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6 
6 CONCLUSIONS AND SCOPES FOR FUTURE WORK 

 
 
 

6.1 General conclusion 

In this work, the nonlinear analyses of the elastic and the viscoelastic flexible shaft disk 
systems with the different loading configuration have been studied. While the rotor system with 
nonlinearities due to large deformation and axial stretching has been considered, another system 
with the nonlinearities (such as geometrical and inertial nonlinearities) is also analyzed by taken 
into account of the inextensibility assumption. As well as, a multidisc rotating model is 
considered, and the effect of viscoelasticity is also investigated. The following six different 
rotating system configurations have been studied 
➢ Large deflection model: axial stretching 

• Excitation of a base motion and an unbalance mass 

• Excitation of an axial loading and an unbalance mass 
➢ Large deflection model: In-extensible Condition  

• Free vibration analysis of the nonlinear shaft disk system 

• Excitation of geometric eccentricity and extra added mass 

• Excitation of an unbalance with rub impact phenomenon  
➢ Large deflection model: multi-disk rotating system 

• Viscoelastic shaft with base excitation  
 
For all these types of rotating systems, the governing equation of motion has been developed by 
using the extended Hamilton principle and then the nonlinear temporal equation of motion has 
been obtained by using the generalized Galerkin’s method. The temporal equation of motion 
contains the forcing terms, parametric terms, and nonlinear terms along with the geometric and 
inertial terms. While the linear forcing term is due to the support motion and unbalance, the 
parametric terms are due to the harmonically varying axial force. The nonlinear damping term 
exists due to the material loss factor in a case of the viscoelastic shaft. The nonlinear forcing term 
arises due to rubbing between the stator and the rotor. The nonlinear geometric and inertia terms 
arise due to the nonlinear curvature and axial stretching of the shaft. 
 
To solve these temporal equations of motions, the first order method of the multiple scales has 
been used. Influences of the different system parameters on the instability regions and frequency 
response curves have been observed for different resonance conditions. The present numerical 
results have been compared with the previously published results and numerically solving the 
temporal equation of motion which are found to be in a good agreement.  
 
It may be noted that carrying out expensive experiments and numerically solving the highly 
complex nonlinear temporal equation of motion are tedious and time consuming and hence, one 
may use the developed simplified mathematical expressions and the reduced equations in this 
work for finding the instability regions, frequency response and critical bifurcation points for the 
different resonance conditions.  
 

When the frequency of the excitation is nearly equal to the natural frequency of the 
system, the system undergoes simple resonance condition and, the system may fail due to sudden 
jump at the saddle node bifurcation point in this resonance condition. Hence, the rotating system 
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should be operated safely at a frequency less than that of the saddle node bifurcation point.  As 
well as, the system may pass through behavioral transformations such as period doubling or 
route to chaos for the critical range of the parameters. The sudden change in the system behavior 
can be prone to failure or poor performance. Specific conclusions are given in the following 
subsections. 
 

6.2 Specific conclusions 

 

➢ 6.2.1 Large deflection model with axial stretching : Excitation of a base motion and an 
unbalance mass  

The free vibration analysis of a base-excited elastically induced flexible rotating system 
has been performed to determine both the linear and nonlinear natural frequencies by 
introducing Campbell diagrams under the variation of design parameters. Further, the 
stability analysis and successive bifurcation point of the steady-state behavior have been 
investigated for three different resonance conditions. Fundamental interaction of various 
components such as mass imbalance, Coriolis, and gyroscopic effect, and geometric 
nonlinearity has been included to predict actual and appropriate dynamic behavior.  

• Substantial effects of the system parameters on the natural frequency of the system are 
detected using the Campbell diagrams by performing free vibration and frequency 
response characteristics analysis. It depicts hardening effect in the system characteristics 
due to the presence of the nonlinearity. This effect is also detected using the FFT plots. 
Along with it, the influence of the system parameter (such as disk position, mass of the 
disk and shaft radius) is also observed on the characteristic behavior of the system. It has 
been observed that not only a spin speed of the shaft but also other parameters like the 
magnitude of ground motion and mass imbalance strongly exhibit the route to chaos 
behaviors when the parameter value reaches to its critical one 

• It is noteworthy that the present nonlinear model formulated based on the Euler theory 
has been successfully examined and found to be adequate enough to predict the correct 
value of critical speeds and dynamic responses in contrast to the Timoshenko model 
under similar working conditions when the shaft length is more than 0.15 m. 

