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5 
5 LARGE DEFLECTION MODEL: MULTI-DISK ROTATING 

SYSTEM 
 
 
 
 

5.1 Introduction 

Most machines are composed of many disks on the shaft periphery. The examples are 
blades in gas turbines/steam turbines. The multiple cams on the camshaft in a multi-cylinder 
engine (Automobile, Ships, and Power Plants). These multidisc systems are complex structures 
and difficult to analyze their vibration behavior. The presence of additional disks may alter the 
dynamics of the whole system. Therefore, it is inevitable to study the vibration analysis before 
putting them into working conditions for the proper functioning of the system. 

In this section, mathematical formulation of a multiple disk rotating system with a 
harmonic base motion is carried out. The work of previous section is extended by considering 
multiple disks along the shaft length with rigid bearing support. The shaft is simply supported 
using rigid bearings so the boundary conditions corresponding to the simply supporting rigid 
bearings are considered.  

5.2 Mathematical modeling 

Figure 5.1 describes a flexible rotating shaft mounting multiple disks at various locations 
along the span subjected to a base motion.  Here, the rotating system which includes a flexible 
shaft of length L, shaft mass m, four rigid-disk of outer radius Rd, disk mass M, the disk thickness 
h and simply supported to rigid bearing while rigid disks are here located at equal spacing. 
Coordinate system X-Y-Z is fixed at the left end of the shaft with X direction along the shaft length 

 
Fig.5.1: A rotating system model with multiple disks 

 
The shaft bears multiple disk with equal space distribution along its length and the system is 
excited by harmonic base motion {Wbcos(Ωbt)}. Thus, the Eqs.(4.1) and (4.2) (i.e. Kinetic energy of 
the system) can be redefined as below to include the effect of the multiple disks and the harmonic 
base motion. 
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Here N, Mn, I1dn, I2dn represent total number of disks, mass, polar M.I. and diametrical M.I. of nth 
disk respectively. Using similar procedure as described in the chapter 4 and putting additional 

dimensionless parameters such as *
1 / , /

n n b bM mL W W L = =
 
into Eqs. (4.9) and (4.10),one may 

reconstruct the equations of motion towards non-dimensional form of  the governing equations 
and associated boundary conditions for lateral vibration of the rotating shaft to include the effect 
of the multiple disks and the base motion as below 
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Associated boundary conditions:  

At x = 0, 0, 0, 0, 0.xxx xx xxx xx v w wv = = ==     

At x = 1, 0, 0, 0, 0.xxx xx xxx xx v w wv = = ==       (5.4) 

The partial differential equations i.e., Eqs.(5.2)-(5.3)) have been discretized using 
Galerkin’s method by considering fundamental mode of vibration as single mode Galerkin’s 
solution. Therefore, displacements fields (v, w) is being expressed as 𝑣(𝑥, 𝑡) = 𝜑(𝑥) 𝑅(𝑡), 
and𝑤(𝑥, 𝑡) = 𝜑(𝑥) 𝑆(𝑡).

 
Here, 𝜑(𝑥) is the linear eigenfunction of a beam with simply supported 

and it is expressed as 𝜑(𝑥) = √2 𝑠𝑖𝑛(𝜋𝑥) .  It satisfies the above boundary conditions (a set of 
algebraic equations). Substituting 𝜑(𝑥) into the equations of motion (i.e. Eqs (5.2) -(5.3) for the 
rotating shaft, it results into the following equations 
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Here, the coefficients indicated in the above equations are being expressed below 
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It is quite evident that the above governing equations have nonlinear terms in the form of an 
external excitation and structural nonlinearities. Hence, approximate solutions are inevitable and 
required to be obtained by using similar procedure of the method of multiple scales as expressed 
in chapter 3 and 4. Then, we obtained the following expressions for order 1 of ε. 
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Above equations are non-homogeneous equations that lead to secular or small divisor terms 
when the excitation frequency matches with forward natural frequency as Ωb= Nf + ε2σ called as 
primary resonance condition. As a result, the solutions from these equations may lead into 
unbounded solutions. Therefore, it is necessary to satisfy the certain solvability conditions prior 
to determine the bounded steady state solutions. We can obtain the following solvability 
conditions as.  
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Expressing F1 and F2 in the polar forms (1/2)𝑎1𝑒𝑖𝜃1   and (1/2)𝑎2𝑒𝑖𝜃2 , respectively and 
substituting into the above equations. We can obtain following expressions by collecting the real 
and imaginary terms separately. 
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Eqs.(5.12) and (5.13) can be set to zero i.e., 𝑎1
/

