List of Figures

Figures	Content	Page No.
Fig. 1.1	A basic model of a rotating system	1
Fig. 1.2	Applications in electrical power generation plant	2
Fig. 1.3	Applications in transportation	2
Fig. 1.4	Applications in heavy industries	3
Fig. 1.5	Accidents of rotating machines	5
Fig. 3.1	a) A rotating system with a rigid bearing System b) Elastic deformation in transverse direction	28
Fig. 3.2	Euler angle rotation	29
Fig. 3.3	Kinematics of a beam	30
Fig. 3.4	Conceptual spring-damper equivalent model for the bearings	33
Fig. 3.5	Unbalance mass position	35
Fig. 3.6	A rotor bearing system under moving platform	40
Fig. 3.7	Effect of location of disk on both linear and nonlinear forward and backward natural frequencies	43
Fig. 3.8	Effect of mass of the disk on both linear and nonlinear forward and backward natural frequencies	44
Fig. 3.9	Effect of the shaft diameter on both linear and nonlinear forward and backward natural frequencies with disk	44
Fig. 3.10	Linear forward and backward natural frequencies using Euler and Timoshenko theory; L=0.5m	45
Fig. 3.11	Linear forward and backward natural frequencies using Euler and Timoshenko theory; L=0.06m	45
Fig. 3.12	Time history of the free vibration of v (\rightarrow Y) and w (\rightarrow Z) directions.	45
Fig. 3.13	Effect of external frequency (Ω_2) on the dynamic performances of the rotor-bearing system; M_e =0.12 kg,	46
Fig. 3.14	Effect of external amplitude on the dynamic performances of the rotor- bearing system.	48
Fig. 3.15	Effect of initial conditions on the dynamic performances of the rotor-bearing system.	49
Fig. 3.16	Influence of external amplitude on the frequency response curves.	50
Fig. 3.17	Variation of location of the disk on the frequency response curves.	50
Fig. 3.18	Variation of mass of the disk on the frequency response curves.	51
Fig. 3.19	Variation of radius of shaft on the frequency response curves.	51
Fig. 3.20	(a) Time history and phase portrait at the points P1, P2, P3 (Fig. 3.14) (b) Time history	52
Fig. 3.21	Time history and phase portrait at the point (Fig. 3.14) with initial point 0.001, 0.001.	52
Fig. 3.20	Effect of Mass unbalance on the frequency response curves.	53

Fig.3.22	a) A shaft disk system subjected to axial load b) Equivalent linear and nonlinear spring-damper system; State of elastic deformation in transverse direction (y, z)	54
Fig. 3.24	Mode shapes: a) Flexible bearing: $\lambda 1 = 3.45$, $\lambda 2 = 5.34$, $\lambda 3 = 7.14$ b) Rigid bearing	57
Fig. 3.25	Campbell diagram: $I_d = I/4$, $R_d = 0.08 m$	57
Fig. 3.26	Frequency response plots if $\Omega_1 \approx 2\omega_1$ and $\Omega_2 \approx \omega_1$: $P_0=1\times 10^3N$, $P_1=5\times 10^3N$, $K_1=1\times 10^5N/m$.	58
Fig. 3.27	Frequency response plot if Ω₁≈2ω₁: P₀=1×10³N, P₁=5×10³N	59
Fig. 3.28	Frequency response plot if Ω₁≈2ω₁: P₁=5×10 ³ N	59
Fig. 3.29	Frequency response plot if Ω₁≈2ω₁: P₀=1×10³N, P₁=5.0×10³N	59
Fig. 3.30	Frequency response plot if Ω₁≈2ω₁: P₀=1×10 ³ N	59
Fig. 3.31	Frequency response plot if Ω₁≈2ω₁: P₁=1×10³N, P₀=5×10³N	60
Fig. 3.32	Frequency response plot if Ω₁≈2ω₁: P₁=1×10³N, P₀=5×10³N	60
Fig. 3.33	Frequency response plot if Ω1≈2ω1: P1=1×10³N, P0=5×10³N	60
Fig. 3.34	Frequency response plot if $\Omega_1 \approx 2\omega_1$ and $\Omega_2 \approx \omega_1$: $P_0 = 1 \times 10^3$ N, $P_1 = 1 \times 10^3$ N	61
Fig. 3.35	Frequency response plot if $\Omega_1 \approx 2\omega_1$ and $\Omega_2 \approx \omega_1$: $P_0 = 1 \times 10^3 N$	61
Fig. 3.36	Frequency response plot if $\Omega_1 \approx 2\omega_1$ and $\Omega_2 \approx \omega_1$: $P_1 = 5 \times 10^3 N$	61