• The effect of geometric nonlinearity and other parameters like an amplitude of the 
excitation, mass unbalance, position of the disk, and mass of the disk on the system 
performance has been depicted and show a substantial effect on the nonlinear behavior 
of the system near the resonance conditions 

Under steady-state conditions, the catastrophic failure of the system due to sudden jump 
can be controlled successfully by altering the design parameters. 

 
 

➢ 6.2.2. Large deflection model with axial stretching: Excitation of an axial loading and an 
unbalance mass 

This study exhibits a significant and inevitable theoretical development to understand the 
combine effect of unbalance and axial load on the overall system performance and subsequent 
critical working condition for the designing and developing of light-weight transmission 
systems.  

• Here, we considered a disk and disturbance parameters (i.e., axial force and mass 
unbalance) as control parameters and their influences on dynamic behavior of the 
proposed rotating system. Increase in the disk parameters value can reduce the 
hardening effect of the nonlinearity and helps to shift instability region to a high 
frequency. As a result, the bifurcation starts at a higher frequency and leads to a stable 
operating until the operating frequency reaches to one of the critical natural frequencies 
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of the system. Here, the system loses its stability due to saddle-node and pitchfork 
bifurcation, respectively with sudden jump phenomena.  

• In this proposed model, the nonlinear stiffness component gives a better stability than its 
counterpart while the pulsating axial load along with the mass unbalance shows 
appreciable effect on the dynamic behavior of the system such as increase in these 
positive effect cause rise in amplitude of the system vibration. Increasing the static axial 
load has been ensured the stability of the system since it increases the natural frequency 
of the whole system. Possibility of catastrophic failure as a sudden change in the 
amplitude due to jump up i.e., from unstable trivial solution to non-trivial solution gets 
high with increase in the disk-size with radius.  

• The flexible bearings are considered to be substantially safe in working condition since 
it reduces the chances of failure due to shorter jump length comparatively. The vibration 
amplitude decreases remarkably while the jump length decreases with increase in the 
value of any these linear and nonlinear spring components. As a result of, the restoring 
force becomes more dominant over the externally influenced forces. From these critical 
observations, we can conclude with the evidence that monitor and control the vibrational 
characteristic and its behavior to avoid catastrophic failure can be successfully controlled 
with the adjustment of the design parameters. It helps further to design a system which 
can run in its operational speed range satisfactorily. 

 

➢ 6.2.3   In-extensible Condition:  Free vibration analysis of the nonlinear shaft disk system 
A rotating shaft-disk system with rotary inertia, gyroscopic effect and nonlinear curvature 

has been analyzed for determining the natural frequencies and resulting free vibration 
response under the influences of various control parameters.  

• In nonlinear free vibration, it has been seen that due to gyroscopic effect, when one plane 
is excited the other plane oscillates as well.  

• The results obtained numerically from the numerical direct integration and perturbation 
analysis agreed well. The results for the system with disk are compared with that of the 
shaft alone and it has found to have lower natural frequency and first node appears before 
as it appears for the shaft for lower spin speed.  

• Nonlinear whirling speed has observed to be higher about 5-8% as compared to the 
findings via the linear analysis.  

• For lower spin speed of the shaft, the forward natural frequencies play a dominant role 
with respect to other frequency. Also, the system amplitude diminishes slowly for the 
combined rotor-bearing system. The linear forward frequency and backward frequency 
increase with angular rotating speed but rate of increase of the forward frequency is more 
compared to the backward linear frequency.  

• The variation of the same with mass ratio showed that the unstable frequency decreases 
with increase in the mass ratio. Also, increasing slope of the forward frequency is less as 
compared to the backward frequency.  

• The variation of linear frequencies with location of the disk denoted that with disk moving 
away from the centre, the rate of increase of the frequency increases. The rotor-bearing has 
been reduced to a simple shaft element by moving the disk nearest to either of the bearing 
ends. It is observed that the free vibration response portrays either periodic or quasi-
periodic depending on the shaft spin speed.  

• The nonlinear forward natural frequency has found to be increased whereas the nonlinear 
backward frequency decreases with increasing the angular speed and similar behavioural 
patterns are observed as linear part of the natural frequency. 

• It has also been observed that the initial conditions play an important role for obtaining the 
nonlinear natural frequencies of the rotor-bearing system.  

The present outcomes enable the insight of theoretical aspect of determining critical speeds 
and evaluating the free vibration behavior required in designing and developing flexible rotor-
bearing performing under high speed operations. 
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➢ 6.2.4 In-extensible Condition:  Excitation of geometric eccentricity and extra added mass 
Mathematical model of a shaft-disk system under the influence of external excitation due 

to eccentricity and unbalance mass is formulated with the nonlinear curvature and gyroscopic 
effect. A set of nonlinear algebraic equations have been derived from a nonlinear differential 
governing equation using MMS to further obtain the system responses and their stability. 
Based on the outcomes, the following observations have been depicted in the present work.  