= 𝛾/ = 0 for obtaining the steady-state solution for 
a primary resonance condition. As a result, a set of nonlinear algebraic equations are obtained 
and it can be numerically solved to determine the amplitude of response d1 for a change in values 
of the system parameters. 
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5.3 Viscoelastic shaft with base excitation 

One of the causes of the nonlinearities is due to large elastic deformation. The use of damping 
in such system can be helpful to attenuate the large deformation and consequently reduce the 
severity of the nonlinear effects. Viscoelastic material has good damping property and is being 
widely used to passively control the vibration. The researchers such as Roy et al. (2016, 2017), 
Deng et al. (2016), Ganguly et al. (2016) did recently dynamic analysis of the viscoelastic rotating 
system. They used a viscoelastic material for the rotor in their’s analysis. Here, we use a 
viscoelastic material instead of elastic one for the purpose of reducing the level of vibration in the 
modern development of rotating systems.  

5.3.1 Analysis 

Similar model of a multidisc rotating system (Fig.5.1) is considered here with the effect of a 
viscoelastic material for the shaft. Young modulus (E*) of viscoelastic shaft is represented by 
complex quantity E1+iE2= E1(1+iE2/E1) = E1(1+iδ) [Barun et al, 2008]. The E1 represents elastic 
behavior and E2 represents viscous behavior of the material. The δ is loss factor and it represents 
energy dissipative property of the material. The shaft carries multiple disks with equal space 
distribution along its length and the system is excited by a harmonic base motion (Wbcos(Ωbt)). 
The expressions for the kinetic and potential energy of the system are described earlier in the 
previous section and chapter 4. The viscoelastic effect is included in the system by using E* of the 
viscoelastic material in deriving the potential energy of the system. Thus, the equations of motion 
(i.e. Eqs.(5.2)-(5.3)) for the system become 
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Associated boundary conditions:  

At x = 0, 0, 0, 0, 0.xxx xx xxx xx v w wv = = ==     

At x = 1, 0, 0, 0, 0.xxx xx xxx xx v w wv = = ==                       (5.16) 

Using the similar procedures and mathematical treatments on the above equation as per 
adopted in the previous sections, the equations of motion for the rotating shaft can be expressed 
as 
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Above governing equations exhibit complex and highly nonlinear in nature in terms of external 
excitation and structural nonlinearities. Hence, approximate solutions are inevitable and required 
to be obtained by using similar perturbation technique as chapter 3 and 4. We obtain the following 
expressions for order 1 of ε. ….. 



 
 

115 
 

 

( )

( )

  

   

    

   





 

+  =

  + −

−

+ − 
 

+ + + − +  

−  − − −

+ − + − +

+

+

0

2
1 0 3 3 3 4 0 3

4 1 2 1 2 2 1 2

2 2
5 1 1 5

3

7

3

1 2 2

4 1 2 2 2 2 2 2

2 2
5 2 2 7

2

2 ( ) (

) )

)

)

( )

4 ((1 ) (2 ( ) 8((1 ) )

2( ) ( ) ( )

4 ((1 ) (2 ( ) 8 ((1

ff f N T i

f b

b

f

b

b

D R D S

i N D F T i cN F T
e

i i F F N N i F F F

N D F

R

T cN F T

i i F F N N i  

  
+ + 

  

0

5 1 2 1

.
) ))

bN T ie CC NST
i F F F

  (5.19) 

 

( )

( )

 

  

   

     

    





+  =

 
 − + + − 

 
 + + + + + + 

−  + −

+

+

+

− +

+

+

0

0

2
1 0 3 3 3 4 0 3

2
4 1 2 1 2 2 1 2

2 2
5 1 1 7 5 1 2 2

2
4 1 2 2 2 2 2 2 5 2

3

7

3

7

2

2

1
2( ) ( ) ( )

2

4 ((1 ) (2( )( ) 8((1 ) )

2( ) ( ) ( ) 4

(2

) )

