft 

 
 

Fig.4.58: a) A rotating system b) Rotor-stator interaction and c) Force analysis of rub impact phenomenon 

 
The shaft is simply supported using the rigid bearings with the condition of inextensibility. An 
unbalance mass (mu) has been introduced in the system with an eccentric location r1. Global 
coordinate system X-Y-Z is fixed at the left end of the shaft with X-direction along the shaft length 
while coordinate system x-y-z is a rotating system of coordinate with x direction along the shaft 
length. Primary excitation to the system is considered due to presence of the unbalance mass. The 
unbalance force at a high-speed causes large deformation in the shaft and results in rub between 
the disk and the envelope (stator). The envelope mounted around the rotating system and its 
center has a small eccentricity (Δv and Δw) from the axis of the rotor system in y and z-directions, 
respectively. The clearance δ is between the stator and disk as shown in Fig.4.58. When the 
displacement of the disk (i.e r) exceeds the clearance δ, the rub between stator and disk happens. 
During the rubbing, the stator surface applies radial force Fn and tangential force Ft on the disk. 
Here, the rubbing assumed to be a stick-free phenomenon and rolling of the disk over the stator 
surface without affecting the whirling of the rotating system is considered. Thus, the radial force 
and tangential force can be written as. 
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Here, Kr is radial stiffness of the rotor and η is the coefficient of friction. Therefore, the tangential 
and radial forces can be written in y and z direction as  
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When the radial displacement of the disk (r) is less than the clearance (δ), then there is no rub 
condition. Considering the rub impact force model which is described in Eq.(4.39), the partial 
differential equation motion of the rotating system (i.e. Eqs.(4.9)-(4.10)) can be modified as 
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Galerkin’s method and first mode of discretization:  

The rotating system (Fig.4.58) is simply supported using the rigid bearings. Thus, 

similarly φ(x) which is expressed as ( ) 2 sin( / )x x L =  in the previous section is the linear 

eigenfunction for the present shaft. Then, the equations of motion for the rotating system can be 
then expressed as 
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(4.43) 
Following dimensionless parameters have further been used for reconstructing the equations of 
motion towards the non-dimensional form. 

1 2 2
2

2 1 1

* *

3 4

22 1 2

4
* * * * * * *122

4 2
22

* *2 3 22 2
2

, , , , , , , ,

, , , , , , .

u d
e

d
d r

r

m rm D Ix v w L
x v v L t t I

D m m m
I ck D Kr M

I c R

k k
M

k k k
y z

y z M
D mk k

K
m K m



     

     

 
 

= = = =  =  = = =

= = = = = = =

 (4.44) 
Substitution of the above transformation values in Eqs.(4.42)-(4.43), it results in following non-
dimensional governing equations. While Asterisk has been dropped for the sake of simplicity
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Associated boundary conditions:  

0, 0, 0, .0v wv w = = == at x= 0 and  x = L.      (4.47) 

Here, coefficients ( 1,2 6k ,fy and fz) can be expressed as 
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= −  + −  .This is simplified form of the nonlinear equations of 

motion which accommodates the effect of geometric nonlinearity terms (𝑣3 + 𝑣𝑤2) /(𝑤3 + 𝑣2𝑤), 
effect of inertial nonlinearity terms (𝑣𝑣𝑡

2 + 𝑣𝑡𝑡𝑣2 + 𝑣𝑤𝑡
2 + 𝑣𝑤𝑤𝑡𝑡)/ 𝑤𝑣𝑡

2 + 𝑣𝑡𝑡𝑣𝑤 + 𝑤𝑤𝑡
2 + 𝑤𝑡𝑡𝑤2, 

effect of rub impact terms fy/fz and forcing terms 𝑀𝑒Ω2 𝑐𝑜𝑠 Ω 𝑡 in planes x-y and x-z, respectively.  
 
