List of Figures

Figures Content PageNo.
1
Fig. 1.1 A basic model of a rotating system
2
Fig. 1.2 Applications in electrical power generation plant
Fig. 1.3 Applications in transportation 2
Fig. 1.4 Applications in heavy industries 3
Fig. 1.5 Accidents of rotating machines 5
Fig. 3.1 a) A rotating system with a rigid bearing System b) Elastic deformation in transverse direction 28
Fig. 3.2 Euler angle rotation 29
Fig. 3.3 Kinematics of a beam 30
Fig. 3.4 Conceptual spring-damper equivalent model for the bearings 33
Fig. 3.5 Unbalance mass position 35
Fig. 3.6 A rotor bearing system under moving platform 40
Fig. 3.7 Effect of location of disk on both linear and nonlinear forward and backward natural frequencies 43
Fig. 3.8 Effect of mass of the disk on both linear and nonlinear forward and backward natural frequencies 44
Fig. 3.9 Effect of the shaft diameter on both linear and nonlinear forward and backward natural frequencies with disk 44
Fig. 3.10 Linear forward and backward natural frequencies using Euler and Timoshenko theory; $\mathrm{L}=0.5 \mathrm{~m}$ 45
Fig. 3.11 Linear forward and backward natural frequencies using Euler and Timoshenko theory; L=0.06m 45
Fig. 3.12 Time history of the free vibration of $v(\rightarrow Y)$ and $w(\rightarrow Z)$ directions. 45
Fig. 3.13 Effect of external frequency $\left(\Omega_{2}\right)$ on the dynamic performances of the rotor- bearing system; $M_{e}=0.12 \mathrm{~kg}$, 46
Fig. 3.14 Effect of external amplitude on the dynamic performances of the rotor- bearing system. 48
Fig. 3.15 Effect of initial conditions on the dynamic performances of the rotor-bearing system. 49
Fig. 3.16 Influence of external amplitude on the frequency response curves. 50
Fig. 3.17 Variation of location of the disk on the frequency response curves. 50
Fig. 3.18 Variation of mass of the disk on the frequency response curves. 51
Fig. 3.19 Variation of radius of shaft on the frequency response curves. 51
Fig. 3.20 (a) Time history and phase portrait at the points P1, P2, P3 (Fig. 3.14) (b) Time history 52
Fig. 3.21 Time history and phase portrait at the point (Fig. 3.14) with initial point 0.001, 0.001 52
Fig. 3.20 Effect of Mass unbalance on the frequency response curves. 53