Fig. 3.37	Frequency response plot if Ω₁≈2ω₁ and Ω₂≈ω₁: P₀=1×10³ N, P₁=5×10³ N	61
Fig. 3.38	Frequency response plot if $\Omega_1 \approx 2\omega_1$ and $\Omega_2 \approx \omega_1$: $P_0 = 1 \times 10^3$ N, $K_{nl} = 1 \times 10^9$ N/ m ³	62
Fig. 3.39	Frequency response plot if $\Omega_1 \approx 2\omega_1$ and $\Omega_2 \approx \omega_1$: $P_0 = 1 \times 10^3$ N, $K_1 = 1 \times 10^5$ N/m	62
Fig. 3.40	Frequency response plot: Ω₁≈2ω₁	62
Fig. 3.41	Steady state response only (Ref. Fig. 3.38) a) Time response b) FFT plot c) Phase portrait and Poincare map	63
Fig. 3.42	Frequency response plot	63
Fig. 3.43	Steady state response only (Ref. Fig. 3.40) a) Time response b) FFT plot c) Phase portrait d) Poincare map	64
Fig. 3.44	a) Bifurcation diagram of P_1 b) Time response plot: $\Omega_1 = 0.8\omega_1$, $P_0 = 5000$ $N_1K_1 = 2 \times 10^5 N/m$, $K_{nl} = 3 \times 10^9 N/m^3$	64
Fig. 3.45	Bifurcation diagram of P ₁ , P ₀ =5000 N,K ₁ =2×10 ⁵ N/m, K _{nl} =3×10 ⁹ N/m ³	65
Fig. 3.46	Steady state response only a) Time response b) FFT plot c) Phase portrait: P_1 = 15000 N, P_0 =5000 N, K_l =2×10 ⁵ N/m, K_{nl} =3×10 ⁹ N/m ³	65
Fig. 3.47	Validation-Frequency response plot	66
Fig. 4.1	Graphical representation of flexible rotor-bearing consisting rotating shaft with rigid disk	69
Fig. 4.2	Euler angles rotation	70
Fig. 4.3	Time history for rotating shaft without disk effect in Y direction (v) for Ω = 10 Hz M = 0.	74
Fig. 4.4	Time history for rotating shaft without disk effect in Z direction (w) for Ω = 10 Hz, M = 0	74
Fig. 4.5	Time history for rotating shaft without disk effect in Y direction (v) for Ω = 10 Hz	75
Fig. 4.6	Time history for rotating shaft without disk effect in Z direction (w) for Ω = 10 Hz	75
Fig. 4.7	Time history for rotating shaft with and without disk system in Y direction (v) for Ω = 10 Hz, and M =1.5.	75

Fig. 4.8	Time history for rotating shaft with and without disk system in Z direction (w) for Ω = 10 Hz, and M =1.5.	75
Fig. 4.9	Time history for rotor-bearing system in Y direction for Ω = 10 Hz, M = 1.5 and I_2 = 0.00625	75
Fig. 4.10	Time history for rotor-bearing system in Z direction for Ω = 10 Hz, M = 1.5 and l_2 =0.00625	75
Fig. 4.11	Forward and backward natural frequencies of shaft element only.	76
Fig. 4.12	Forward and backward natural frequencies of shaft with disk element for M = 1.5 and $L_d = L/3$	76
Fig. 4.13	Effect of mass ratio (M) on forward and backward natural frequencies of shaft with disk system for $I_2 = 0.00625$	76
Fig. 4.14	Effect of disk location L_d on forward and backward natural frequencies of shaft with disk system for $M = 1.5$ and $l_2 = 0.00625$	76
Fig. 4.15	Forward and backward natural frequencies of shaft with and without disk <i>I</i> ₂ = 0.000625	77
Fig. 4.16	Influence of mass of moment of inertia (I_2) on nonlinear forward and backward natural frequencies of rotor-bearing system $M=$ 1.5.	77
Fig. 4.17	Influence of mass ratio (M) on nonlinear forward and backward natural frequencies of rotor-bearing system for $I_2 = 0.00625$ and $L_d = L/3$	77
Fig. 4.18	Effect of disk location (Ld) on nonlinear forward and backward natural frequencies of shaft with disk system; M = 1.5 and I_2 = 0.000625	77
Fig. 4.19	Nonlinear forward and backward natural frequencies for the system with and without disk for I_2 = 0.000625 and L_d =L/3.	78
Fig. 4.20	Frequency diagram to indicate the differences between linear and nonlinear forward and backward natural frequencies for M= 1.5, I_2 = 0.000625 and L_d = $L/3$	78