 

4.5.2 Result and Discussion 

 
We here analyze the effect of rub-impact between the rotating shaft and the stator on the 

dynamic behavior with the system parameters are taken as shaft length (L = 0.8 m), disk position 
(Ld = L/3), Non-dimensional disk mass (M=1.5), non-dimensional unbalance mass (Me=0.15), 
eccentricities of the stator axis relative to the axis of the rotor are Δv =0.2 and Δw=0.85 in y and z 
directions respectively. The coefficient of friction of the rubbing surface is assumed to be 0.2 while 
the clearance between the stator and the rotor is taken as 0.005. 

The spin speed is the most essential parameter that has a substantial effect on the dynamic 
behavior of the system. Figure 4.59 shows a bifurcation diagram to evaluate the nonlienar 
behavior of the system with the spin speed (Ω) as a control parameter accounting the rub-impact 
phenomena. This diagram highlights an insight of rubbing effect on the system behavior when 
the rotataing shaft is operated between Ω = 2.3 to 3.1.  
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Region  A  of (a)                                                        Region  B of (a) 

 
Fig.4.59: Bifurcation Diagram: Effect of spin speed (Ω) 

 

          
 

             
 

Fig.4.60: Effect of spin speed a) Time series b) FFT c) Phase portrait map d) Poincare’ map : Ω= 2.3. 

 
While at Ω=2.8, the system undergoes chaotic behavior, with further increase in the 

rotating speed i.e. When rotating speed is at 2.84, the choatic responses gets transformed into 
multi-periodic behavior. With further increase in the rotating speed, the system finally reach to 
quasiperidic behaviour followed by period-doubling. From this diagram, it is clear that the 
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system exhibits choatic or multi-peridoic responses due to the presnece of rub-impact that exist 
when the rotating speed is in between 2.8 and 2.9. Hence, it is adviced to the operator that the 
shaft speed (Ω) must be kept always more than 2.9 in order to avoid the nonlinear behaviour due 
to rub between the shaft and stator.   

Figure 4.61 shows time history when the rotor runs at a spin speed equal to 2.8. The 
irregular time series with one peak indicating rotating speed and cluster of peaks near 1 renders 
a sign of the chaotic behaviours that is further turned into cluster of many points on the Poincare’s 
map. This exhibits a symbol of the chaotic responses at the spin speed Ω=2.8. With further 
increase in the spin speed to 3, the double periodic behavior is observed that shows beating 
phenomenon in the time series with the steady state response. The corresponding FFT shows the 
effect of two frequency, i.e., ω = 3 and 1.5. The ω = 3 depicts the effect of spin speed (Ω) but there 
is a rise of unknown frequency ω = 1.5 which is almost half of the spin speed. A loop in trajectory 
of the phase portrait with two points on the Poincare’s map can be observed clearly, these 
observation depict double periodic behavior of the system at spin speed Ω =3. 
  

              
 
 

                          
 

Fig.4.61: Effect of spin speed a) Time series b) FFT c) Phase portrait map d) Poincare’ map : Ω= 2.8. 
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Fig.4.62: Effect of spin speed a) Time series b) FFT c) Phase portrait map d) Poincare’ map : Ω = 3. 

 

 
 

Fig.4.63: Bifurcation Diagram: Effect of unbalance mass (Me) 
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Fig.4.64: Effect of unbalance mass  a) Time series b) FFT c) Phase portrait map d) Poincare’ map : Me= 0.02. 

 
Since a mechanical unbalance is found to be a primary fault in the rotating system, the 

system performance and operation stability largely depends on this destabalized parameter. The 
system performance becomes more complex and critical when both the mass unbalance and the 
rub-impact occur together. Thus it is necessary to analyze the effect of the unbalance with rubbing 
phenomenon. Figure 4.63 shows a bifurcation diagram for the system behavior with the 
unbalance mass (Me) as a control parameter. The route to chaos phenonmenon can be observed 
in the bifurcation diagram. The figure shows a period doubling behavior at Me =0.042 and then it 
merges into a chaotic behavior when the Me equals to 0.113. With further increase in the Me to 
0.118, the chaotic behavior turns into double-periodic behavior. Then it repeats the rout to chaos 
phenomena again with further increase in the Me. For the range of Me= 0.01 to 0.2, the route to 
chaos is repeated three times. Hence, the presence of the mass unbalance makes the system highly 
unstable and should be kept away as much as possible.  