Fig.3.22 a) A shaft disk system subjected to axial load b) Equivalent linear and nonlinear spring-damper system; State of elastic deformation in transverse 54 direction (y, z)
Fig. 3.24 Mode shapes: a) Flexible bearing: $\lambda_{1}=3.45, \lambda_{2}=5.34, \lambda_{3}=7.14$ b) Rigid 57 bearing
Fig. 3.25 Campbell diagram: $I_{d}=1 / 4, R_{d}=0.08 \mathrm{~m}$
Fig. 3.26 Frequency response plots if $\Omega_{1} \approx 2 \omega_{1}$ and $\Omega_{2} \approx \omega_{1}: P_{0}=1 \times 10^{3} \mathrm{~N}, P_{1}=5 \times 10^{3} \mathrm{~N}, \quad 58$ $K_{l}=1 \times 10^{5} \mathrm{~N} / \mathrm{m}$.
Fig. 3.27 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}: P_{0}=1 \times 10^{3} \mathrm{~N}, P_{1}=5 \times 10^{3} \mathrm{~N}$
Fig. 3.28 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}: P_{1}=5 \times 10^{3} \mathrm{~N}$
Fig. 3.29 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}: P_{0}=1 \times 10^{3} \mathrm{~N}, P_{1}=5.0 \times 10^{3} \mathrm{~N} 59$
Fig. 3.30 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}: P_{0}=1 \times 10^{3} \mathrm{~N}$
Fig. 3.31 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}: P_{1}=1 \times 10^{3} \mathrm{~N}, P_{0}=5 \times 10^{3} \mathrm{~N} .60$
Fig. 3.32 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}: P_{1}=1 \times 10^{3} \mathrm{~N}, P_{0}=5 \times 10^{3} \mathrm{~N} .60$
Fig. 3.33 Frequency response plot if $\Omega 1 \approx 2 \omega 1$: $P 1=1 \times 10^{3} \mathrm{~N}, P 0=5 \times 10^{3} \mathrm{~N} .60$
Fig. 3.34 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}$ and $\Omega_{2} \approx \omega_{1}: P_{0}=1 \times 10^{3} \mathrm{~N}, P_{1}=1 \times 10^{3} \mathrm{~N}$
Fig. 3.35 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}$ and $\Omega_{2} \approx \omega_{1}: P_{0}=1 \times 10^{3} \mathrm{~N}$
Fig. 3.36 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}$ and $\Omega_{2} \approx \omega_{1}: P_{1}=5 \times 10^{3} \mathrm{~N}$
Fig. 3.37 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}$ and $\Omega_{2} \approx \omega_{1}: P_{0}=1 \times 10^{3} \mathrm{~N}, P_{1}=5 \times 10^{3} \mathrm{~N}$
Fig. 3.38 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}$ and $\Omega_{2} \approx \omega_{1}: P_{0}=1 \times 10^{3} \mathrm{~N}, K_{n l}=1 \times 10^{9} \mathrm{~N} / \mathrm{m}^{3} \quad 62$
Fig. 3.39 Frequency response plot if $\Omega_{1} \approx 2 \omega_{1}$ and $\Omega_{2} \approx \omega_{1}: P_{0}=1 \times 10^{3} \mathrm{~N}, K_{l}=1 \times 10^{5} \mathrm{~N} / \mathrm{m}$
Fig. 3.40 Frequency response plot: $\Omega_{1} \approx 2 \omega_{1} \quad 62$
$\begin{array}{ll}\text { Fig. 3.41 } & \text { Steady state response only (Ref. Fig. 3.38) a) Time response b) FFT plot c) } \\ & \text { Phase portrait and Poincare map }\end{array}$
Fig. 3.42 Frequency response plot 63
$\begin{array}{ll}\text { Fig. 3.43 Steady state response only (Ref. Fig. 3.40) a) Time response b) FFT plot c) } \\ & \text { Phase portrait d) Poincare map }\end{array}$
Fig. 3.44 a) Bifurcation diagram of P_{1} b) Time response plot: $\Omega_{1}=0.8 \omega_{1}, P_{0}=500064$ $\mathrm{N}, K_{l}=2 \times 10^{5} \mathrm{~N} / \mathrm{m}, K_{n l}=3 \times 10^{9} \mathrm{~N} / \mathrm{m}^{3}$
Fig. 3.45 Bifurcation diagram of $P_{1}, P_{0}=5000 \mathrm{~N}, K_{l}=2 \times 10^{5} \mathrm{~N} / \mathrm{m}, K_{n l}=3 \times 10^{9} \mathrm{~N} / \mathrm{m}^{3} \quad 65$
Fig. 3.46 Steady state response only a) Time response b) FFT plot c) Phase portrait: P_{1} $=15000 \mathrm{~N}, P_{0}=5000 \mathrm{~N}, K_{l}=2 \times 10^{5} \mathrm{~N} / \mathrm{m}, K_{n l}=3 \times 10^{9} \mathrm{~N} / \mathrm{m}^{3}$
Fig. 3.47 Validation-Frequency response plot 66
Fig. 4.1 Graphical representation of flexible rotor-bearing consisting rotating shaft with rigid disk
Fig. 4.2 Euler angles rotation 70
Fig. 4.3 Time history for rotating shaft without disk effect in Y direction (v) for $\Omega=10$ $H z M=0$.
Fig. 4.4 Time history for rotating shaft without disk effect in Z direction (w) for $\Omega=$ $10 \mathrm{~Hz}, M=0$
Fig. 4.5 Time history for rotating shaft without disk effect in Y direction (v) for $\Omega=10 \quad 75$ Hz
Fig. 4.6 Time history for rotating shaft without disk effect in Z direction (w) for $\Omega=75$ 10 Hz
Fig. 4.7 Time history for rotating shaft with and without disk system in Y direction (v) for $\Omega=10 \mathrm{~Hz}$, and $M=1.5$.