Fig. 4.21	Fourier spectrum at a spin speed ($\Omega = 0$) for M= 1.5, $I_2 = 0.000625$ and $L_d = L/3$	78
Fig. 4.22	Influence of rotary inertia on nonlinear forward and backward natural frequencies of rotor-bearing system for $I_2 = 0.0225$ and $L_d = L/3$.	78
Fig. 4.23	Fourier spectrum at a spin speed Ω = 20 <i>rad/s</i> (a) Linear case (b) Nonlinear case	79
Fig. 4.24	Fourier spectrum at a spin speed Ω = 50 <i>rad</i> /s (a) Linear case (b) Nonlinear case.	79
Fig. 4.25	Fourier spectrum at a spin speed Ω = 100 <i>rad/s</i> (a) Linear case (b) Nonlinear case.	80
Fig. 4.26	Influences of initial conditions on the nonlinear Natural frequencies at a spin speed $\Omega = 50 \text{ rad/s}$	80
Fig. 4.27	Time history and Poincare's section at a spin speed $\Omega = 0$ rad/s for c= 0.	81
Fig. 4.28	Time history and Poincare's section at a spin speed Ω = 0 Hz for c = 0.05 Ns/m	81
Fig.4.29	Time history and Poincare's section at a spin speed Ω = 10 Hz for c = 0.0 Ns/m	81
Fig. 4.30	Time history and Poincare's section at a spin speed Ω = 10 Hz for c = 0.05 Ns/m.	82
Fig.4.31	Conceptual model for unbalance and eccentricity	82
Fig. 4.32	a) Campbell diagram b) FFT plot of intial 3sec data at $\Omega = 0$ Hz : $v(0) = 0.15$, $w(0) = 0.00$	85
Fig. 4.33	Frequency response plot	85
Fig. 4.34	Steady state response only (Ref. Fig.4.33) .a) Time response b) Phase portrait c) Poincare map	86
Fig. 4.35	Frequency response curve for Different eccentricity ($e_v = e_w$).	86

Fig. 4.36	Frequency response curve for different disk position (L_d)	86
Fig. 4.37	Frequency response curve for different disk mass ($m{ heta}_1$)	87
Fig. 4.38	Frequency response curve for different unbalance (β_2): β_1 =0.5.	87
Fig. 4.39	Frequency response curve for different diametrical moment of inertia (I_3)	87
Fig. 4.40	Frequency response curve for the rotating system with and without disk (same unbalance magnitude ($\beta_2 e_{v1}$) for both cases)	87
Fig. 4.41	Steady state response only. a) Time response b) Phase portrait c) Poincare map. : $v(0) = 0.01$, $e_v = e_{w}$, $e_{v_1} = e_{w_1} = 0.2374$	88
Fig. 4.42	Steady state response only. a) Time response b) FFT plot c) Phase portrait d) Poincare map. : $v(0) = 0.01$, $e_v = e_w = 0.1880$, $e_{v1} = e_{w1} = 0.2374$	88
Fig. 4.43	Steady state response only. a) Time response b) FFT plot c) Phase portrait d) Poincare map. : $v(0) = 0.01$, $e_v = e_w = 0.2505$, $e_{v1} = e_{w1} = 0.30$	89
Fig. 4.44	Steady state response only. a) Time response b) Phase portrait c) Poincare map. : $e_v = e_w = 0.125$	90
Fig. 4.45	Steady state response only. a) Time response b) FFT plot c) Phase portrait d) Poincare map. : $e_v = e_w = 0.125$, $\Omega = 4.485$	90
Fig. 4.46	Steady state response only. a) Time response b) FFT plot c) Phase portrait d) Poincare map. : $e_v = e_w = 0.125$, $\Omega = 5.485$	91
Fig. 4.47	a) Time response b) FFT plot c) Poincare map. : $e_v = e_w = 0.125$, $\Omega = 5.685$	91
Fig. 4.48	Bifurcation diagram a) Spin speed (Ω) Vs Poincare points (v) with (v(o)=	
	0.01) b) eccentricity (e_v) Vs Poincare points (v) with (v(0)= 0.01, \dot{U} (0)= 0.02,	0.2
	w(0)=0.0001, \dot{U} (0)=0.01)	92
Fig. 4.49	Bifurcation diagram a) β_2 Vs Poincare points (v) b) β_2 Vs Poincare points (v)	
	with (v(o) = 0.001) , $\dot{\mathcal{U}}$ (o)= 0, w(o)=0, \dot{w} (o)=0), e _v = e _w = 0.02	92
Fig. 4.50	Steady state response only (Ref. <i>Fig. 4.</i> 49). a) Time response b) Phase portrait c) Poincare map	92
Fig. 4.51	Steady state response only (Ref. Fig. 4.49). a) Time response b) Phase portrait c) Poincare map. $\theta_2 = 0.28$	93