(

f

i T
N T ib f f

d f b

bb

f

D S S D R

e N D F T cN F T
e

i i F F i N N i F F F

N D F T cN F T i F F

i N N 

  
+ + 

−  

0

2
5 1 2 1

.
) 8 )

bN T i

b

e CC NST
F F F

  (5.20) 

 
Here, the above non-homogeneous equations lead to secular or small divisor terms when the 
excitation frequency matches with forward natural frequency as Ωb= Nf + ε2σ called as a primary 
resonance condition. As a result, solutions from these equations may lead into unbounded 
solutions.  Thus, we equate the secular parts to zero as a fundamental solubility condition to 
obtain the bounded solutions and it results in the following solvability conditions as.  
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Expressing F1 and F2 in the polar forms (1/2)𝑎1𝑒𝑖𝜃1and(1/2)𝑎2𝑒𝑖𝜃2 , respectively and substituting 
into these solvability conditions (Eqs. (5.21) and (5.22)). We can obtain following expressions by 
collecting the real and imaginary terms separately. 
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In these equations, we can be set 𝑎1
/

= 𝛾/ = 0 for obtaining the steady-state solution for the 
primary resonance condition. As a result, a set of nonlinear algebraic equations are obtained and 
can be numerically solved to determine the amplitude of response d1 for a change in values of 
system parameters. 

5.3.2 Result and Discussion 

For this numerical investigation, polymethyl methacrylate as a viscoelastic material is 
used for the shaft. The rotating system is considered with shaft length (L = 0.6 m), mass density 
1190.2357 kg/m3, young modulus E1=3×109 N/m2, loss factor δ =0.05, disk diameter (Rd= 0.07 m), 
Non-dimensional disk mass (β1=1.2), diametrical moment of inertia (I3=0.000625)and base 
excitation magnitude (Wb = 0.05). Theoretical studies have been carried out to critically observe 
the stability, its state of evaluation and operating points under the primary resonance condition 
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when the parameters of the rotating shaft-disk system such as loss factor, no. of the disk, 
frequency, and magnitude of the base excitation, have been varied. These observations have been 
demonstrated using the frequency response characteristic, time responses, state-space solutions, 
and Poincare’s tool to examine the vibration attributes of the system.  

The effect of vibration characteristics by considering the multiple disks mounted on the shaft 
has been portrayed in Fig.5.2.With increase in the number of disks, the system losses its hardening 
behavior which in turns the response curves bent left and as a result, the maximum response 
amplitude is found to be significantly increased. However, the jump length is found to be almost 
same and hence, catastrophic failure due to the sudden change in the amplitude is almost trivial. 
The region of bi-stability gets expanded and the instability covers wide range of the excitation 
frequency as compared to the single-disc system. Therefore, initial operating condition plays a 
decisive factor indicating whether the system vibrates with large amplitude leading to the 
catastrophic failure. Here, understanding the basin of attraction might be helpful in accordance 
with the system stability while selecting the initial condition. 

 

          
 
Fig.5.2:Frequency response curve for multiple disks Fig.5.3: Frequency response curve for different loss 

factor (δ) 

 

 
 

Fig.5.4: Frequency response curve for different magnitude of the base excitation (Wb) 

 

Figure 5.3 is demonstrated to show the effect of loss of factor accounting the viscous property 
δ on the dynamic behavior of the rotating system. It has been observed that introducing the high 
loss factor in the system causes decrease in the amplitude. The region of the instability gets 
disappeared with increase in the loss factor or for a system with high loss factor. Hence, the 
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system with high loss factor reduces the chances of catastrophic failure due to the non-existence 
of S-N bifurcation. Therefore, using viscoelastic material instead of elastic material one may 
attenuate the level of vibration and hence, the catastrophic failure 

The effect of change in a magnitude of the base excitation (Wb) on the dynamic behavior of 
the system near the resonance condition is portrayed in Fig.5.4. The increasing the magnitude 
causes the increase in the vibration amplitude as well as increases the instability region. As a 
result, length of the jump up/down gets escalated which in turn increases the chances of 
catastrophic failure while the critical bifurcation starts at a higher frequency. 