• The system leads to a catastrophic failure due to S-N bifurcation point. The initial 
condition plays an important role to realize the actual system’s response for its bi-stability 
presence.  

• The behaviour of the system can be successfully controlled with an appropriate selection 
of the geometric eccentricity as well as the possibility of instability and catastrophic failure 
of the system can also be attenuated.   

• With increase in the shaft speed causes sharp increase in the vibration amplitude when 
the disk is located away from the mid-span. For a moderately large value of the disk-mass, 
the region of instability improves with a smaller range.  

• The amplitude and the instability range get smaller for lower value of the unbalance mass 
and the other way around. However, change in the unbalance mass does not affect the 
rate of change of amplitude dv/dΩ.  

• The system showed a decrease in the hardening effect with increase in the mass moment 
of inertia (M.I). Consequently, the system has smaller region of the instability for the 
higher value of the M.I. 

• Finally, the eccentricity strongly exhibits chaotic behaviours when its value crosses to one 
of its critical value. 

• The system with flexible bearing support shows less hardening effect but increase in the 
hardening effect can be observed by considering large value of the nonlinear stiffness 
coefficient of the bearings.  

• An unbalance and nonlinear stiffness coefficient have substantial effect in vibrational 
nature of the system. These can also be considered as control parameters to regulate the 
system dynamical behaviour 

 
➢ 6.2.5 In-extensible condition:  Excitation of an unbalance with rub impact phenomenon 

A rub impact rotor system with the geometrical and inertial nonlinearities is analysed to 
investigate its stability and bifurcation behaviour.  

• The bifurcation analysis is performed by regulating systems parameters such as spin 
speed, coefficient of friction, stiffness of the stator surface and unbalance.  

• The substantial effect of variations in these parameters on the system dynamics has been 
observed.  These variation causes route to chaos phenomena in the vibration behaviour of 
the system.  

• For analysed range of parameters, the system shows dominance of the rubbing effect. This 
nonlinear nature of the system under effect of the rub and the unbalance can lead to 
instability and then to poor performance or may subjected to a failure.  

 

➢ 6.2.6 Large deflection model with multi-disk: Viscoelastic shaft with base excitation 
A mathematical model of the rotor system with multiple disks under the influence of an 

external excitation due to the base motion is formulated with nonlinear curvature and inertia 
effect. A set of nonlinear algebraic equations have been derived from the nonlinear differential 
governing equation using the method of multiple scales to further obtain the system 
responses and their stability. Based on the outcomes, the following observations have been 
depicted in the present work.  
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• The behavior of the system can be successfully controlled with an appropriate selection of 
the base excitation frequency and magnitude as well as the possibility of instability and 
catastrophic failure of the system can also be attenuated.   

• The increase in the number of discs causes an increase in the vibration amplitude and an 
expansion of the instability region. A viscous material with sufficient loss factor can 
attenuate the vibration amplitude and decreases the instability region, consequently it 
decreases the severity of the catastrophic failure.  

• The amplitude and the instability range get smaller for lower value of the base excitation 
parameters (such as Wb) and the other way around.  

• Finally, the systems parameters (N, δ, Ωb and Wb) strongly exhibit the chaotic behaviors 
when its value crosses to one of its critical value. 

Outcomes from this work enable significant theoretical understanding of forced vibration 
analyses which are of great practical importance for investigating the dynamic performance. 
 

6.3 Scopes for future work 

In the present work, the rotor system with nonlinearities due to large deformation and 
axial stretching has been considered, as well as another system with nonlinearities (such as 
geometrical and inertial nonlinearities) is also analyzed by taken into account the effect of the 
inextensibility assumption under effect of different excitations.  
The following extensions may be carried out for this work. 

• Here the analysis has been limited to the fundamental frequency of the system. Multimode 
analysis may be carried out to study the effect of different system parameters when the system 
operates at higher frequencies.  

• Internal resonance conditions may be considered when the frequencies of different modes are 
commensurate. 

• The combined effect of the nonlinearities due to large deformation and instability of fluid film 
bearings can also be explored for further work.  

• For passively control of the vibration of the rotor, one may use a sandwich structure and 
shunted piezo-ceramics dampers.  

• To actively reduce the vibration of the rotor one may use magneto-rheological elastomer 
where, the present analysis can be easily extended.  

• Experimental analysis can also be carried out for the respective research models to explore 
more the nonlinear behavior of the system under different configurations and combined 
linear and nonlinear loading conditions. This will enhance the practical importance of the 
study. 
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