Figures 4.64–4.66 illustrates steady state response of the rotating system obtained 
numerically integrating the equation of motion (Eqs. (4.45)-(4.46))  at various values of the mass 
unbalance. While a peridic reponses is observed at Me = 0.02, but, when the Me increases to 0.08, 
the system undergoes double-periodic behavior arising due to the rise of half frequency to that 
of the spin speed. With further increase in the Me to 0.175, the system may lead to chaotic 
behaviour nature, as shown in Fig.4.66; this may lead to catastrophic failure or damage to a 
system.  
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Fig.4.65: Effect of unbalance mass  a) Time series b) FFT c) Phase portrait map d) Poincare’ map : Me= 0.08. 

 
Effect of change in the coefficient of friction on the rotating system behavior can be 

observed from Figs.4.67–4.69. The bifurcation diagram (Fig.4.67) is derived at spin speed Ω = 2.9. 
the system shows four branches at η =0.01 and these branches cross at η =0.105. The cross point 
looks similar to a single periodic motion. Further increase in the η results in two branches and 
which are corresponding to double periodic behavior.  
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Fig.4.66: Effect of unbalance mass  a) Time series b) FFT c) Phase portrait map d) Poincare’ map : Me= 0.175. 

 

 
 

Fig.4.67: Bifurcation diagram: Effect of coefficient of Friction (η) 
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Fig.4.68: Effect of coefficient of Friction a) Time series b) FFT c) Phase portrait map d) Poincare’ map :η =0.01. 

 

              
 

           
 

Fig.4.69: Effect of coefficient of Friction a) Time series b) FFT c) Phase portrait map d) Poincare’ map : η =0.15. 

 
Figure 4.68 shows four points on the Poincare’s map with two loops of a closed trajectory. 

It depicts four periodic behavior of the system at η = 0.01. If the η is increased to 0.15 value, two 
points on the Poincare’s map with one loop on the phase portrait are observed. It depicts double 
periodic behavior of the system in Fig 4.69. 
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Fig.4.70: Bifurcation Diagram: Effect of stifness of rub surface (i.e stator)  1/Kr 

 
Evaluation of the system behavior with a change in the 1/Kr as a control parameter is 

portrayed in Fig.4.70. The figure shows a route to chaos phenomena multiple times in the range 
of  1/kr = 0.01 to 1×105. The bifurcation diagram (Fig.4.70) shows instability region ( a’- b’) with 
derange response amplitude and chaotic region ( c’- d’, e’ – f’, g’ – h’ and i’ – j’). The system almost 
loses stability in a region between 4 to 10.3 values, and it may lead to catastrophic  failure also. 
The system shows periodic behavior as shown in Fig.4.70 at 1/Kr =0.0167. This behavior further 
transformed into double periodic at 10.4 and remain the same till to 14. Figure 4.71 shows a 
perodic behavior of the system at 1/Kr =0.0167 with reference to a periodic range of the bifurcation 
diagram. One of the values from the double periodic range is evaluated in Fig.4.72 and the beat 
phenomenon in the time series, two peaks on the FFT , a loop in the phase portrait and two points 
in the Poincare’s map are observed at 1/Kr =3.34.  The chaotic behavior is also observed, when 

the system behavior is analysed  at  1/kr =2.67×103, as shown in Fig.4.73.  The scattered points on 
the Poincare’s map and the irregular pattern in the time series map depict chaotic nature of the 
system. 
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Fig.4.71: Effect of stifness of rub surface a) Time series b) FFT c) Phase portrait map d) Poincare’ map : 1/Kr 
=0.0167. 

            

                       
 

Fig.4.72: Effect of stifness of rub surface a) Time series b) FFT c) Phase portrait map d) Poincare’ map : 1/Kr 
=3.34. 
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Fig.4.73: Effect of stifness of rub surface a) Time series b) FFT c) Phase portrait mapd) Poincare’ map : 1/Kr 
=2.67×103. 