      
 

Fig.5.5: Frequency response curve 

 
Figures 5.5- 5.6 are used to compare the results of the method of multiple scales with the findings 
obtained directly integrating the equation of motion. Figure 5.6 exhibits time histories, phase 
portrait and Poincare’s section corresponding to points P1, P2. P3 and P4 marked in the frequency 
response curve (Fig.5.5). However, the both results are in a compliance and the system shows 
periodic behavior at all these points. A typical frequency response curves dealing the vibration 
amplitude with the external frequency of the base excitation leading a primary resonance 
condition has been depicted. Here, the solid and dotted lines indicate the stable and unstable 
solutions, respectively. As the system does not impart any trivial state response, the rotating shaft 
vibrates always with an amplitude equal to the non-trivial response as portrayed in Fig.5.5. 
 

        
 

Fig.5.6: a) Time series b) Phase portrait map c) Poincare’ map (Ref. Fig.5.5) 
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Fig.5.7: Bifurcation diagram for effect of δ,N=4, Ωb  
=50, 

Fig.5.8: Bifurcation diagram for effect of δ, N=2, Ωb  
=72, 

 
The bifurcation diagrams are presented for the system with 4 disc and 2 discs in Fig.5.7 and 
Fig.5.8, respectively. The time response, phase portrait and Poincare’s map are plotted 
corresponding to δ= 0.045, 0.052, 0.057, 0.080 in Fig.5.9 to analyze the system behavior at the 
various loss factor (δ) for the system with 4 discs. The bifurcation diagram for the system with 4 
discs shows periodic behavior for δ<0.048 and 0.0615<δ<0.0645 and it is verified by observing the 
phase portrait and Poincare’s map correspond to δ= 0.045 in Fig.5.9. The phase portraits of these 
responses show trajectories with a very small amplitudes as compared to others. Therefore, the 
Poincare’s map shows almost a dot and this behavior can be neglected or assumed as a periodic 
behavior. 

 
 

Fig.5.9: Effect of loss factor δ a) Time series b) Phase portrait map c) Poincare’ map 

 
When the δ is increased above 0.048, the system shows sudden change in its nature from a 
periodic behavior to a chaotic. The chaotic behavior is detected by developing the Poincare’s map 
at δ=0.052 as shown in Fig.5.9. The scattered points on the Poincare’s map is corresponds to 
unpredictable behavior of the system. At δ=0.057, the Poincare’s map in Fig.5.9 shows system 
behavior with three periods. Further the increase in the δ causes the nature of the system to 
transform into a periodic behavior at δ=0.064. The Fig.5.7 shows quasiperiodic nature for 0.0640< 
δ<0.086 and δ> 0.0935, this can be detected using the Poincare’s map in Fig.5.9 which is 
corresponding to δ=0.080 as the Poincare’s map shows a closed curve. For the small range of δ 
from 0.0745 to 0.0755, the system shows multiperiodic behavior  as well as it is also repeated for 
a range from 0.0865 to 0.0935. In this case, when the number of the disc is reduced to two, the 
system shows shifting the start of the chaotic region to lower value  δ=0.0395 as compared to 
Fig.5.7. As well as the regions of the quasiperiodic and multiperiodic behaviour are squezed to a 
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smaller range i.e.,  0.0515<δ<0.084 such that the multiperiodic regions are almost vanished in 
Fig.5.8. 
 

        
 

Fig.5.10: Bifurcation diagram for effect of Wb, N=4, 

Ωb  =50 

 Fig.5.11: Bifurcation diagram for effect of Wb, N=2, 

Ωb  =72 

Evolution of the system behavior due to change in the Wb is established in Figs.5.10 and 
5.11 with 4 discs and 2 discs respectively. The horizontal straight line in the figures show a 
periodic behavior. In Fig.5.10, the system undergoes a periodic behavior till Wb<0.035, then it gets 
transformed to a quasi-periodic nature. When the value of Wb increased above the 0.045, the 
system vibrates with three times of the excitation frequency then it is subjected to double periodic 
transformation till Wb = 0.05 and the system exhibit a chaotic nature at this value. Then, it 
suddenly jumps to a periodic behavior for further increase in the Wb. A similar transformation of 
the system nature is also observed for the system with 2 Disc as shown in Fig.5.11 such as a 
periodic behavior for Wb<0.041 and Wb>0.056, quasi-periodic behaviour for  0.041< Wb<0.049 and 
double periodic nature from 0.049<Wb<0.056. 