Fig. 4.8 Time history for rotating shaft with and without disk system in Z direction (w) for $\Omega=10 \mathrm{~Hz}$, and $M=1.5$.

Fig. 4.9 Time history for rotor-bearing system in Y direction for $\Omega=10 \mathrm{~Hz}, M=1.5$ and
$I_{2}=0.00625$
Fig. 4.10 Time history for rotor-bearing system in Z direction for $\Omega=10 \mathrm{~Hz}, M=1.5$ and $I_{2}=0.00625$ 75
Fig. 4.11 Forward and backward natural frequencies of shaft element only. 76
Fig. 4.12 Forward and backward natural frequencies of shaft with disk element for M $=1.5$ and $L_{d}=L / 3$ 76
Fig. 4.13 Effect of mass ratio (M) on forward and backward natural frequencies of shaft with disk system forl ${ }_{2}=0.00625$ 76
Fig. 4.14 Effect of disk location L_{d} on forward and backward natural frequencies of shaft with disk system for $M=1.5$ and $I_{2}=0.00625$ 76
Fig. 4.15 Forward and backward natural frequencies of shaft with and without disk I_{2} $=0.000625$ 77
Fig. 4.16 Influence of mass of moment of inertia $\left(I_{2}\right)$ on nonlinear forward and backward natural frequencies of rotor-bearing system $M=1.5$. 77
Fig. 4.17 Influence of mass ratio (M) on nonlinear forward and backward natural frequencies of rotor-bearing system for $I_{2}=0.00625$ and $L_{d}=L / 3$ 77
Fig. 4.18 Effect of disk location (Ld) on nonlinear forward and backward natural frequencies of shaft with disk system; $M=1.5$ and $I_{2}=0.000625$ 77
Fig. 4.19 Nonlinear forward and backward natural frequencies for the system with and without disk for $I_{2}=0.000625$ and $L_{d}=L / 3$. 78
Fig. 4.20 Frequency diagram to indicate the differences between linear and nonlinear forward and backward natural frequencies for $M=1.5, I_{2}=0.000625$ and L_{d} 78 =L/3
Fig. 4.21 Fourier spectrum at a spin speed $(\Omega=0)$ for $M=1.5, I_{2}=0.000625$ and $L_{d}=L / 3$ 78
Fig. 4.22 Influence of rotary inertia on nonlinear forward and backward natural frequencies of rotor-bearing system for $I_{2}=0.0225$ and $L_{d}=L / 3$. 78
Fig. 4.23 Fourier spectrum at a spin speed $\Omega=20 \mathrm{rad} / \mathrm{s}$ (a) Linear case (b) Nonlinear 79 case
Fig. 4.24 Fourier spectrum at a spin speed $\Omega=50 \mathrm{rad} / \mathrm{s}$ (a) Linear case (b) Nonlinear 79 case.
Fig. 4.25 Fourier spectrum at a spin speed $\Omega=100 \mathrm{rad} / \mathrm{s}$ (a) Linear case (b) Nonlinear 80
case.
Fig. 4.26 Influences of initial conditions on the nonlinear Natural frequencies at a spin speed $\Omega=50 \mathrm{rad} / \mathrm{s}$ 80
Fig. 4.27 Time history and Poincare's section at a spin speed $\Omega=0 \mathrm{rad} / \mathrm{s}$ for $\mathrm{c}=0$. 81
Fig. 4.28 Time history and Poincare's section at a spin speed $\Omega=0 \mathrm{~Hz}$ for $\mathrm{c}=0.05 \mathrm{Ns} / \mathrm{m}$ 81
Fig.4.29 Time history and Poincare's section at a spin speed $\Omega=10 \mathrm{~Hz}$ for $\mathrm{c}=0.0 \mathrm{Ns} / \mathrm{m}$ 81
Fig. 4.30 Time history and Poincare's section at a spin speed $\Omega=10 \mathrm{~Hz}$ for $\mathrm{c}=0.05$ 82Ns/m.
Fig.4.31 Conceptual model for unbalance and eccentricity 82
Fig. 4.32 a) Campbell diagram b) FFT plot of intial 3 sec data at $\Omega=0 \mathrm{~Hz}: v(0)=0.15$, $w(0)=0.00$ 85
Fig. 4.33 Frequency response plot 85
Fig. 4.34 Steady state response only (Ref. Fig.4.33) .a) Time response b) Phase portrait c) Poincare map 86
Fig. 4.35 Frequency response curve for Different eccentricity ($e_{v}=e_{w}$). 86