 

4.6 Summary 

The rotating shaft-disk system with the rotary inertia, gyroscopic effect and nonlinear curvature 
has been analyzed for determining the natural frequencies and resulting free vibration response 
under the influences of various control parameters. The rotary inertia and gyroscopic effect 
combined with the inextensible geometric condition for the pinned-guided shaft element have 
been taken into account to develop the governing equation of motion. The closed-form 
mathematical expressions have been derived for determining both the linear and nonlinear 
natural frequencies and their behavioral patterns have been simultaneously demonstrated 
through time histories, FFTs and Poincare’s maps upon changing the control parameters.  

A well-known perturbation method i.e. the method of multiple scales is used to obtain the 
solution of the nonlinear equation of motion. Moreover, the results obtained numerically and 
perturbation analysis are compared and found in compliance. The results for the system with the 
disk are compared with that of the shaft alone and it has found to have a lower natural frequency 
and first node appears before as it appears for the shaft the for lower spin speed.  

Nonlinear whirling speed has been observed to be higher about 5-8% as compared to the 
findings via the linear analysis. The variation of linear frequencies with the location of the disk 
denoted that with the disk moving away from the center, the rate of increase of the frequency 
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increases. It has also been observed that the initial conditions play an important role in obtaining 
the nonlinear natural frequencies of the rotor-bearing system.  

Further, a large deflection model of the flexible rotor-bearing system which includes a 
flexible shaft characterized with nonlinear curvature and gyroscopic effect, geometric 
eccentricity, a rigid disk crooked with unbalance mass, and nonlinear flexible bearings has been 
developed. Here, nonlinear flexible bearings are being modeled with linear and nonlinear 
properties of the bearing along with damping component. This typical dynamic model has been 
developed to study the instability caused due to the imbalance.  

A set of nonlinear algebraic equations have been derived by using the method of multiple 
scale that to govern the overall dynamic behaviour and stability by investigating bifurcation and 
route to chaos upon changing the design parameters i.e., eccentricity, unbalance and disk 
parameters under resonance conditions. The system losses its stability due to a sudden change in 
the response amplitude being present of saddle-node bifurcation and it has been studied in details 
with the illustration of time history, phase trajectories, bifurcation diagram and Poincare’s map 
for the each category 

The behavior of the system can be successfully controlled with an appropriate selection of 
the geometric eccentricity as well as the possibility of instability and catastrophic failure of the 
system can also be attenuated. An increase in the shaft speed causes a sharp increase in the 
vibration amplitude when the disk is located away from the mid-span. For a moderately large 
value of the disk-mass, a region of the instability improves with a smaller range. The amplitude 
and the instability range get smaller for a lower value of the unbalance mass and the other way 
around. However, the change in the unbalance mass does not affect the rate of change of 
amplitude dv/dΩ. The system showed a decrease in the hardening effect with increase in the mass 
moment of inertia (M.I). 

 Consequently, the system has smaller region of the instability for a higher value of the 
M.I. Finally, the eccentricity strongly exhibits the chaotic behaviors when its value crosses to one 
of its critical value. The system with flexible bearing support shows less hardening effect but 
increase in the hardening effect can be observed by considering large value of the nonlinear 
stiffness coefficient of the bearings.  

The rub impact rotor system with the geometrical and inertial nonlinearities is analyzed 
to investigate its stability and bifurcation behavior. The bifurcation analysis is performed by 
regulating systems parameters such as spin speed, coefficient of friction, stiffness of the stator 
surface and unbalance. It is found that the system behavior has substantial effect of variations in 
these parameters. These variations cause a route to chaos phenomenon in the dynamic behavior 
of the system. For analyzed range of the parameters, the system shows dominance of a rubbing 
effect. This nonlinear nature of the system under effect of the rub and the unbalance can lead to 
instability and then to catastrophic failure or poor performance.  
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