 

 
Fig.5.12: Effect of Wb a) Time series b) Phase portrait map c) Poincare’ map 

 
This transformation is verified by developing Fig.5.12 and Fig.5.13 for the system with 4 

discs. The system shows a periodic, triple periodic and quasi-periodic nature at Wb =0.030, 0.039 
and 0.045 respectively in Fig.5.12. And, a chaotic behaviour of the system is observed at Wb =0.05 
in Fig.5.13. It has been observed that the similar transformation of the system behaviour can be 
observed in both these figures. But, the region of transformation from the periodic to the quasi-
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periodic is shifted to a higher value of Wb (i.e Wb = 0.041) for the system with 2 discs than the 4 
discs (i.e. Wb = 0.035) which is almost opposite as described for the effect of loss factor δ. 
 

 
 

Fig.5.13: Effect of Wb a) Time series b) Phase portrait mapc) Poincare’ map (Wb = 0.05) 
 

                    
 

Fig.5.14: Bifurcation diagram for effect of Ωb, N=4  Fig.5.15: Bifurcation diagram for effect of Ωb,N=2 

 
 

Fig.5.16: Effect of Ωb a) Time series b) Phase portrait map c) Poincare’ map 

 
Figures 5.14-5.15 are bifurcation diagrams of the rotating systems with 4 disc and 2 disc, 

respectively to understand the evolutionary behavior of the system due to a change in Ωb. In 
Fig.5.14, the system shows a periodic behavior for Ωb< 29 and Ωb> 50.2, quasi-periodic behavior 
for 36.25 <Ωb< 45 and transformation to the chaotic nature when 29 <Ωb < 36.25 and 45 <Ωb < 
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50.25. This transformation is verified by developing Fig.5.16 and Fig.5.17 at Ωb= 28, 31, 40 and 50. 
It has been verified that the system has a periodic, double periodic, quasi-periodic and chaotic 
nature respectively at these values of Ωb. The region of bifurcation for the system with 4 discs is 
started at a lower value of the Ωb as compared to the system with two discs but the bifurcation 
range is more in case of the system with 4 disks. The system behaviour shows two times the route 
to chaotic transformation for the 4 disks system as compared to the one-time evidence of the route 
to chaotic transformation in the case of two discs system.  
 

 
 

Fig.5.17: Effect of Ωb a) Time series b) Phase portrait map c) Poincare’ map (Ωb= 50) 

5.4 Summary 

A mathematical model of the rotor system with multiple disks under the influence of an 
external excitation due to the base motion is formulated with the nonlinear curvature and 
gyroscopic effect. Further, a viscoelastic material for the shaft is used to analyze the effect of the 
material on nonlinear behavior of the system. A set of the nonlinear algebraic equations have 
been derived from the nonlinear differential governing equation using the method of multiple 
scales to further obtain the system responses and their stability.  

The stability of the system near the resonance condition is analyzed by portraying the effect 
of no of disks, frequency and magnitude of the base excitation. As well as, the evolution of the 
system behavior (such as route to chaos) has been investigated using the bifurcation diagrams. 
The behavior of the system on the bifurcation diagrams has been verified at the  different values 
using the time response plots, phase portrait plot and Poincare maps. 
Based on the outcomes, the following observations have been depicted in the present work.  
✓ The behavior of the system can be successfully controlled with an appropriate selection of 

base excitation frequency and magnitude as well as the possibility of instability and 
catastrophic failure of the system can also be attenuated.   

✓ With increase in the number of disks causes the increase in the vibration amplitude and 
expansion of the instability region. The viscous material with sufficient loss factor can 
attenuate the vibration amplitude and decrease the instability region, consequently it 
decrease the severity of the catastrophic failure.  

✓ The amplitude and the instability range get smaller for lower value of the base excitation 
parameters (such as Wb ) and the other way around.  

✓ Finally, the systems parameters (N, δ, Ωb and Wb) strongly exhibit the presence of chaotic 
region when its value crosses to one of its critical value. 

Outcomes from this work enable significant theoretical understanding of forced vibration 
analyses which are of great practical importance for investigating the dynamic performance. 
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