Fig. 4.36 Frequency response curve for different disk position $\left(L_{d}\right) 86$
Fig. 4.37 Frequency response curve for different disk mass $\left(B_{1}\right) \quad 87$
Fig. 4.38 Frequency response curve for different unbalance $\left(B_{2}\right): \beta_{1}=0.5$. 87
Fig. 4.39 Frequency response curve for different diametrical moment of inertia $\left(l_{3}\right) \quad 87$
Fig. 4.40 Frequency response curve for the rotating system with and without disk (same unbalance magnitude ($\beta_{2} e_{v 1}$) for both cases)
Fig. 4.41 Steady state response only. a) Time response b) Phase portrait c) Poincare map. : $v(0)=0.01, \quad e_{v}=e_{w}, e_{v 1}=e_{w 1}=0.2374$
Fig. 4.42 Steady state response only. a) Time response b) FFT plot c) Phase portrait d) Poincare map. : $v(0)=0.01, e_{v}=e_{w}=0.1880, e_{v 1}=e_{w 1}=0.2374$88
$\begin{array}{ll}\text { Fig. } 4.43 & \text { Steady state response only. a) Time response b) FFT plot c) Phase portrait d) } \\ & \text { Poincare map. }: v(0)=0.01, e_{v}=e_{w}=0.2505, e_{v 1}=e_{w 1}=0.30\end{array}$
Fig. 4.44 Steady state response only. a) Time response b) Phase portrait c) Poincare map. : $e_{v}=e_{w}=0.125$
$\begin{array}{ll}\text { Fig. } 4.45 & \text { Steady state response only. a) Time response b) FFT plot c) Phase portrait d) } \\ & \text { Poincare map. }: e_{v}=e_{w}=0.125, \Omega=4.485\end{array}$
Fig. 4.46 Steady state response only. a) Time response b) FFT plot c) Phase portrait d) Poincare map. : $e_{v}=e_{w}=0.125, \Omega=5.485$

91
Fig. 4.47 a) Time response b) FFT plot c) Poincare map. : $e_{v}=e_{w}=0.125, \Omega=5.685 \quad 91$
Fig. 4.48 Bifurcation diagram a) Spin speed (Ω) Vs Poincare points (v) with $(v(0)=$ 0.01) b) eccentricity $\left(e_{v}\right) V s$ Poincare points (v) with $(v(0)=0.01, \dot{\mathcal{v}}(0)=0.02$, $w(0)=0.0001, \dot{w}(0)=0.01)$
Fig. 4.49 Bifurcation diagram a) B_{2} Vs Poincare points (v) b) B_{2} Vs Poincare points (v) with $(v(0)=0.001), \dot{v}(0)=0, w(0)=0, \dot{w}(0)=0), e_{v}=e_{w}=0.02$
Fig. 4.50 Steady state response only (Ref. Fig. 4.49). a) Time response b) Phase portrait c) Poincare map
Fig. 4.51 Steady state response only (Ref. Fig. 4.49). a) Time response b) Phase portrait c) Poincare map. $b_{2}=0.28$
Fig. 4.52 a) Mode shapes b) Frequency response curve: $K_{l}=0.016, C_{b}=8.57 \times 10^{-4} \quad 94$
Fig. 4.53 Frequency response curve: $K_{l}=0.016, C_{b}=8.57 \times 10^{-4} 94$
Fig. 4.54 Bifurcation diagram a) $K_{n l} V$ s Poincare points (v) with $(v(0)=0.001), \dot{v}(0)=$ $0, w(0)=0, \dot{w}(0)=0), b_{2}=0.018, e_{v}=e_{w}=0.02$
$\begin{array}{ll}\text { Fig. } 4.55 & \text { Steady state response only (Ref. Fig. 4.54). a) Time response b) Phase } \\ & \\ & \\ \text { portrait c) Poincare map }\end{array}$
Fig. 4.56 Steady state response only (Ref. Fig. 4.54) a) Time response b) Phase portrait c) Poincare' map $K_{n l}=78$

Fig. 4.57 Validation: Frequency response plot 95
Fig. 4.58 Schematic diagram of rotating system with rub impact phenomenon 96
Fig. 4.59 Bifurcation Diagram: Effect of spin speed (Ω) 99
Fig. 4.60 Effect of spin speed a) Time series b) FFT c) Phase portrait map d) Poincare’ map: $\Omega=2.3$.
Fig. 4.61 Effect of spin speed a) Time series b) FFT c) Phase portrait map d) Poincare’ map: $\Omega=2.8$.