Fig. 4.52	a) Mode shapes b) Frequency response curve: K_1 =0.016, C_b =8.57×10 ⁻⁴	94
Fig. 4.53	Frequency response curve: K_1 =0.016, C_b =8.57×10 ⁻⁴	94
Fig. 4.54	Bifurcation diagram a) K_{nl} Vs Poincare points (v) with (v(0) = 0.001), $\dot{v}(0) = 0$, w(0)=0, $\dot{w}(0)=0$), $\beta_2 = 0.018$, $e_v = e_w = 0.02$	94
Fig. 4.55	Steady state response only (Ref. Fig. 4.54). a) Time response b) Phase portrait c) Poincare map	94
Fig. 4.56	Steady state response only (Ref. Fig. 4.54) a) Time response b) Phase portrait c) Poincare' map $K_{nl} = 78$	95
Fig. 4.57	Validation: Frequency response plot	95
Fig. 4.58	Schematic diagram of rotating system with rub impact phenomenon	96
Fig. 4.59	Bifurcation Diagram: Effect of spin speed (Ω)	99
Fig. 4.60	Effect of spin speed a) Time series b) FFT c) Phase portrait map d) Poincare' map: Ω = 2.3.	99
Fig. 4.61	Effect of spin speed a) Time series b) FFT c) Phase portrait map d) Poincare' map: Ω = 2.8.	100
Fig. 4.62	Effect of spin speed a) Time series b) FFT c) Phase portrait map d) Poincare' map: $\Omega = 3$.	101
Fig. 4.63	Bifurcation Diagram: Effect of unbalance mass (M _e)	101
Fig. 4.64	Effect of unbalance mass a) Time series b) FFT c) Phase portrait map d) Poincare' map: $M_e = 0.02$.	102

Fig. 4.65	Effect of unbalance mass a) Time series b) FFT c) Phase portrait map d) Poincare' map: M_e = 0.08.	103
Fig. 4.66	Effect of unbalance mass a) Time series b) FFT c) Phase portrait map d) Poincare' map: $M_e = 0.175$.	104
Fig. 4.67	Bifurcation diagram: Effect of coefficient of Friction (η)	104
Fig. 4.68	Effect of coefficient of Friction a) Time series b) FFT c) Phase portrait map d) Poincare' map: $\eta = 0.01$.	105
Fig. 4.69	Effect of coefficient of Friction a) Time series b) FFT c) Phase portrait map d) Poincare' map: $\eta = 0.15$.	105
Fig. 4.70	Bifurcation Diagram: Effect of stiffness of rub surface (i.e. stator) 1/K _r	106
Fig. 4.71	Effect of stiffness of rub surface a) Time series b) FFT c) Phase portrait map d) Poincare' map: $1/K_r = 0.0167$.	107
Fig. 4.72	Effect of stiffness of rub surface a) Time series b) FFT c) Phase portrait map d) Poincare' map: $1/K_r = 3.34$.	107
Fig. 4.73	Effect of stiffness of rub surface a) Time series b) FFT c) Phase portrait map d) Poincare' map: $1/K_r = 2.67 \times 103$.	108
Fig. 5.1	A rotating system model with multiple disks	111
Fig. 5.2	Frequency response curve for multiple disks	116
Fig. 5.3	Frequency response curve for different loss factor (δ)	116
Fig. 5.4	Frequency response curve for different magnitude of the base excitation (W_b)	117
Fig. 5.5	Frequency response curve	117
Fig. 5.6	a) Time series b) Phase portrait map c) Poincare' map (Ref. Fig. 5.5)	118
Fig. 5.7	Bifurcation diagram for effect of δ , N=4, $\Omega_{\rm b}$ =50,	118
Fig. 5.8	Bifurcation diagram for effect of δ , N=2, $\Omega_{\rm b}$ =72,	118
Fig. 5.9	Effect of loss factor δ a) Time series b) Phase portrait map c) Poincare' map	119
Fig. 5.10	Bifurcation diagram for effect of W_b N=4, Ω_b =50	119
Fig. 5.11	Bifurcation diagram for effect of W_b , N=2, Ω_b =72	119
Fig. 5.12	Effect of W_b a) Time series b) Phase portrait map c) Poincare' map	120
Fig. 5.13	Effect of W_b a) Time series b) Phase portrait map c) Poincare' map (W_b = 0.05)	120
Fig. 5.14	Bifurcation diagram for effect of Ω_b , N=4	120
Fig. 5.15	Bifurcation diagram for effect of Ω_b , N=2	120
Fig. 5.16	Effect of Ω_b a) Time series b) Phase portrait map c) Poincare' map	121
Fig. 5.17	Effect of Ω_b a) Time series b) Phase portrait map c) Poincare' map (Ω_b = 50)	121
Fig. A.1	Displacement relation and Euler angle	141