Fig. 4.62 Effect of spin speed a) Time series b) FFT c) Phase portrait map d) Poincare'
map: $\Omega=3$.

Fig. 4.63 Bifurcation Diagram: Effect of unbalance mass $\left(M_{e}\right) \quad 101$
Fig. 4.64 Effect of unbalance mass a) Time series b) FFT c) Phase portrait map d) Poincare' map: $M_{\mathrm{e}}=0.02$.
Fig. 4.65 Effect of unbalance mass a) Time series b) FFT c) Phase portrait map d) Poincare' map: $M_{\mathrm{e}}=0.08$. 103
Fig. 4.66 Effect of unbalance mass a) Time series b) FFT c) Phase portrait map d) Poincare' map: $M_{\mathrm{e}}=0.175$. 104
Fig. 4.67 Bifurcation diagram: Effect of coefficient of Friction (η) 104
Fig. 4.68 Effect of coefficient of Friction a) Time series b) FFT c) Phase portrait map d) Poincare' map: $\eta=0.01$. 105
Fig. 4.69 Effect of coefficient of Friction a) Time series b) FFT c) Phase portrait map d) Poincare' map: $\eta=0.15$. 105
Fig. 4.70 Bifurcation Diagram: Effect of stiffness of rub surface (i.e. stator) $1 / K_{r}$ 106
Fig. 4.71 Effect of stiffness of rub surface a) Time series b) FFT c) Phase portrait map d) Poincare' map: $1 / K_{r}=0.0167$. 107
Fig. 4.72 Effect of stiffness of rub surface a) Time series b) FFT c) Phase portrait map d) Poincare' map: $1 / K_{r}=3.34$. 107
Fig. 4.73 Effect of stiffness of rub surface a) Time series b) FFT c) Phase portrait map d) Poincare' map: $1 / K_{r}=2.67 \times 103$. 108
Fig. 5.1 A rotating system model with multiple disks 111
Fig. 5.2 Frequency response curve for multiple disks 116
Fig. 5.3 Frequency response curve for different loss factor (δ) 116
Fig. 5.4 Frequency response curve for different magnitude of the base excitation 117 (W_{b})
Fig. 5.5 Frequency response curve 117
Fig. 5.6 a) Time series b) Phase portrait map c) Poincare' map (Ref. Fig. 5.5) 118
Fig. 5.7 Bifurcation diagram for effect of $\delta, N=4, \Omega_{b}=50$, 118
Fig. 5.8 Bifurcation diagram for effect of $\delta, N=2, \Omega_{b}=72$, 118
Fig. 5.9 Effect of loss factor δ a) Time series b) Phase portrait map c) Poincare' map 119
Fig. 5.10 Bifurcation diagram for effect of $W_{b} N=4, \Omega_{b}=50$ 119
Fig. 5.11 Bifurcation diagram for effect of $W_{b}, N=2, \Omega_{b}=72$ 119
Fig. 5.12 Effect of $W_{b} a$) Time series b) Phase portrait map c) Poincare' map 120
Fig. 5.13 Effect of $W_{b} a$) Time series b) Phase portrait map c) Poincare' map ($W_{b}=$ 120 0.05)
Fig. 5.14 Bifurcation diagram for effect of $\Omega_{b}, N=4$ 120
Fig. 5.15 Bifurcation diagram for effect of $\Omega_{b}, N=2$ 120
Fig. 5.16 Effect of Ω_{b} a) Time series b) Phase portrait map c) Poincare' map 121
Fig. 5.17 Effect of Ω_{b} a) Time series b) Phase portrait map c) Poincare' map ($\Omega_{b}=50$) 121
Fig. A. 1 Displacement relation and Euler angle 141

